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Abstract

High quality visualizations with realistic lighting is challenging topic in computer graphics.
This report presents Lexolights architecture for visualization of virtual scenes when high
fidelity lighting is required. The shader architecture providing per-pixel lighting is
described, followed by the discussion of shadow techniques used in computer graphics
today and their suitability for high quality lighting. Then, multipass concept used in
Lexolights is presented as the multipass seems to be a robust approach for crossing all the
limits of the maximum number of lights. Finally, our approach for rendering of models
with huge texture data sets is presented.



1. INTRODUCTION

High quality visualizations became more and more important in computer graphics and
simulations. They allow for proper light simulation in the virtual scene and allow close-to-
reality perception of simulated virtual environment.

The close-to-reality visualization or photorealistic visualization provides the better
perception of the simulated environment and provide clearer idea, for example, to a
customer about the real product, he is going to get, already in simulation phase of the
product development. Such applications may include industry design, architecture, civil
and mechanical engineering, and CAD applications in general.

2. STATE OF THE ART

Much of the research of photorealistic visualizations was done using raytracing approach
[Whitted 1980]. Because raytracing is generally slow and performance expensive, number
of optimizations were developed [Arvo 1989][Kajiya 1986][Lafortune 1993][Jensen 1995]
[Jensen 2001][Veach 1997]. Ray raytracing is generally slow and performance expensive,
but it is able to simulate advanced light behaviour, thus providing better visual results.

These approaches were used by number of software tools, such as POV-Ray, Yafaray, and
Radiance ray-tracing software system [Larson 1998]. Some tools attempted real-time
raytracing by using huge cluster of computers [Muuss 1987], or recent multi-core systems
[Valich 2008]. Other people used huge computing power of GPUs [Purcell 2002][Horn
2007][Gunther 2007][Shih 2009][Garanzha 2010]. Finally, Nvidia came with its own GPU-
accelerated ray tracing API called OptiX [Nvidia 2011].

Although GPU raytracing seems a promising approach for real-time high quality
visualizations, it is currently capable of processing about 100Mrays/second [Ludvigsen
2010] on scenes with 100K triangles (roughly said). It is still a level of magnitude behind
the processing power of traditional rendering paradigm used, for instance, by OpenGL
based visualization applications.

Because of performance advantage of traditional OpenGL rendering paradigm, many
people prefer it over ray tracing approaches. Recent developments in OpenGL shader
architecture [Segal 2010] allows to reach high level of realism even without ray tracing and
other photorealistic approaches.

[Loviscach 2004] attempted to create photorealistic renderer for Cinema 4D modelling
software using traditional OpenGL pipeline empowered by shaders. [Peciva 2011] does the
same for POV-Ray ray tracing software, emulating POV-Ray core functionality in shaders.

This report describes the architecture for close-to-photorealistic visualization and light
simulation that was implemented and tested in Lexolights visualization tool. The
architecture was verified on number of CAD models while number of challenges was
identified and this report will describe the solutions. The difficulties appear particularly
when going from laboratory models to general models produced by the real users that does
not have size or physical limits and often brings very surprising constructions or data
organization. The challenges are analysed and described. The system is built using
OpenSceneGraph visualization library based on OpenGL. The system can be used as a
visualization front-end for a simulation software when high level of scene realism is
required or for the simulation of light conditions and light distribution in the virtual scene.

3. OVERVIEW
Our toolkit is composed of the three components:
1. Lexocad — free CAD oriented modelling tool (www.lexocad.com)

2. Lexolights — open source visualization tool based on OpenSceneGraph
(Iexolight.sourceforge.net)

3. Inventor import — plugin for OpenSceneGraph allowing robust import of models
in Open Inventor file format [Wernecke 1994]

Lexocad is our modelling tool used to create 3D models. These models are imported using
Open Inventor plugin to OpenSceneGraph data structures. The data are processed and taken
for visualization by our Lexolights visualization tool.



This report focuses just on Lexolights visualization tool that can be easily used as a
visualization front-end for any kind of simulation requiring high fidelity visualizations.

