
GPU-accelerated Evolutionary Design of the Complete
Exchange Communication on Wormhole Networks

Jiri Jaros
Faculty of Information Technology

Brno University of Technology
Bozetechova 2

612 66 Brno, Czech Republic
jarosjir@fit.vutbr.cz

Radek Tyrala
AT&T Mobility

Palachovo namesti 7262
625 00 Brno, Czech Republic

radek.tyrala@att.com

ABSTRACT
The communication overhead is one of the main challenges in the
exascale era, where millions of compute cores are expected to col-
laborate on solving complex jobs. However, many algorithms will
not scale since they require complex global communication and
synchronisation. In order to perform the communication as fast
as possible, contentions, blocking and deadlock must be avoided.
Recently, we have developed an evolutionary tool producing fast
and safe communication schedules reaching the lower bound of the
theoretical time complexity. Unfortunately, the execution time as-
sociated with the evolution process raises up to tens of hours, even
when being run on a multi-core processor. In this paper, we propose
a revised implementation accelerated by a single Graphic Process-
ing Unit (GPU) delivering speed-up of 5 compared to a quad-core
CPU. Subsequently, we introduce an extended version employing
up to 8 GPUs in a shared memory environment offering a speed-up
of almost 30. This significantly extends the range of interconnec-
tion topologies we can cover.

Categories and Subject Descriptors
C.1.2 [Processor architectures]: Multiple Data Stream Architec-
tures—Interconnection architectures, Parallel processors, multiple-
data-stream processors (SIMD)
D.2.2 [Software engineering]: Design Tools and Techniques—
Evolutionary prototyping

General Terms
Algorithms, Performance, Design.

Keywords
Complete exchange communication; Collective communications;
Communication scheduling; Evolutionary design; GPU-based ac-
celeration; Multi-GPU systems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
GECCO’14, July 12–16, 2014, Vancouver, BC, Canada.
Copyright 2014 ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598315 .

1. INTRODUCTION
A recent trend in high performance computing (HPC) has been

towards the use of parallel processing to solve computationally-
intensive problems. Nowadays, with the enormous transistor bud-
gets of 32-nm and 22-nm technologies on a silicon die, it is feasible
to place large CPU clusters on a single chip (System on Chip, SoC).
Such systems are based on both x86 compute cores (Intel Xeon
Phi1) and ARM based cores (Paralella2, Calxeda3, etc). The mem-
ory of many-core systems is physically distributed among comput-
ing nodes that communicate by sending data through a Network
on Chip (NoC) [5]. With an increasing number of processor cores,
memory modules and other hardware units in the latest chips, the
importance of communication among them and of related intercon-
nection networks is steadily growing.

Communication operations can be either point-to-point, with one
source and one destination, or collective, with more than two partic-
ipating processes. Some embedded parallel applications, like net-
work or media processors, are characterized by independent data
streams or by a small amount of inter-process communications [6].
However, many general-purpose parallel applications display a bulk
synchronous behaviour: the processing nodes access the network
according to a global, structured communication pattern.

The performance of these collective communications (CC) has
a dramatic impact on the overall efficiency of parallel processing.
The most efficient way to switch messages through the network
connecting multiple processing elements makes use of pipelined
wormhole (WH) switching [12]. Wormhole switching reduces the
effect of the path length on the communication time, but if multiple
messages exist in the network concurrently (as it happens in CCs),
contention for communication links may be a source of congestion
and waiting times. To avoid congestion delays, it is necessary to or-
ganize CC into separate steps in time and to put into each step only
such pair-wise communications whose paths do not share any links.
The contention-free scheduling of CCs is therefore important.

In our previous work, we developed an evolutionary tool capable
of creating optimal communication schedules for various commu-
nication patterns on wide range of interconnection network topolo-
gies with the size of up to 256 nodes [7]. The only exception was
the complete exchange (CE) pattern where we had been unsuccess-
ful even on small meshes with 32 nodes. This was given by the
overwhelming run time requirements on the order of days even
when running on a quad-core CPU. Since the CE is very widely
used in iterative finite difference methods, fast Fourier transforma-
tions, numeric PDE solvers, linear algebra and many other, we de-

1http://www.intel.com/
2http://www.parallella.org/
3http://www.calxeda.com/

1023

cided to harness the potential of massive parallel architectures such
as GPUs to accelerate the evolution and produce optimal schedules
in more realistic times.

The rest of this paper is organised as follows. The section contin-
ues with discussing the main characteristics of GPUs and provides
fundamental concepts for writing fast codes. Section 2 describes
the problem of scheduling the complete exchange communication
pattern, the evolutionary algorithm, and defines the solution en-
coding followed by the fitness function. Section 3 introduces the
accelerated version of the EA, presenting the key design decisions.
The experimental results are presented in section 4 for two differ-
ent GPU cards and a multi-GPU system. Finally, a summary and
directions for the future work are provided in the Conclusions.

1.1 GPU Architecture and Programming
Graphics Processing Units (GPUs) are massively parallel accel-

erators primarily targeted on speeding up the computer graphics
with millions of independent polygons and pixels. Their architec-
ture is therefore adapted for executing relatively simple algorithms
on big datasets in parallel. Nevertheless, GPUs have become key
part of many supercomputing systems (Titan in Oak Ridge) and
the trend in their employment steadily grows. There are two basic
APIs commonly used for writing the GPU-accelerated applications,
namely CUDA4 and OpenCL5. Roughly speaking they are more or
less the same. In this work, we decided to implement the codes
in OpenCL to be able to support a wider range of GPU cards (we
intend to deploy the code on Intel Xeon Phi cards in the future),
however, porting it on CUDA would be trivial.

