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ABSTRACT
Calibration of the LiDAR sensor with RGB camera finds its usage in many application fields from enhancing
image classification to the environment perception and mapping. This paper presents a pipeline for mutual pose
and orientation estimation of the mentioned sensors using a coarse to fine approach. Previously published methods
use multiple views of a known chessboard marker for computing the calibration parameters, or they are limited to
the calibration of the sensors with a small mutual displacement only. Our approach presents a novel 3D marker for
coarse calibration which can be robustly detected in both the camera image and the LiDAR scan. It also requires
only a single pair of camera-LiDAR frames for estimating large sensors displacement. Consequent refinement step
searches for more accurate calibration in small subspace of calibration parameters. The paper also presents a novel
way for evaluation of the calibration precision using projection error.
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1 INTRODUCTION
This paper deals with an automatic calibration of RGB
camera with Velodyne LiDAR (Light Detection And
Ranging) sensor (also called laser radar or scanner).
The Velodyne sensor scans the whole area around the
rotating beam using 32 or 64 laser rays and finds its
use in many applications such as autonomously driv-
ing Google car. Using techniques proposed in the fol-
lowing chapters, the extrinsic parameters – position and
orientation of the LiDAR related to the camera – can
be computed as is shown on Figure 2. This problem is
commonly named as searching for 6 degrees of freedom
(6DoF) - rotation and translation against all the three
axes of 3D space.
When solving such calibration problem, the most chal-
lenging tasks are: the ability to deal with large sensor
displacement and minimal requirements for a specific
scene setup while preserving accuracy of the resulting
calibration.
In order to fulfill these goals, the proposed camera-
LiDAR calibration pipeline performs the calibration in
two consequent steps. First, a large sensor displace-
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Figure 1: Using the calibration for fusion of the camera
image (a) and Velodyne scan (b) obtaining a coloured
point cloud (c).

ment is estimated using a special, but still simple, 3D
marker and then a refinement is applied in order to ob-
tain a more accurate calibration. Using the proposed
projection error, it will be proved that the coarse cali-
bration reaches similar or even better accuracy than the
manual one (the operator sets and visually verifies the



calibration parameters) in the task of sensor displace-
ment computation. The consequent refinement process
further improves the calibration accuracy and exhibits
5% better results than the previously proposed method
by Levinson and Thrun [LT13].

Fusion of the aligned camera with the LiDAR sensor
was recently used in many tasks of computer vision
in order to enhance their performance. Douillard et
al. [DBR09] use a 3D classifier based on the fused
Velodyne data with the monocular color imagery for
modelling semantic content in scenes. Colour point
clouds obtained through the camera-LiDAR fusion
proved to be useful in velocity estimation for precise
vehicle tracking and autonomous driving [HLT13].
Figure 1 demonstrates results of the Velodyne point
cloud colouring. A combination of the aligned LiDAR
with the camera was also successfully used in the
process of building 3D geological maps [NMV10] or
for preserving cultural heritage by the 3D modelling of
historical buildings [BJCK11].

The method described in this work extends the solution
proposed by Levinson and Thrun [LT13]. The biggest
asset of the mentioned paper is the proved assumption
that the edges can be robustly detected in both the cam-
era image and the LiDAR scan.

The novelty of our method is the two-level calibration
scheme dividing the problem into two consequent parts.
The large displacements in sensors position are com-
puted using the camera-LiDAR correspondences found
via a fully automatic 3D marker detection. The novel
marker also allows to perform the coarse calibration
from a single camera image and the corresponding Li-
DAR scan what is an advantage over traditional "multi-
frame" techniques. Finally, the obtained calibration is
refined using a simple exhausting dense search in a
small subspace of the calibration parameters. Both the
marker detection and the refinement are based on the
robust edge detection proposed by Levinson and Thrun
[LT13].

In its experimental part, the paper also introduces a new
way how the calibration methods can be evaluated au-
tomatically using an image segmentation. The process
assumes that in the calibration scene foreground and the
background can be easily separated both in the camera
image and the LiDAR point cloud. As the error met-
ric, the ratio of the correctly projected 3D points onto
proper image segments is used.

Using this metric will be proved that our modification
of the refinement process reaches 4% lower miscalibra-
tion error than the basic solution.