3.1 Visual Fidelity

Why to deal with visual fidelity? The figures 1 and 2 are simple examples of the problem.
The traditional OpenGL visualization paradigm based on triangles exhibits the problems of
correct lighting (figure 1) practically on all CAD models containing lights. To go around
the problem shaders and per-pixel lighting techniques need to be used. However, even
these do not provide correct scene lighting that would include shadowing and natural light
scene distribution. This report investigates the challenges of high quality lighting and
describes Lexolights architecture to make a proper visualization with lighting.

3.2 Per-Pixel Lighting

Nowadays, per-pixel lighting is a "must" when making high quality lighting in the graphics
scene. The shader architecture was developed for this purpose as a part of OpenGL and
DirectX (GLSL [Kessenich 2010] and HLSL [MSDN 2011] shading language). Many
projects including computer games are using pre-built shaders that are used for scene
rendering doing per-pixel lighting.

However, such approach is difficult to follow in highly dynamic simulations and advanced
CAD applications as the graphics scene is not known in advance. Thus, the shaders can not
be built-in the application, but they have to be generated dynamically, based on the scene
requirements.

Lexolights contains shader generator capable of creation of required vertex and fragment
shaders performing advanced per-pixel lighting based on Phong lighting model [Phong
1973] currently.

One particular problem with shaders is their compilation cost when they are translated to
the machine code of graphics processor. As the compilation time of each shader takes tens
of milliseconds according to our experience, it can be very effective to use the cache of
already compiled shader programs and reuse them whenever possible. Our experience
shows that amount of reused shaders is quite high on the most CAD models and the speed
up is sometimes quite noticeable.

3.3 Shadows

Shadows are very important for human perception. The brain is using shadow information
for depth estimation and other "3D feeling". The absence of shadows in the scene gives the
impression of artificial not real scene. Thus, shadows are very important in computer
graphics.

In ancient times of computer graphics, precomputed shadows were used. They were
performance cheap as they were static and built in the scene textures. However, nearly all
simulations deal with dynamic scenes that changes through the time. For dynamic shadows,
two major approaches are used nowadays: shadow maps and shadow volumes.

Shadow maps [Williams 1978] are very popular today because they are fast and allow for
special filtering effects like soft shadows. On the other side, they suffer by shadow map
resolution problems, like perspective aliasing (see figure 3). There were attempts to
optimize the resolution distribution [Stamminger 2002][Wimmer 2004][Zhang 2006]. The
optimizations are sufficient in many cases, but they do not remove the problem. Another
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Figure 1: Lighting artifacts on a scene using old- Figure 2: Per-pixel lighting in a scene
fashioned OpenGL Gouraud shading with rendered using shader technology
advanced light setups



issue with shadow maps is the memory
consumption. Each light source may
allocate, for instance, 2k x 2k depth
texture, occupying 16MiB of video
memory. When we are dealing with
tens or hundreds of light sources, this
may become an issue. Thus, we will
probably want to switch to multipass
solution when rendering too many
lights that would consume too much of
available video memory.

Shadow volumes [Crow 1977] use
. stencil buffer to create shadow effect.
i e However, as there is only one stencil
buffer per render target available (with
exception of multi-layered rendering),
multipass usually need to be used and
each light must be rendered separately.
The result of each light is blended to the final image. Our experience shows that shadow
volumes are roughly ten times slower than shadow maps, but it very depends on the scene.
On the other side, shadow volumes are rendered with pixel precision, or sub-pixel precision
when multisampling is used. From visual point of view, they are often considering better
option over shadow maps. There were also attempts to create soft shadows using shadow
volumes [Assarsson 2003].

Figure 3: Shadow artefacts when using shadow map
technique

From the point of performance, it is possible to render even 4k lights, but without shadows,
just by storing them, for example, as a texture data and iterate over them in the shader. This
way, all light contributions will be computed in one pass. For more than 4k lights, we can
use, for instance, texture arrays to push limits much further. Anyway, shadows are too
important for human perception, so they should not be ignored for high quality
visualizations.