As we mainly targeted the proposed code on NVIDIA GTX 580
cards, we are going to provide the fundamental architecture basics
of the Fermi architecture in this subsection. The graphics card is
divided into a graphics chip (GPU) and 1.5GB of main memory.
Main memory, acting as an interface between the host CPU and
GPU, is connected to the host system using a PCI-Express 2.0 bus.
This bus can easily become a bottleneck as its bandwidth is only a
fraction of what both GPU and CPU memories provide [9].

The GPU main memory is optimized for block transactions and
stream processing providing very high bandwidth but also high la-
tency. Hiding this latency is very important for keeping GPU exe-
cutions units busy. The GTX 580 offers 768KB of fast on-chip L2
cache to allow reordering of the memory requests as well as on-chip
shared memory, and large register fields to get the working data as
close the execution units as possible. The GTX580 processor con-
sists of 16 independent Streaming Multiprocessors (SM), each of
which is further divided into 32 CUDA cores. SMs are based on
the Single Instruction, Multiple Thread (SIMT) concept allowing
them to execute exactly the same instruction over a batch of 32
consecutive threads (referred to as a warp) at a time. This con-
cept dramatically reduces the control logic of SMs, but on the other
hand, dictates strict rules on thread cooperation and branching. A
few consecutive warps form a thread block that is the smallest re-
source allocation unit of SM. In order to fully exploit the potential
of a given GPU, a few concepts must be kept in mind [13]:

• Thousands of threads are necessary to be executed concur-
rently on the GPU to hide memory latency.

• All the threads within a warp should follow the same execu-
tion path minimizing the thread divergence.

• All memory requests within a warp should be coalesced read-
ing data from consecutive addresses.

4https://developer.nvidia.com/cuda-downloads
5http://www.khronos.org/opencl/

• Synchronization and/or communication among threads can
be done quickly only within a thread block.

• Working data set should be partitioned to fit on-chip shared
memory to minimize main memory accesses.

• Data transfers between CPU and GPU memories can easily
become a bottleneck given the low PCI-Express bandwidth.

2. EVOLUTIONARY DESIGN
The selection of Evolutionary Algorithms (EA) for the schedul-

ing problem has been justified already in [7]. Although the pro-
posed methodology of designing near-optimal CC schedules is in-
dependent of the particular evolutionary algorithm, we restricted
ourselves in this work only to a simple EDA evolutionary algorithm
without gene dependencies (UMDA).

Univariate Marginal Distribution Algorithm (UMDA) [11] is a
very simple EDA [10] (Estimation of Distribution Algorithm) which
does not reflect any interaction between genes (variables/solution
parameters). The main advantages of this algorithm are better mix-
ing of genetic material than it is possible in standard GA [4], very
simple implementation and much faster execution than more com-
plex EDAs like BOA (Bayesian Optimization Algorithm [10]) al-
gorithms. Of course, any other EA could be employed. Basic com-
parison of a success rate and execution time of other types of EA
applied to CC scheduling problem can be found in [7].

2.1 Complete Exchange Communication
The Complete Exchange (CE) communication pattern, also re-

ferred to as all-to-all scatter (AAS) or personalised all-to-all broad-
cast is one of the most complex collective communication (CC)
routine present in many parallel algorithms, such as BLAS, FFT,
island model of EA and many others. This communication is of-
ten aligned with matrix transposition where the data is originally
distrusted over processing elements by rows and after applying the
operation by columns.

The complete exchange algorithm is usually defined in terms of
a group of processes. In this case, we have P communication pro-
cesses each of which is sending and receiving a message to all its
P − 1 partners. To complete one complete exchange, P (P − 1)
point-to-point message transfers have to be carried out.

The simplest time model of point-to-point communication in di-
rect Wormhole (WH) networks takes the communication time com-
posed of a fixed start-up time ts at the beginning (SW and HW
overhead of a sender and a receiver), a serialization delay, i.e. the
transfer time of m message units (words or bytes), and of a com-
ponent that is a function of distance h (the number of channels on
the route or hops a message has to do)

tp2p = ts +mt1 + htr (1)

where t1 is per unit-message transfer time and tr includes a routing
delay, switching and inter-router latency. A relatively small depen-
dence on hmay be taken into account by including hmaxtr into ts,
so that only two parameters ts and mt1 are sufficient.

In the rest of the paper we assume that all collective communica-
tion (CC) including CE in WH networks proceeds in synchronized
steps. In one step of CC, a set of simultaneous packet transfers
takes place along complete disjoint paths between source and des-
tination node pairs. If the source and destination nodes are not
adjacent, the messages go via some intermediate nodes, but pro-
cessors in these nodes are not aware of it; the messages are routed
automatically by the routers attached to processors.