2 RELATED WORK
Methods of the automatic camera calibration with the
LiDAR sensor can be divided into several groups. The

Figure 2: Problem of a camera – Velodyne calibration.
The solution of the problem are the vectors t and R de-
scribing the translation and the rotation of Velodyne Li-
DAR related to the RGB camera.

first group of methods [KP10, PMSE10, GMCS12] re-
quires a chessboard-like marker for an automatic cal-
ibration. Other methods [TN13, LT13] assume an ar-
bitrary markerless scene for automatic calibration but
their capability of calibration is reduced just to a refine-
ment of small differences in position and orientation
between sensors. Some of the recently used methods
[BCK13, LN09, PPRJ13] use a sequence of captured
frames and compute the calibration parameters from the
motion obtained through the feature tracking or special
IMU units.

An automatic alignment of the camera with 2D laser
rangefinder where typical checkerboard marker must be
observed from multiple views was proposed by Zhang
and Pless [ZP04]. Constraints based on this observa-
tions are solved minimizing an algebraic error and fol-
lowed by a nonlinear process. The external calibration
of a 3D laser scanner with an omnidirectional camera
system [PMSE10] requires also a planar checkerboard
pattern to be observed simultaneously from the laser
scanner and the camera system from a minimum of 3
views. Normals of the planar surface form a non-linear
optimization problem that is solved for the extrinsic cal-
ibration parameters. All the mentioned techniques suf-
fer from the necessity of the presence of some known
marker in the scene. Moreover the marker must be ob-
served from multiple points of view. A toolbox for
the automatic camera-Velodyne calibration presented
by Geiger et al. [GMCS12] recovers intrinsic and ex-
trinsic camera parameters using a single view of mul-
tiple chessboard instances placed in the scene what is
still quite impractical.

A structure-from-motion technique [BCK13] for
camera-laser fusion which uses a 2D laser sensor and
multiple cameras, was also presented. The laser points
are projected onto the images and tracked using KLT
algorithm [ST94] to other frames in order to be used
as 3D-2D correspondences. The paper by Núñez et al.



[PPRJ13] proposes a method to perform the extrinsic
calibration between a camera and a 3D-LRF observing
a checkerboard pattern with the aid of motion obtained
by Inertial Measurement Unit (IMU). The limitation of
these methods is the need for multiple instances and
this special type of hardware.

A “golden” calibration method which would require no
marker, single observation of the scene, no further HW
requirements and still provides sufficient results is still
missing. Recently, techniques which work with mark-
erless arbitrary scenes assuming some shared property
by both the camera image and the LiDAR scan ap-
pears. Method [TN13] is based on a hypothesis that
the horizontally oriented planes are displayed on the
camera image with higher intensity. The searching for
the proper calibration parameters is performed as a par-
ticle swarm optimization [KE95] with the cost func-
tion based on mutual information between the image
and projected point cloud also used by Pandey et al.
[PMSE12]. However, this techniques come with an
other limitation which is the need for a small displace-
ment of the sensors in both their orientation and posi-
tion.

A real time miscalibration detection and the transfor-
mation adjustment introduced by Levinson and Thrun
[LT13] enables online and automatic camera-laser
calibration in arbitrary environments. In the mentioned
work, the miscalibration detection is performed by
probabilistic monitoring. Consequently, a continuous
calibration optimizer adjusts transform offsets if
miscalibration was previously detected. This solution
is based on the assumption that edges can be robustly
and reliably detected in both the camera image and the
LiDAR scan which proved to be right. The objective
function based on the matching edges detected in both
modalities and which is used for the optimization is
convex only in a small subspace around the global
optimum. Thus the calibration task is limited to only
small variations in the position and the orientation
between the camera and LiDAR.

The main drawback of the two previously mentioned
methods [LT13, TN13] – the limitation of the position
and the orientation between sensors just to a small sub-
space of 6DoF parameter space – is relaxed in this pa-
per using a special type of 3D marker which allows
coarse to fine calibration of the sensors using just a sin-
gle frame captured by the camera and LiDAR from a
single point of view and a single instance of the marker
in the scene. Our method of marker detection is based
on the proved assumption [LT13] that edges can be ro-
bustly detected in both the camera image and the Li-
DAR point cloud. The final step of the sensor alignment
proposed in this paper is the calibration refinement by
means of searching in a small subspace of calibration
parameters.

3 CALIBRATION OF CAMERA WITH
LIDAR

Our proposed solution consists of two consequent steps.
First, an approximate coarse calibration is estimated. In
this step, we assume that the translation of the laser sen-
sor against the camera is much more significant than the
rotation. For the coarse calibration step, a special "3D
marker" which can be easily found in both the camera
and the Velodyne data was designed. Found correspon-
dences are further used for deterministic computation
of the translation between the camera and Velodyne.