Shadow maps have the limit of concurrently rendered lights given by the amount of
textures that can be accessed from the shaders and by available texturing memory. In
general, a good bet is about 32, 16 or 8 lights per rendering pass if using 2k x 2k shadow
textures.

Shadow volumes usually allows only one light to be rendered per pass. It noticeably limits
the performance, but shadow volumes can be considered very stable shadow technique that
works correctly on the most of the models while shadow maps suffer from various
problems. For example, very large models with tiny details that user may want to zoom on:
such details will not cast proper shadows because of shadow map resolution while shadow
volumes usually handle such cases without problems. In conclusion, as the visualized
model is not known in advance and it does not have size and detail limits, it is not safe to
use shadow maps for visualization. Thus Lexolights is using shadow volumes by default
while the user may still manually switch to other shadow technique if he knows that
sufficient results will be provided to him.

3.4 Silhouette shadow volumes

The method finds silhouette edges by looping over every edge in the model. Each edge is
processed in parallel in Tessellation Control Shader where multiplicity is computed. An
input patch primitive is composed of two vertices that describe an edge, one integer that
contains number of opposite vertices and n opposite vertices, see Figure 4. Because patch
the size must be constant, some positions are not used.

A vertex buffer of model has to be extended by En vertices, which is the number of edges
in the model. We used element buffer to reduce memory requirements, as can be seen in
Fig. 5.

Byungmoon’s algorithm [Kim et al., 2008], as in its core proposal, has a flaw that
multiplicity is not calculated in a deterministic way. In older approach [Peciva et al., 2013],
it was fix this by calculating multiplicity per triangle and if the 3 results troughout all 3
edges were not consistent, we discarded the triangle from further processing, because it
meant that the triangle is almost parallel to the light and does not cast a shadow. We further
improved this approach - multiplicity is now computed only once for each opposite vertex
using reference edge. A choice of reference edge has to be the same
for all occurrences of a triangle. This can be achieved for ex-
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Figure 3: Single-pass per triangle method, a full
shadow volume is created in a single pass. One point is
added to the triangle in order to form a quad a) which
is then tessellated using factors (1, 5, 1, 5),(5, 1) b).
Points 10 and 11 are merged with 8, 9. Light cap is vi-
sualized as blue, dark cap grey ¢). Then we join points
0-7, 1-5, 2-9, 4-8 and push points 5, 6, 7 to infinity d)
to make the volume ¢)
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Figure 4: Input patch for tessellation control shader

ample by introducing vertex ordering - Equations 1 and
Algorithm 2.

A < B < Greater(A,B) <0

A =B & Greater(A,B) =0

A > B < Greater(A,B) >0 (1)

Data: Vertices A,B
Result: Result r of comparison

S =sgn(A—B);
K=(4.2,1);
r=8-K

Algorithm 2: Function Greater(A,B) used for vertex
ordering.

In order to guarantee consistency, reference edge of a
triangle in our algorithm is constructed using smallest
and larges vertex of a triangle, as in Algorithm 2. More
options for such method are available, but evaluation
per each triangle occurance must be consistent in order
to get correct results.

To simulate behaviour of Byungmoon’s algorithm
(edge casts a quad as many times as it has multiplicity),
we tessellate the casted quad from the edge using inner
tessellation levels (Multiplicity-2—1,1) and then we
bend the tessellated quad in evaluation shader in a way
to create m overlapping quads, as seen in Fig. 1, which
demonstrates edge A-B having multiplicity of 3.

The procedure of multiplicity calculation is described
in Algorithm 3 and 4.

Data: Edge A, B, A < B, set O of opposite vertices
0; € O, light position L in homogeneous
coordinates

Result: Multiplicity m

m=20;

for O; € O do

if A > O; then

| m = m+ CompMultiplicity(OQ;,A,B,L);
else
if B > O, then
‘ m=m— CompMultiplicity(A,0;,B,L);
else
| m=m+CompMultiplicity(A,B,0;,L);
end
end

end
Algorithm 3: Modified algorithm for computation of
final multiplicity of edge A, B

Data: Vertices A,B,C; A < B < C; light position L in
homogeneous coordinates

Result: Multiplicity m for one opposite vertex
X=C—-A;

Y = (L —axly, by — ayly.l; — azly);
N=XxY;
m=sgn(N-(B—A));

Algorithm 4: CompMultiplicity(A,B,C,L) function
used in algorithm 3

After tessellation, we have to transform tessellation co-
ordinates into vertex position of the shadow volume
quad in the evaluation shader. The algorithm for its im-
plementation is described in Algorithm 5 and Equations
2.