1024

Complexity of collective communication is determined in terms
of the number of communication steps or equivalently by the num-
ber of "start-ups" τCC (upper bound). Provided that the term hmaxtr
is included in ts and excluding contention for channels, CC time
can be obtained approximately as the sum of start-up delays plus
associated serialization delays mit1 in individual communication
steps

τCC =

τCC∑
i=1

(ts +miti) = τCC [ts +mt1]. (2)

The above expression assumes that the nodes can only re-transmit/
consume original messages, so that the length of messages mi =
m remains constant in all communication steps. This is true in the
so called non-combining model of communication; on the contrary,
in the combining model the nodes can combine/extract partial mes-
sages with negligible overhead. The combining/non-combining
model influences CC performance and either one can outperform
the other in some cases. Further on we will consider the non-
combining model only. Possible synchronization overhead involved
in communication steps, be it hardware or software-based, should
be included in the start-up time ts. Let us note that with uniform
messages and a single clock signal domain, one barrier synchro-
nization before CC might be sufficient to synchronize the whole
CC. Communication steps would then follow in the lockstep. Ac-
cording to frequency of CCs and an amount of interleaved compu-
tation (BSP model) in a certain application, efficiency of parallel
processing can be estimated.

The lower bound of the time complexity (number of communica-
tion steps) for complete exchange can be obtained considering that
half the messages from each processor cross the bisection, whereas
the other half do not. There will be altogether d2(P

2
)2/BCe of

such messages in both ways, where BC is the channel bisection
width [2]. Sometimes a stronger lower bound may be obtained con-
sidering the count of channels from all sources to all destinations
(Σ) and the limited count Σ1 of channels available for one step.
In regular networks with constant node degree such as hypercube
and torus Σ1 = Pk, where k is the number of output channels in
each node. In irregular networks such as mesh, as each node has to
accept P − 1 distinct messages, d(P − 1)/min(k)e bound has to
be also obeyed.

2.2 Input Data Structure and Preprocessing
The input data structure maintains a description of the network

topology, the definition of CC and sets of transmitters, receivers
and intermediate routers. The topology description is saved in the
form of node neighbour lists, where the nodes are considered to be
neighbours only if they are connected by a simple direct link.

After the input file is loaded, the data have to be preprocessed.
In the first phase, the preprocessor divides the set of all nodes V ∗

into a set of transmitters T and a set of receivers R. Then, a set of
terminal nodes V ⊆ V ∗ is determined as the union T ∪ R. The
terminal nodes can inject/consume messages to/from the network,
while the non-terminal nodes (routers) can only retransmit the mes-
sages. Finally, all the sets are ordered based on the node index.

The preprocessor generates all the shortest paths (the set Rxy)
between all transmitter-receiver pairs x, y ∈ V and saves them into
a specific data structure in the operating memory during the second
phase. This task is performed by a modified well known Breadth-
First Search (BFS) algorithm [3].

2.3 Solution Encoding
Let us define the chromosome encoding for the complete ex-

change communication. Considering CE communication between
M transmitters from set T and N receivers from set R:

1. The complete exchange can be defined as a set CC of pair-
wise transfers src, dst originating in src ∈ T and terminat-
ing in dst ∈ R, where src 6= dst.

CC = {p2psrc,dst : src ∈ T, dst ∈ R, src 6= dst} (3)

2. A direct encoding can be designed for the CE schedules (i.e.
an exact description of the schedule is stored in a chromo-
some). Chromosome can be formalized as n-tuples of genes:

chr =

 gene0,0 . . . gene0,N−1

...
. . .

...
geneM−1,0 . . . geneM−1,N−1

 , (4)

where M is the number of transmitters and N is the number
of receivers while n is the total number of genes. Notice that

M,N ≤ P ∧ n = M ·N. (5)

3. A gene genei,j represents a single message transfer from the
transmitter xi ∈ T to the receiver xj ∈ R, where xi 6= xj .
The source and the destination are identified by the genes‘
indexes i and j. A gene is the ordered couple:

genei,j = [li,j , si,j], 0 ≤ i < M, 0 ≤ j < N, i 6= j
li,j ∈ Ri,j
0 ≤ si,j < Steps

(6)
The first component li,j represents a chosen path from the
transmitter xi to the receiver xj stored in the set Ri,j . The
second component si,j determines a selected time slot (com-
munication step) of the transfer. The total number of time
slots is given as the predefined parameter Steps.

4. The (shortest) path is defined as an ordered set of unidirec-
tional channels:

li,j = {c1, c2, c3, . . . , cL}, ci = [a, b] ∈ V ∗ × V ∗ (7)

where c1 = [a1, b1]∧a1 = xi and cL = [aL, bL]∧bL = xj .

5. Next, consider a set G containing all the genes included in
a chromosome chr:

G = {genei,j : 0 ≤ i < M, 0 ≤ j < N, i 6= j}. (8)

6. Finally, we can define bijective mapping f from set G into
setCC meaning that each gene corresponds to a unique pair-
wise transfer and also vice versa:

f : genei,j ∈ G 7→ p2psrc,dst ∈ CC ⇐⇒
xi = src, xj = dst.

(9)

2.4 Conflict-based Fitness Function
This section proposes a formal description of the fitness function.

1. Let SS (Same Slot/Step) be a binary relation on the set G.
Let a, b ∈ CC be message transfers represented by genei,j
and genek,l, then

genei,jSSgenek,l ⇐⇒ si,j = sk,l. (10)

Thus, two transfers are in relation SS if and only if they are
executed during the same time slot.
Now, we show that SS is an equivalence relation:

1025

(a) SS is reflexive, since no transfer can be performed in
more than one time slot.

(b) SS is clearly symmetric considering si,j = sk,l , then
sk,l = si,j .

(c) SS is transitive. Let a, b, c be elements of G. When-
ever aSSb and bSSc, then also aSSc (a is executed
during the same slot as c whenever a is executed dur-
ing the same slot as b and b is executed during the same
slot as c).

Thus SS is an equivalence relation.