In the next step, the calibration of sensors including the
rotation is refined.. This fine calibration is based on
the solution proposed by Levinson and Thrun [LT13]
with further simplifications which brings computation
speed-up and higher reliability of obtained results.

To be more specific, the coarse to fine calibration
pipeline works in the following steps:

1. Coarse calibration

(a) edge detection in the Velodyne point cloud and
the camera image,

(b) 3D marker detection (circles’ centres and the ra-
dius),

i. in the camera image, using the Hough trans-
form [YPIK90],

ii. in the point cloud, using our detection algo-
rithm based on RANSAC [FB81] which is de-
scribed below in detail.

(c) Estimation of the translation between both the
sensors in the 3D space.

2. Calibration refinement

(a) initialization using estimated coarse calibration
parameters,

(b) dense search in the small subspace of the cali-
bration parameters,

i. projection of the point cloud with detected
edges to the image plane

ii. edge detection and the inverse distance trans-
form of the camera image

iii. cross correlation of these two images

(c) pick the calibration solution based on the men-
tioned cross correlation criteria

Sensors Description
Calibration techniques presented in this work were de-
veloped and tested with sensors mounted on our robotic
platform shown on Figure 3a.
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Figure 3: Our robotic platform (a) and an example of
the Velodyne scan (b).

The source of the camera image is the Kinect c©1 sensor
mounted on our robot. Besides the RGB frames it pro-
vides a depth map which is not used in the calibration
process.

Source of the laser radar scan is the Velodyne c©2 Li-
DAR sensor – the HDL-32 model with 32 lasers hav-
ing field of view 360◦ horizontally and 40◦ vertically.
The sensor rotates 10 times per second and captures
700000 points per second which are organized into 32
rings (one per each laser). An example of the scan pro-
vided by this sensor is displayed on Figure 3b.

The robot runs ROS Hydro for unificated control and
the access to sensoric data. We assume that the sensors
themselves are already calibrated and the ROS topic
interfaces provides auxiliary data as the intrinsic cam-
era parameters (focal length and the principal point) in
form of the projection matrix.

Coarse Calibration
The initial step of the calibration estimates the coarse
calibration parameters using the novel 3D marker. This
estimation allows a large position displacement of the
sensors and it is further refined in the consequent step.

Marker Description
Usage of a marker for the calibration purposes is
nothing new. A typical example of marker used
for calibration is chessboard pattern which was also
successfully used for the camera-LiDAR calibration
[GMCS12, PMSE10, KP10]. The biggest drawback of
this marker is the need for multiple observations of the
marker from different view points.

The design of our marker undergoes the condition that
it has to be easily detected in both the camera image
and the Velodyne data and only one observation of the
marker is sufficient for estimation of the calibration pa-
rameters. The pre-processing of the camera and the Li-
DAR data includes an edge detection which will be de-
scribed in the next sections.

1 http://www.xbox.com/en-US/kinect
2 http://velodyneLiDAR.com/

Figure 4b shows how edges of various geometrical
shapes are captured using the Velodyne LiDAR. One
can observe that the vertical position of shapes with
horizontally oriented edges can not be determined pre-
cisely with Velodyne-like sensor which scans the sur-
rounding environment in horizontal rings.

(a) (b)

(c) (d)

Figure 4: Planar marker with holes of different geomet-
rical shapes (a) and edges detected in its LiDAR scan
(b). Our proposed marker (c) and the detected edges
(d).

Figure 4d shows the final version of our plannar marker
with circular holes in it. Thus, both the horizontal and
the vertical position of the circles can be clearly deter-
mined visually and automatically.

Detection in Velodyne Data

Edge detection in Velodyne data is based on the as-
sumption that depth discontinuities in laser data repre-
sent edges in the real scene [LT13, BCES11].

The frame of Velodyne LiDAR is processed through the
rings as it is natural way for this type of the sensor. It is
possible to assign a value to each measured point which
depends on its depth measurement and the depth of its
direct neighbours:

Xi = max(Pr
i−1−Pr

i ,P
r
i −Pr

i+1,0)
γ (1)

where Pr
i represents the range of the i-th point of the

point-clout gained from Velodyne and γ is the constant
(γ = 0.5 was used in our experiments). The lower γ

is, the higher value will be assigned to the points of
low distortion relatively to the points with high distor-
tion. Afterwards, the Xi values are normalized into the
range (0;1).