A = (ay,ay,a;, )‘P

B = (by,by,b:,1)"

C:(axflx a‘fl) a,—1.,0)"

D= (b — —~1y,b.—1,,0)" ()

Because caps are not generated, this method can also be
used with simpler z-pass algorithm.

2.3 Implementation

All our methods were implemented in Lexolights, an
open-source multi-platform program based on Open-
SceneGraph and Delta3D, using OpenGL.

Single-pass per-triangle method suffers from inconsis-
tent rasterization of two identical triangles at the same
depth but with different winding - depth of fragments
from both triangles differs, which resulted in z-fighting
artiffacts. 'We had to manually push the front cap’s



Data: Vertices A, B, C, D, tessellation coordinates
x,y € (0,1) and multiplicity m
Result: Vertex V in world-space

P() =A;

P] =B,

P2 :C;

P3 :D;
a=round(x-m),
b =round(y);
id=a-2+b;

t=(id mod2)"(|id/4] mod?2);

I =|(id+2)/4] mod?2;

n=t+I1-2;

V=P,

Algorithm 5: This algorithm transforms tessellation
coordinates into the vertex of side of shadow volume.
Vertices A, B, C,D are computed using Equation 2.

fragments into depth of 1.0f, so they would fail the
depth test, otherwise we observed self-shadowing ar-
tiffacts. Bypassing early depth test in rasterization due
to assigning depth values in fragment shader causes sig-
nificant performance loss over two-pass method. This
method served as a basis for silhouette-based approach.

For caps generation in silhouette-based method, we
used gemetry shader and multiplicity calculation, us-
ing which we calculated triangle’s orientation towards
light source via reference edge. It was also necessary
for keeping discarding calculations consistent through-
out the rendering process of shadow volumes.

Because tessellation factors are limited, at the time of
writing, to 64, there is also a limit of maximum multi-
plicity per edge that this algorithm is able to process.
Acording to equation to calculate tessellation factor
Multiplicity - 2 — 1, maximum multiplicity of an egde
is 32, which should be more than enough for majority
of models. But for example well-known Power Plant
model (12M triangles) has some edges, which have
multiplicity of 128. In that case, they would have to
be splitted into more edges.

3 EXPERIMENTS

We compared our methods against already available
shadow volumes implementations on modern hardware
- robust geometry shader implementation and standard
shadow mapping, using which we also tried to evalu-
ate performance against Sintorn’s AFSM [Sintorn et al.,
2008]. We also tested two-pass per-triangle method
against similar geometry shader implementation. For
shadow volumes approaches, z-fail was used; shadow
map resolution was set to 8k x 8k texels.

Testing platform had following configuration: Intel
Xeon E3-1230V3, 3.3GHz; 16GiB DDR3; GPUs:
AMD Radeon R9 280X 3GiB GDDRS, nVidia

Spheres10x10 R280 G680
Triangles TS GS TS GS
32400 984 1995 | 490 | 484 | 739 | 825 | 542 [ 540
67600 921 | 963 | 488 | 487 | 624 | 667 | 494 | 513

102400 615 | 729 | 484 | 479 | 491 | 555 | 372 | 402
360000 203 | 233 | 270 | 272 | 218 | 228 | 131 | 135

1081600 72 | 88 | 104 | 110 | 82 | 94 | 46 | 49
1440000 6 | 72| 84 | o1 | 67 | 81| 36 | 3
1960000 34 | 41 | 59 | 62 | 49 | 58 | 26 | 28

Table 1: Performance of two determinism methods

measured in FPS on a scene with 10x10 spheres at dif-
ferent triangle count.