2. The equivalence relation SS induces the partition on set G.
Each equivalence class [gs] includes all transfers performed
in the same slot s.

3. Let Ea,b be a set of all channels shared by two transfers a, b
represented by genes genei,j , genek,l ∈ G going over paths
li,j and lk,l. Then

Ea,b = li,j ∩ lk,l. (11)

The number of conflicts between a and b can be obtained as
the cardinality of the set Ea,b.

4. Define a multiset Es including channels shared by all trans-
fers within a given time slot, then

Es =
⋃

a,b∈[gs],a6=b

Ea,b. (12)

5. The multisetE, covering all shared channels within the whole
CC, can be obtained as a union over all equivalence classes.
Thus

Es =
⋃

[gs]∈G/SS

Es. (13)

6. The total number of conflicts can be obtained as the cardinal-
ity of multiset E. Thus

Fitness = |E|. (14)

The valid communication schedule for a given number of com-
munication steps must be conflict-free. Valid schedules are either
optimal (the number of steps equals the lower bound) or subopti-
mal. Evolution of a valid schedule for the given number of steps is
finished up as soon as fitness (number of conflicts) drops to zero.
If it does not do so in a reasonable time, the prescribed number of
steps must be increased.

2.5 Execution Time on Small Networks
In our previous work we have applied this approach on a wide

range of network topologies targeted on networks on a chip with
up to 256 nodes. However, the results for the complete exchange
have not been satisfactory. Table 1 shows the time complexity of
the evolved communication plans in term of communication steps
followed by the lower bound. It can be seen that for bigger topolo-
gies (36 nodes and more) the EA was not successful and produced
only suboptimal solutions. The table also shows the average run-
time of the EA to find such a solution. It can be seen that the run
time grows significantly, reaching the order of days for as low as 36
nodes. The optimisation of bigger networks was thus impractical.

Table 1: The time complexity of best schedules discovered and
the theoretical lower bounds for the complete exchange com-
munication along with the evolution time on a quad-core CPU.

Topology Number of time steps Time to solution
Mesh 3x3 6/6 2s
Mesh 4x4 16/16 22m 7s
Mesh 5x5 32/32 9h 20m
Mesh 6x6 56/54 3d 20h
Cube 3D 4/4 1s
Cube 4D 9/9 10m
Cube 5D 16/16 2d 8h
Cube 6D 35/32 2d 18h
Torus 3x3 4/4 1s
Torus 4x4 9/8 19m
Torus 5x5 16/15 7h
Torus 6x6 30/24 1d 12h

3. GPU ACCELERATION
The main disadvantage of the CPU implementation is the com-

pute time required to find an optimal solution (a conflict-free plan
with minimal number of time steps) that makes optimisation of
more complex communication plans impractical. Thus, we decided
to accelerate the evolution by Graphics Processing Units (GPU).

There are several strategies how to port the EA on the GPU plat-
form with different difficulty and attainable speed-up [8]. Thus, we
first profiled the original CPU implementation using the GNU pro-
filer gprof on typical topologies. The flat profile (Fig. 1) reveals
that almost 93% of the execution time is consumed by the fitness
calculation, 2% are consumed by the random number generator, an-
other 2% by the UMDA model building and sampling, and the rest
can be attributed to support routines.

Taking into account the effort necessary to port the whole evo-
lutionary algorithm on the GPU, the limits imposed on the EA by
the GPU, and the negligible overhead of the EA in our case, we
decided to only offload the fitness calculation onto the GPU. This
makes the design much easier, allows to simply exchange the EA
engine (e.g. GAUL6 or NSGA-II7) and preserves the quality of the
solution (many GPU-accelerated EAs need to make compromises
to get good performance). On the other hand, the simple fitness
offload limits the accessible speed-up. According to the Amdahl’s
law [1] with the non-accelerated part of the algorithm α = 0.07,
the theoretical speed-up is bounded by 14. Practically, the speed-up
factor will be even lower because of the overhead of uploading the
chromosomes for evaluation onto the GPU and downloading the
fitness values back. Fortunately, the use of asynchronous transfers
can hide this overhead by overlapping the calculation of the actual
chromosome with transferring the following one.

3.1 Global Data Representation on GPU
In order to offload the fitness function evaluation on the GPU,

we have to accommodate the global data on the GPU as well. This
dataset maintains the list of all shortest paths between all transmitter-
receiver pairs (Rxy). The preprocessor orders this set into a list of
4-tuples T ×R×Rxy × lij stored in the CPU memory as a sparse
4D array. Since allocation, transfer and access to sparse multidi-
mensional arrays are very inefficient on GPU, the array was re-
structured into a form of a simple 1D array with the size of |T | ∗
|R|∗max(|Rxy|)∗max(|lij |) and the shortest paths copied into it.
6http://gaul.sourceforge.net/
7http://www.iitk.ac.in/kangal/codes.shtml

1026

Others
3%

Sample
model

1%

Create
model

1%

Random
numbers

2%

Select paths
20%

Compare paths
73%

Evaluate fitness
93%

Flat profile of the CPU version

Figure 1: The flat profile of the CPU version of the code cap-
tured for a 7x7 2D mesh topology and 128 individuals in the EA
population. The fitness evaluation takes more than 93 % of the
execution time.

Considering that neither all shortest paths are of the same length nor
there are the same number of shortest paths between all T -R pairs,
this data layout introduces a non-negligible memory overhead that
limit the maximum topology size to 192-256 nodes.