For efficiency, the points with assigned value under
a certain threshold (0.1) are discarded. This leads



to reduction of the number of points (about 90% of
points are removed) while preserving the detection ac-
curacy. The threshold value was derived from the work
of Levinson and Thrun [LT13]. Our experiments con-
firmed that the suggested value is reasonably restrictive
(values 0.01 or 0.03 might result in a loss of significant
information while higher values 0.3 or 0.5 do not bring
any detection improvements and slow down the compu-
tation).

For the detection itself we assume that the size, number
and mutual position of circles in the marker are known.
Another assumption is that the marker is visible for both
Velodyne and the camera and the circular holes in the
marker can be considered as a planar object - an inter-
section of a plane with spheres. These assumptions are
used for the detection verification.

The marker detection in the Velodyne point cloud re-
peats three major phases - detection, verification and
pointcloud pruning:

1. The marker is roughly located as the plane detected
by the RANSAC algorithm [FB81] with the model of
the plane. The outliers are discarded and the rest of
the points are further processed.

2. Borders of the marker are removed using the
RANSAC algorithm for the line detection in 3D
space. These borders would cause inaccuracies in
the circles detection process because the Velodyne
data are sparse and only few (15 − 20) points
represent each circular hole. Figure 5a shows a
situation when the borders were not discarded and
the detection failed.

(a) (b)

Figure 5: Situation when the circular holes were found
incorrectly (a) because of lack of the data and preserv-
ing the vertical borders of the marker. A correct de-
tection of the 4 marker holes after the marker borders
are discarded (b). Verification was done by checking
distances of circle centres.

3. The algorithm detects 4 best candidates for the
marker holes also using RANSAC with model of
the sphere (intersection of the spheres and the plane
are the circles the algorithm is looking for).

4. After detection of a given number of spheres their
mutual position is verified – distances of the centers
(blue lines on Figure 5b) are checked. If verifica-
tion succeeds the whole marker is detected and the
algorithm ends.

5. Otherwise the algorithm continues with a phase of
pointcloud pruning for the next iteration of the al-
gorithm. The input of this step is the same set of
points representing the planar marker (see Step 1).
As we know the mutual distance of the circle cen-
tres in the marker, we can say for the each detection
where the 3D points of the other circles should be lo-
cated – coloured areas on Figure 6a. The algorithm
preserves only the points which belong to such an
area of at least one the detections found in Step 3.
If at least one of the detections was correct, this step
of the algorithm preserves all of the points belong-
ing to the circle holes of the marker. The algorithm
then continues with Step 3.

(a) (b)

Figure 6: Process of the pointcloud pruning (a).
Each detection (purple circle) yields the coloured ar-
eas (green for nearer circles and the blue for the circle
laying on diagonal) where the points of other marker
circles may be located. These points are preserved
and process is repeated for each detection. Remain-
ing points are discarded. The detection continues from
Step 3 using the resulting pruned point cloud (b).

The progress of the described algorithm can be seen on
Figure 7 where the marker was found after two itera-
tions.

Detection in the Camera Image
The detection process of the circles in RGB camera im-
age starts with the edge detection using Sobel operator
which produces less noisy outputs then the previously
proposed detector by Levinson and Thrun [LT13].
The circles are then detected using Hough transform for
circles [YPIK90]. This detection proved to be robust
enough and no further validation is necessary.

Translation computing
In the most general case of the calibration, all six de-
grees of freedom describing translation and rotation



(a) (b)

(c) (d)

Figure 7: Progress of the marker detection in the point-
cloud (a). After first detection (b) the validation fails
and the new pointcloud is generated (c). In the second
iterations the detection succeeds (d).

must be considered. As we assume that the difference
of the position between the camera and LiDAR is much
more significant than the rotation itself we reduce the
potential geometrical transformation just to the transla-
tion.

The calibration process transforming homogeneous co-
ordinates of 3D point [X ,Y,Z,1] to the point [ x

w ,
y
w ] in

2D plane can be described using the following equa-
tion:

 x
y
w

= P.C.


X
Y
Z
1

 (2)

where P is the known camera projection matrix and C
is the calibration matrix describing geometrical trans-
formation between the sensors. Both the projection P
and the calibration matrix C reduced to three transla-
tion parameters are presented in following equations:

P =

 f 0 ox 0
0 f oy 0
0 0 0 1

 (3)

C = T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (4)

where f is the camera focal length and [ox,ox] are the
coordinates of the principal point in pixels – i.e. the
known intrinsic camera parameters. The only unknown
variables we need to compute are the components of
the translation vector [tx, ty, tz]. Remember that the ro-
tation between the sensors is omitted in the process of
the coarse calibration and these degrees of freedom are
computed during the calibration refinement.