GeForce GTX 680 2GiB GDDRS5; Windows 7 x64;
driver version: 13.12 (AMD), 334.89 (nVidia).

3.1 Testing Scenes

We created a camera fly-through in two testing scenes,
each having one point light source.

e Sphere scene: synthetic scene containing adjustable
number of spheres (typically 100) with configurable
amount of detailness. Fly-through has 16 seconds.

e Crytek Sponza: popular model used to evaluate
computer graphics algorithms. 262267 triangles,
40 seconds.

3.2 Results

Majority of our tests was performed on a sphere scene
with adjustable amount of geometry. First, we made a
flythrough in a scene containing 100 spheres with dif-
ferent amount of triangles per scene, the results can be
seen in Table 1 and graph in Fig. 5.

On GTX680, tessellation using reference edge is the
fastest, no matter the number of triangles, although the
performance gaps gets smaller with increasing num-
ber of triangles in scene. R9 280X showed differ-
ent results, tessellation was more than 2x faster when
the scene contained only 32K triangles but at approxi-
mately 300K, geometry shader method took lead.

Dependence of performance on number of triangles for 10x 10 spheres
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Figure 5: Dependence of performance (FPS) on num-
ber of triangles on a scene with 10x10 spheres using

4 original and new deterministic method.



Spheres 1M R280 G680

Objects TS GS TS GS
1 73 92 | 111 | 120 | 106 | 134 | 55 60
4 74 94 | 113 | 121 | 101 | 126 | 53 58
25 64 76 97 | 101 | 76 88 46 50
64 68 76 90 89 61 66 40 43
100 64 70 84 82 58 62 39 42
240 58 55 70 64 50 49 35 36
399 53 48 61 54 36 36 27 28
625 43 38 53 46 29 27 22 22
851 40 44 46 50 24 25 19 20
1250 35 37 28 31 19 19 16 16
2500 23 19 | 151154 | 12 11 | 10.8 | 10.1
3116 21.2 | 215 | 128 | 125 | 1.1 | 11.2 | 9.1 | 9.2
3920 157 | 14 | 10.1 | 10.12) 9.1 | 87 | 7.7 | 75
5100 148 | 142 | 78 | 775| 82 | 82 | 6.7 | 68
15600 745 | 645 |3.07 314 | 105| 91 | 3.6 | 36

Table 2: Dependence on number of objects for spheres
scene with 1M triangles. Bold values represent the
fastest algorithm/implementation for respective number
of objects, per GPU.

We further extended this test to performance depen-
dency on number of objects in a scene while maintainig
constant amount of geometry. This measurement was
carried out on Sphere scene, having 1 million triangles
(with deviation max 2%) in every case. No hardware
instancing was used, every object was drawn via sepa-
rate draw call. Results can be seen in Table 2 and graph
in Figure 6.

Dependence of performance on number of objects for IM triangles
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Figure 6: Dependence on number of objects for spheres
scene with 1M triangles.

Contrary to previous measurements, tessellation was
faster on R9 280X, starting from 10° objects, although
reference edge was faster only in 40% cases. Moreover,
as can be seen in Fig. 6, there is a slight increase in FPS
in both geometry shader and tessellation implementa-
tions at about 1000 objects on Radeon. On GTX680,
tessellation method was faster in every case; eferenge
edge provided increased performance only in a half of
measurements, but in all other cases the difference was
only 1-3 FPS.

Sintorn in his AFSM paper Sintorn et al. [2008] stated
that his per-pixel precise shadow maps are 3-times
slower than standard 8Kx8K shadow mapping. In
order to evaluate our algorithm against AFSM, we

<

Spheres10x10 R280 G680
Triangles TS SM TS SM
32400 995 252 825 245
67600 963 250 667 237
102400 729 244 555 225
360000 233 219 228 190
1081600 88 168 94 135
1440000 72 155 81 115
1960000 41 120 58 103

Table 3: Shadow Mapping vs Tessellation Silhouettes,
10x10 sphere scene, FPS

conducted a measurement against shadow mapping
having resolution metioned above, results of which are
in table 3 and graph 7.