3.2 Fitness Evaluation on GPU
The fitness function evaluation consists of two phases. First, the

path used in the G are partitioned into the equivalence classes [gs]
using the equivalence relation SS in eq. (10). Second, the number
of conflicts in each equivalence class is counted up and eventually
summed up into the fitness function value.

Looking at Fig. 1, the path partitioning takes about 20% of the
execution time while the search for conflicts does almost 80%. The
CPU code for partitioningG traverses through the chromosome and
classifies the path’s ID into a particular equivalence class (C++ vec-
tor). Although this is a trivial operation, it requires dynamic mem-
ory allocation because it is not a priori known how many paths be-
longs into a given class [gs]. Moreover, doing so in parallel implies
the use of mutual exclusion (memory locks) when adding a path
into a given class. Both these features have very limited support on
GPUs and are always strongly performance penalised. Thus, this
part of the fitness function evaluation is better to be processed on
the CPU. The second phase, comparing the pairs of paths and seek-
ing for conflicts, is completely data independent not requiring any
dynamic memory allocation and/or synchronisation. That’s why it
is a good candidate for GPU acceleration.

The basic idea of the GPU-accelerated fitness function evalua-
tion is as follows:

1. The CPU partitions the paths in G into equivalence classes
and stores them in separate memory arrays.

2. The CPU uploads an equivalence class on the GPU.

3. The GPU mutually compares all path pairs within the class
in parallel and stores the number of conflicts for each pair.

4. The GPU performs a parallel reduction to get the total num-
ber of conflicts within a given equivalence class.

5. The CPU downloads the number of conflicts for [gs] and adds
them to the total sum from other equivalence classes.

6. The previous steps are repeated until all equivalence classes
have been processed.

3.3 GPU Thread Model
The thread model describes how the work is distributed over

many thousands of lightweight GPU threads. Ideally, the work

should be evenly distributed, minimising the need for communica-
tion and synchronisation and maximising the data reuse. For iden-
tifying all path conflicts (shared channels), all path pairs have to be
mutually compared. Having N paths in a given class [gs] yields
N(N − 1)/2 path comparisons. Considering the global exchange
communication pattern, and a topology with P = |T | = |R| nodes,
P 2(P 2−1)/2 path comparisons have to be performed in the worst
case. Considering even a small 4x4 mesh topology, this stands for
32 640 path comparisons.

This finding suggests that each thread could be assigned one pair
of paths to compare since there are enough path pairs in larger
topologies to employ hundreds of GPU threads. The GPU thread
can be identified by a 1D index (ID) within a GPU kernel function.
The ID determines which pair of paths from [gs] is assigned to the
thread as follows:

1st path: ID mod |[gs]|
2nd path: (ID + ID

|[gs]| + 1) mod |[gs]| (15)

The threads are then grouped into thread blocks of a specific size
(usually 512 or 1024).

3.4 On-chip Memory Utilisation
As the path comparison involves no floating point operations and

only a tiny amount of fixed point arithmetic (comparisons and in-
dexing), the GPU kernel is strongly memory bound. Moreover, the
memory access patter is not regular but scattered. Therefore, the
memory accesses must be carefully designed to get reasonable per-
formance.

Let’s recall the path is stored as list of network nodes the message
goes through on the way from the transmitter to the receiver, see Eq.
(7). Every thread is assigned a path pair and processes it channel
by channel, see Fig. 2. Since the threads are grouped into warps
executed in the SIMT (Single Instruction Multiple Thread) fashion,
a thread warp processes 32 path pairs simultaneously. Thus, when
reading the first component of the channel (say path1[i]), the GPU
actually reads first components of 32 different paths from distant
places scattered over the global memory. This breaks one of the
fundamental rules of the SIMT processing (neighbour threads read
from neighbour memory locations), see Fig. 2.

The second issue is that the second path is read multiple times.
Since there are no or very small caches on GPU, it is almost sure
that all accesses will be served by global memory, which further
decreases the performance.

1 for (int i = 0; i < path1Size - 1; i++)
2 {
3 for (int j = 0; j < path2Size - 1; j++)
4 {
5 if ((path1[i] == path2[j]) &&
6 (path1[i+1] == path2[j + 1])
7)
8 conflicts[threadID]++;
9 }

10 }

Figure 2: Code snippet of the conflict seeking GPU kernel on a
pair of paths. To detect conflicts, all channels has to be mutu-
ally compared.

One way how to lighten the GPU memory load would be to use
shared on-chip memory to rearrange memory accesses and reuse
the second path data. The idea is to use multiple threads to load
a path from main memory exploiting the SIMT-friendly coalesced
memory access pattern. After all paths are loaded, call a barrier

1027

and then redistribute the paths stored in shared memory to threads
for processing. Although looking promising, this idea holds many
problems. First, since the paths are not of the same size, a mapping
function to decide what threads are assigned to load particular paths
would be necessary. This would require an expensive parallel pre-
fix sum. Second, the paths wouldn’t squeeze into the small shared
memory. Considering even a small 4x4 mesh, the longest short-
est path has a length of 7. Having 1024 threads in a thread block
would require 2*28KB of shared memory, which is more than cur-
rent GPUs can offer. Reducing the number of threads would lead to
low occupancy and reduced performance. Considering all these ob-
stacles, we concluded it would be better not to use shared memory
as we did not want to limit the size of the topology optimised.