Dependence of performance on number of triangles for Shadow Mapping and Tessellation Silhouettes
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Figure 7: Shadow Mapping vs Tessellation Silhouettes
on a scene with 10x10 spheres, measured in frames per
second.

Not only we managed to outperform shadow mapping
with triangle count up to ~400K triangles, but at al-
most 2M triangles our method was on par or faster
than AFSM - R9 280X dropped to 34% of SM perfor-
mance whereas GTX680 was only 44% slower than 8K
shadow mapping.

We also compared silhouette methods with two-pass
per-triangle tessellation implementation and 8K
shadow mapping (only on sphere scene, our framework
does not support omnidirectional shadow mapping) on
Crytek Sponza scene, results in table 4 and graph 8.

One can observe that per triangle tessellation method
is even faster than than both geometry shader meth-
ods running on Sponza scene. It is also worth noting
that per-triangle geometry-shader-based method pro-
vides more performance on this scene than silhouette-
based approach. On GTX680, the difference between
silhouette and per-triangle tessellation method is 122%,
whereas on R9 280X card it is only faster by 27%.

With increased amount of geometry in our synthetic test
scene, the situation turns around in favor to silhouette
methods. Also performance difference between shadow
mapping and tessellation on Radeon drops under 1/3
ratio, but GeForce is still able to maintain 43% of SM
performance.

4 CONCLUSIONS

We have developed new methods for computing
shadow volume silhouettes using tessellation shaders.



R280 G680
Method Spheres Sponza Spheres Sponza
TS Triangle 5.8 102 7.9 83
TS Silhouette 23.7 130 32 185
GS Triangle 3.1 51 4.9 73
GS Silhouette 34 49 14.8 62
SM 93 0 74 0

Table 4: Overall comparison of GS, TS methods and
classic 8K shadow mapping on testing scenes - Sponza,
and Spheres with 4M triangles. Shadow mapping was
not evaluated on Sponza scene (zeros).
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Figure 8: Overall comparison of methods on testing
scenes - Sponza and Spheres with 4M triangles.

Our two-pass per-triangle tessellation method is, in
some cases, faster than silhouette algorithm imple-
mented in geometry shader, but loses performance as
geometry amount in the scene grows. Compared to
geometry shader per-triangle implementation, it was
faster in every measurement.

The silhouette method is more efficient, and as we have
proven in our measurements, mostly in scenes with
higher amount of geometry. GeForce GTX680 ben-
efited mostly from this algorithm, being faster than
geometry shader silhouette method. As for Radeon
R9 280X, geometry shader method is more suitable.
Tessellation method on Radeon proved to be faster in
Sponza scene, but our synthetic tests on sphere scene
showed that it’s performance is dominant only up to
~300K of triangles when having multiple objects in the
scene, or only up to 15K triangles when only a single
detailed object was drawn. In less detailed scenes it
was able to outperform nVidia-based card, but only up
to aforementioned 300K triangles.

Our robust algorthm was sped up by using a novel
method of multiplicity computation, which was able
to provide up to 31% performance gain in tessellation
method (13.5% in average), maximum speedup in ge-
ometry shader was 10.7% with average of 3.4%.

In comparison to standard SM and Sintorn’s Alias-Free
Shadow Maps (AFSM), our tessellation method pro-
vides better performance than 8K shadow maps up to
~400K triangles and then fall to 43% performance of
shadow mapping at 4M triangles on GeForce, 34% on
Radeon, which is on par or better than AFSM (it’s 3-
times slower than 8K SM) and is also simplier to im-
plement.

In the future, we would like to see an arbitrary £ stencil
operation in hardware, configurable in shaders, which
would allow us to increase the speed of our method even
more, due to a lower number of triangles being drawn.

We also want to evaluate more hardware platforms and
Asrnlava OTWODTT pntantial da tha Blad AF chadase sl
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3.4 Multipass Rendering

Since the rendering of all
lights in one pass seems
difficult, particularly when
using hundreds of lights or
when using shadow
volumes, multipass may
needs to be utilized.