The memory bandwidth can yet be reduced by proper use of reg-
isters to hold the segments of the path for the time they are needed
and not to read them from the global memory repeatedly. Accord-
ing to the principle of path comparing, every segment of the first
path (two nodes) is compared with all segments of the second path.
Thus, it will be read only once, stored in a pair of registers and com-
pared with all segments of the second path. When moving to the
flowing segment of the first path, we preserve the endpoint of the
previous channel, declare it as the start point of the following chan-
nel and read only the endpoint from the maim memory. This sort
of software pre-fetching reduces the memory bandwidth by 40%.
The same node pre-fetching can be then applied on the second path,
which further reduces the memory bandwidth down to 30%. The
code snippet can be seen in Fig. 3.4.

1 node1_1 = path1[0];
2

3 for (int i = 0; i < path1Size - 1; i++)
4 {
5 node1_2 = path1[i + 1];
6 node2_1 = path2[0];
7

8 for (int j = 0; j < path2Size - 1; j++)
9 {

10 node2_2 = path2[j + 1];
11 if ((node1_1 == node2_1) &&
12 (node1_2 == node2_2)
13)
14 conflicts[threadID]++;
15

16 node2_1 = node2_2;
17 }
18 node1_1 = node1_2;
19 }

Figure 3: Code snippet of the optimised conflict seeking GPU
kernel on a pair of paths. The paths are loaded using software
pre-fetching and stored in registers.

The numbers of conflicts identified by particular threads are sto-
red in a shared on-chip memory array. The array has the same size
as the thread block (usually 1024). Then, the parallel reduction ker-
nel is used to sum the number of conflicts within the thread block.
Finally, the first thread of the blocks adds its value to the others’
one in global memory using an atomic add operation.

3.5 Multidimensional Kernel Organisation
The use of 1D GPU kernels and thread blocks imply that that

a chromosome is processed in multiple stages, each communica-
tion slot and its class [gs] in one stage. Although this enables
fine-granularity, the PCI-E transfers are too small to efficiently use
the PCI-E bandwidth since only path indices are transferred (a few

KBs). Moreover, the kernels have only a little work and has to be
started many times, which introduced additional overhead.

To alleviate the overhead associated with the kernel launch and
PCI-E transfers, the GPU kernels were redesigned to be multidi-
mensional. The first dimension is associated with the paths within
one communication slot [gs]. The second dimension allows to pro-
cess multiple communication slots. If necessary, the third dimen-
sion can be used to process multiple chromosomes at once. This
introduces a high degree of freedom and allows for better workload
balancing.

3.6 Multi-GPU Processing
Since many high-end desktops and supercomputer nodes can

house multiple GPU accelerators, we investigated the possibility of
employing multiple GPUs. Fortunately, both OpenCL and CUDA
have simple extensions to support this feature.

The population of candidate solutions is divided into small batch-
es, each of which including one or more chromosomes. Then, the
CPU code spawns as many CPU threads as GPUs in the system and
links each CPU thread with a single GPU. After that, two process-
ing streams are opened on each GPU. These are used for double-
buffering. When one work batch is processed using the first stream,
another batch is uploaded on the GPU using the second stream, and
vice-versa. This virtually hides the overhead associated with the
data transfers and allows good scaling.

4. EXPERIMENTAL RESULTS
The proposed GPU implementation was tested on two machines.

First, a standard desktop equipped with a quad-core Intel i7-920
CPU and 12GB of RAM was used to run the parallel CPU imple-
mentation and provide a reference point. This machine housed two
NVIDA GPUs; GTX 285 - a high-end graphics of the pre-Fermi
architecture released in 2009 and GTX 580 - a high-end graphics
card of the Fermi architecture released in 2011. The main differ-
ences between these two cards are the presence of L2 cache and
twice as high raw performance in the case of the GTX580. The
memory bandwidth, the expected limitation of the proposed imple-
mentation, is comparable. The second machine was a single node
of a GPU cluster equipped with two hex-core Xeons X5660 and
eight NVIDIA GTX580 GPU cards. This machine served as a plat-
form for multi-GPU tests.

Several instances of the most common topologies were used to
evaluate the benefit of using the GPU accelerated implementation.
We selected 2D meshes, 2D tori and multidimensional hypercubes
topologies with the number of nodes varying from 4 to 64, see Ta-
ble 1. The parameters of evolutionary algorithms were carefully
set in our previous work as follows: the population consisted of
256 individuals, the model of the UMDA algorithm was built using
50% of the population selected by the binary tournament selection,
50% of new individuals were generated and evaluated every gener-
ation. Although not typical in EDA algorithms, a small amount of
mutation was used to preserve population diversity. Let’s mention
that bigger populations could offer more work for GPU and thus
a higher speed-up, however the population would converge slower
[7]. This implies that unnecessary work would be done.

4.1 Tuning the Block and Grid Layout
In order to obtain the best possible performance we investigated

the suitable thread block and grid layout and size. The performance
evaluation was done on the most complex topology we had, a 2D
mesh with 49 nodes containing the longest shortest paths (up to 13
hops). To spawn enough thread blocks on the GPU, we used a 2D
grid layout where multiple multiple communication steps ([gs] of a

1028

0

100

200

300

400

500

600

(128,1,1) (1024,1,1) (256,4,1) (32,4,1) (128,8,1)

In
d

iv
id

u
a

ls
 p

ro
ce

ss
e

d

p

e
r

se
co

n
d

Threadblock layout

The impact of the threadbock layout

GTX 580

Mesh 7x7

Figure 4: The influence of the GPU thread block layout on
the performance on an NVIDIA GTX580 and Mesh 7x7. The
fastest configuration seems to be a 1D thread block with 1024
threads.

single solution were being evaluated simultaneously and two GPU
streams were feeding the GPU with data and overlapping commu-
nication and computation.