As Lexolights is using
multipass whenever needed,
ie. in shadow volumes
mode, it is activated when
there is more than one light.
We used OpenSceneGraph
RenderBin concept while

! a
Figure 4: Model of Vivaldi shopping center
visualized using many transparent parts each RenderBin represents
one pass. The RenderBins

are ordered and scheduled by their bin number.

The purpose of the first pass in Lexolights is to render scene with ambient light only.
Lexolights combines this pass with the second pass and renders ambient light and the first
light together to optimize for performance.

The first pass produces z-values to the depth buffer and color information for the ambient
light with addition of the first light. Following passes appends just the light contributions of
other lights, iterating through all of them and blending them to the final image. Blending
equation is set to FUNC_ADD and z-buffer depth function to EQUAL or LEQUAL. All
opaque objects can be rendered this way.

Transparent objects are more difficult to visualize. They are usually rendered after all
opaque objects, because their color contribution is combined with the opaque objects
already present in the frame buffer. They are usually rendered with activated blending and
with z-test on but with disabled z-buffer updates. Moreover, transparent objects should be
sorted based on distance and rendered in back-to-front, or rarely front-to-back, order. For
object sorting, we direct all transparent objects to "depth sorted" render bins of
OpenSceneGraph that are sorted automatically. The render bin number is set in such a way
that it is rendered after all other opague render bins. Figures 4 and 6 shows some of the
visual results.

3.5 Large Data Sets

Large simulations and big CAD models tends sometimes to grow over the memory limits
of even high-end computers. On visualization part, the memory limits that usually need to
be addressed is texturing memory.

The figure 5 shows model of the whole Switzerland whose textures occupy 1.3 GiB of disk
space stored as jpg compressed data. It is nearly not possible to decompress all of them and
hold them in the memory of standard computer of today. When viewing the model, usually
only small part of the model requires highest detail while lower details can be used with
increasing distance. For that
purpose, we introduced
number of texture details
and utilized on demand
loading based on distance
from the camera.

Figure 5: Visualization of Switzerland model
that contains 1.3GiB jpg texture data



On demand loading brings
challenges of  smooth
visualization. At first, it
looked like jpg
decompression can be a
problem as it requires
noticeable amount of CPU
time. However, scheduling
the decompression to the
second CPU easily resolved
the problem Since the most
of desktop computers today
have at least two CPU cores,
the proposed solution should
not be a problem.

More  difficult  problem
appeared afterwards. On
) o - demand loading means that
Figure 6: Visualization of stairs a large amount of data needs
with reflective floor and walls made of glass to be transmitted from main
memory through the bus to
the graphics card each time we want to increase the detail of any texture in the model. For
instance, 4k x 4k RGB texture takes 48 MiB and sending it to graphics card by OpenGL
caused rendering stalls of hundreds of milliseconds according to our experience. At the
end, we developed two solutions. One is based on texture "sub-loading". Sub-loading loads
the texture in several chunks, avoiding rendering stalls by distributing the load to a number
of frames. The second solution is based on hardware supported compressed textures. Our
decompressed jpg data are compressed again by one of texture compressions supported by
the graphics card, in our case DXT1 in sufficient. Then, data are sent to the graphics card in
compressed form, reducing the bus load by the factor of 4 for 16-bit textures and 8 for 32-
bit textures. With such optimizations, it is possible to smoothly visualize models with very
large texture sets, including our 1.3 GiB model. This was verified even on mid and entry
level computers of today.

4 CONCLUSION

We described the Lexolights architecture for close-to-photorealistic visualization of large
number of light sources. It can be used as a visualization front-end for simulation systems,
CAD modelling, architecture, and industry simulations. Moreover, it can be used for light
simulations, estimation of visual impression of particular model, or construction or
verification of amount of light for example in a new construction of a school as there must
be enough light throughout classrooms to avoid damage of eyes of the children.

The report described the light rendering architecture based on OpenSceneGraph using
multipass technique, used shadow techniques, and optimizations related to large model
visualizations.

For the future work, we want to further enhance visual quality and build visualization
system that would approach photorealistic quality. For that purpose, we are considering
even the use of raytracing for some special materials that can be used in the scene.
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