The question we addresses here is whether it is better to use a 2D
thread block, where multiple communication steps are processed
simultaneously or keep only one communication step per block.
Fig. 4 shows that the best performance is obtained when the biggest
possible 1D thread block of 1024 threads is used. The most likely
cause of this behaviour the only one parallel reduction calculated
in the 1D thread block while there are multiple reductions in 2D
thread blocks. When smaller 1D thread blocks are used, the GPU is
not fully exploited, and the parallel reduction with logarithmic time
complexity plays a key role here. The performance of all tested 2D
block configurations is comparable. We can thus conclude that a
1D thread block of 1024 threads is the best layout and this will be
used in future tests.

4.2 Evolution Time on Single GPU
When the computation was optimally distributed over GPU threa-

ds and blocks, the acceleration of the EA was investigated using
a number of different topologies. Table 2 shows the number of in-
dividuals processed per second. This covers not only the fitness
function evaluation but the whole run of the UMDA algorithm in-
cluding all the GPU-CPU transfers. The number of generations per
second can thus be obtained by dividing numbers in the table by the
value of 128 (the number of individuals evaluated per generation).

The first general observation says the bigger the topology the
higher the performance benefit. This is natural, given by the sub-
stance of massively parallel architectures like GPUs. Hence, accel-
erating the communication on a 2x2 mesh cannot bring any speed-
up and must deteriorate the performance. Here, there are only 16
communications and the longest path only has two hops, which
gives us 120 comparisons. A speed-up factor of as low as 0.16 can
be seen on a GTX 280. However, what was a congenial surprise
was the performance of GTX 580 which almost met a quad-core
CPU.

The achieved performance on GTX 285 was quite modest. The
peak speed-up observed was about 2. On the other hand, GTX
580 showed its potential and reached a speed-up of almost 5. We
suppose that the main reason was the presence of L2 cache memory
that helps in reorganizing the scattered memory accesses and offers

Table 2: The number of individuals processed per second on
various topologies (speed-up factor vs. CPU) using an NVIDIA
GTX 285 and 580 GPUs.

Topology GPU GTX 285 GPU GTX 580 CPU i7 920
Mesh 2x2 92,692 (0.16x) 537,895 (0.93x) 581,530
Mesh 3x3 48,369 (0.54x) 113,188 (1.26x) 89,572
Mesh 4x4 16,741 (1.05x) 22,981 (1.44x) 15,930
Mesh 5x5 3,810 (1.06x) 7,563 (2.11x) 3,588
Mesh 6x6 750 (1.49x) 2,372 (4.71x) 504
Mesh 7x7 108 (0.96x) 539 (4.81x) 112
Cube 3D 52,454 (0.36x) 85,384 (0.59x) 145,077
Cube 4D 18,621 (0.72x) 23,456 (0.91x) 25,845
Cube 5D 1,835 (1.34x) 4,152 (3.03x) 1,369
Cube 6D 51 (0.78x) 222 (3.42x) 65
Torus 4x4 18,619 (0.95x) 23,551 (1.21x) 19,498
Torus 5x5 6,336 (1.71x) 8,353 (2.26x) 3,695
Torus 6x6 1,230 (1.84x) 2,709 (4.06x) 677
Torus 7x7 351 (1.99x) 725 (4.11x) 176

better buffering of the path. When accessing the first element of the
path, the cache buffers the whole memory transaction of 128B. This
is usually enough to store 32 elements of the path for long enough.
The following memory accesses are thus served much faster.

There is also a notable variation in the speed-up observed on
different topologies. The best one was measured for 2D meshes,
followed by 2D tori and finally by n-dimensional hypercubes. It
is believed that this is given by the topology diameter. The bigger
the diameter is, the longer paths must be compared and the more
work per thread is available reducing the overhead associated with
offloading the fitness function evaluation.

When comparing the observed speed-up factors with the theo-
retical asymptotic ones, we can conclude that reaching 5 out of
14, considering a part of the fitness function still remains on the
CPU although partially overlapped with the GPU work, is signifi-
cant and helps a lot. Please remember that whole evolutionary runs
for a topology with 64 nodes used to take couple of days.

4.3 Evolution Time on Multiple GPU
This section investigates the sustainable performance of a multi-

GPU server under the proposed evolutionary toolkit. The param-
eters of the EA remained the same as in the previous section but
the UMDA model was constructed and sampled by twelve CPU
threads. This offered about three times higher performance than the
desktop machine (the both CPUs run at the same frequency). The
newly sampled individuals were then uniformly distributed over up
to 8 GPUs for fitness evaluation.

Fig. 5 shows the strong scaling of the multi-GPU implementa-
tion (the population size is fixed). The performance scaling is al-
most ideal up to 4 GPUs. Beyond, the saturation of the system can
be observed and the performance stagnates. There are three main
reasons for this behaviour. First, the population is really small.
When having 8 GPUs, a GPU has only 16 individuals assigned for
evaluation in every generation. This decreases the possibility of
pipelining and communication hiding. Second, the PCI-E subsys-
tem gets congested by so many data transfers. It should be also
mentioned that two GPUs share one PCI-E link to the CPU. Third,
12 CPU cores may not be enough to feed 8 hungry GPUs.

We anticipate that having more complex topologies would have
led to much better scaling. To comment on the absolute perfor-
mance provided by a single 8-GPU machine, we now have at our

1029

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

In
d

iv
id

u
a

ls

p

ro
ce

ss
e

d

p

e
r

se
co

n
d

Number of GPUs

Strong scaling of the mult-GPU implentation

GTX 580

Mesh 7x7

Figure 5: The strong scaling of the multi-GPU implementation
tested on an 8-GPU machine equipped wit NVIDIA GTX 580
graphics cards. The GPUs are being fed by two hex-core Xeons
here.

disposal a machine that accelerates the original EA algorithm run-
ning on a quad-core CPU by a factor of almost 30 (10 times com-
pared to a two hex-core CPUs).

5. CONCLUSIONS
The importance of fast collective communications on intercon-

nection networks of parallel computers steadily grows. Evolution-
ary design has been proven to be efficient in optimising the commu-
nication schedules on small scale networks, targeted mainly on net-
works on chips. However, the execution time necessary to evolve
high quality communication schedules is still a limiting factor pre-
venting the deployment of the evolutionary design on networks
with more than 64 nodes [7].

In this paper, we have been investigating the possibility of ac-
celerating the evolution by the use of Graphics Processing Units
(GPUs). After profiling the original multi-thread CPU code, it was
decided to only offload the most time consuming part of the fitness
function and keep the rest of the algorithm on the CPU side. This
allows us to simply exchange the evolutionary core by more ad-
vanced algorithms. On the other hand, the maximum attainable
speed-up is limited due to the data transfers between CPU and
GPU. Therefore, the best effort was made to hide the memory trans-
fers and overlap them with computing.

The experimental measurements were divided into two sets. First,
we investigated the performance of two NVIDIA GPU cards (GTX
285 and GTX 580). While GTX 285 showed quite poor perfor-
mance, the GTX 580 reached a speed-up factor of almost 5. This
reduces the typical evolutionary run on networks with 36 nodes
from 30-50 hours down to 6-10. Second, we deployed the code on
a multi-GPU server with 8 NVIDIA GTX 580 GPUs. Here, when
supported by two hex-core Xeons, the speed-up factor reached al-
most 30. This reduces the execution time down to 1.5 hours, which
is significant.

Let us point out the GPU acceleration has no influence on the
quality of communication schedules found due to same evolution-
ary technique used. Naturally, the faster execution runs allow to
run the evolution for longer time periods and find fast communica-
tion plans of the complete exchange pattern even for topologies we
have not been successful on so far (64 nodes and more). The faster

evolution also gives us a possibility to generate libraries of many
irregular communication plans such as meshes/tori/cubes in faulty
states where one or more links are broken in a reasonable time.

In the future work, we would like to focus on accelerating the
evolution using the island model to employ a distributed GPU clus-
ter that currently maintains 192 GPUs. We would also like to re-
factor the code to work with 8b integer values only, which is enough
for topologies up to 256 nodes. This could reduce the memory re-
quirements and memory bandwidth four times.

6. ACKNOWLEDGMENTS
This work was supported by the research project "Architecture

of parallel and embedded computer systems", Brno University of
Technology, FIT-S-14-2297, 2014-2016.

7. REFERENCES
[1] G. M. Amdahl. Validity of the single processor approach to

achieving large scale computing capabilities. In Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM.

[2] J. Duato and S. Yalamanchili. Interconnection Networks - An
Engineering Approach. Morgan Kaufman Publishers,
Elsevier Science, 2003.

[3] S. Gill. Parallel programming. The Computer Journal,
1:2–10, 1958.

[4] D. Goldberg. Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Reading, MA, 1989.

[5] A. Ivanov and G. D. Micheli. Guest editorsâĂŹ introduction:
The network-on-chip paradigm in practice and research. In
Proceedings of IEEE Design&Test of Computers, pages
399–403. IEEE Los Alamitos CA, 2000.

[6] A. Jantsch and H. T. (Eds.). Networks on Chip. Kluwer
Academic Publishers, 2003.

[7] J. Jaros. Evolutionary Design of Collective Communications
on Wormhole Networks. Publishing house of Brno University
of Technology VUTIUM, Brno, 2010.

[8] J. Jaros. Multi-gpu island-based genetic algorithm solving
the knapsack problem. In 2012 IEEE World Congress on
Computational Intelligence, pages 217–224. Institute of
Electrical and Electronics Engineers, 2012.

[9] J. Jaros, B. E. Treeby, and A. P. Rendell. Use of Multiple
GPUs on Shared Memory Multiprocessors for Ultrasound
Propagation Simulations. In J. Chen and R. Ranjan, editors,
Australasian Symposium on Parallel and Distributed
Computing (AusPDC 2012), number AusPDC, pages 43–52,
Melbourne, Australia, 2012. ACS.

[10] P. Larranaga and J. Loazano. Estimation of Distribution
Algorithms, A New Tool for Evolutionary Computation.
Kluwer Academic Publishers, 2002.

[11] H. Muhlenbein and G. Paas. From recombination of genes to
the estimation of distributions i. binary parameters. In
Lecture Notes in Computer Science 1411: Parallel Problem
Solving from Nature - PPSN IV, pages 178–187, 1996.

[12] L. Ni and P. McKinley. A survey of wormhole routing
techniques in direct networks. Computer, 26:62–76, 1993.

[13] NVIDIA. Cuda c best practices guide. Technical Report
March, 2011.

1030