The translation vector is estimated from the found cor-
respondences of the circles (centers and radii) gained
through the detection of the marker in both the Velo-
dyne scan and the camera image described in previous
sections.

The first unknown component of the translation, which
is necessary to be solved, is the depth difference be-
tween the sensors tz. Assuming the marker is planar
and neglecting the influence of the perspective projec-
tion (marker is approximately straight in front of the
robot), it is possible to compute tz just using corre-
sponding radii of circles detected in the image (r2D) and
circles detected in the point cloud (r3D). Equation (5)
can be derived from Equation (2) considering the men-
tioned assumptions, where Z is the depth coordinate of
the circle center.

tz =
r3D. f

r2D−Z
(5)

Other components of the translation vector can be
roughly estimated using Equations (6) and (7) also
derived from (2).

tx =
(x−ox).(Z + tz)

f
−X (6)

ty =
(y−oy).(Z + tz)

f
−Y (7)

Equations (6) and (7) indicate that a single correspon-
dence can be used to estimate the translation parame-
ters.

In this work, the translation is estimated for each cir-
cle correspondence independently and then the gained
translations are combined using simple averaging.

Fine Calibration
After the approximate coarse calibration is found using
the 3D marker, a more precise calibration is estimated
by searching for all the 6 degrees of freedom (the trans-
lation and the rotation) in a small parameter subspace.

This searching is performed using a dense sampling of
the neighbourhood of the approximate calibration vec-
tor [tx, ty, tz,0,0,0] obtained in the previous process of
the coarse calibration where the rotation was omitted
(zero initial rotation parameters in the vector).



During the search for the calibration parameters, the
ability to evaluate each set of parameters is essential.
It means that we need a cost function f (Equation (8))
which assigns a value proportional to the quality of the
calibration to each set of 6DoF parameters between the
sensors.

f : R6→ R (8)

Cost Function Based on the Edges
We adopt the error metric used by Levinson and Thrun
in their online miscalibration detection system [LT13].
Their error metric is based on the assumption that the
edges can be robustly found in the camera image and
matched with the range discontinuities in the LiDAR
point cloud.
Processing of the data during the fine calibration is
similar to the processing during the process of the 3D
marker detection.
First, the edges are found in the Velodyne point cloud.
During this process, value Xi described in Equation (1)
is assigned to the each point and it is considered to be
intensity value of this pixel. Then the point cloud is
transformed using the parameters we want to evaluate.
Finally these points are projected on the image plane
using the projection matrix (Equation (3)) and can be
compared against the preprocessed camera image in 2D
space using some traditional similarity criteria.
The camera image preprocessing consists of edge de-
tection – in 2D case using simple Sobel operator creat-
ing edge image E. In order to make the cost function
smoother, we apply Inverse Distance Transform (IDT)
[LT13] using L1 norm to the edge image (Equation 9).
IDT assigns each pixel on coordinates [i, j] the value
Di, j proportional to the distance and the strength of the
edge Ex,y in the pixel’s neighbor on coordinates [x,y].

Di, j =α.Ei, j+(1−α) .max
x,y
{Ex,y.β

max(|x−i|,|y− j|)} (9)

The α factor increases strength of the neighbour edges’
impact (0.33 was used in our experiments) and the fac-
tor β enlarges the area an edge effectively impacts (0.98
was used in our experiments).
The output of the IDT applied on image 1a is shown
on Figure 8. Application of this transform causes that
the closer the parameters of the calibration to the ideal
parameters are the higher value of the cost function are
reached.
Finally, the cross correlation similarity criteria (Equa-
tion (10)) is applied to the projected point cloud IV and
processed camera frame IC in order to get value of the
cost function.

SE = ∑
x

∑
y

IC(x,y)∗ IV (x,y) (10)

Figure 8: Application of the Sobel operator and IDT to
the image on Figure 1a

Optimization
Previous works [LT13, TN13] showed that the opti-
mization criteria, such as criteria based on the edge de-
tection, are highly non-convex. It causes that the tra-
ditional optimization techniques based on the gradient
descent/ascent or Newton’s method for the optimization
would fail.

In our solution the refinement of the previously estab-
lished coarse calibration is performed by a regular sam-
pling of the small subspace of the calibration parame-
ters around the point of the coarse calibration. This idea
follows the process of regular grid search proposed by
Levinson and Thrun [LT13] for their miscalibration de-
tection.

Each point of the calibration parameter space can be
evaluated by the criteria (Equation (10)) and this value
refers to the fitness of the calibration. The final cali-
bration parameters are than chosen as the point of the
parameter space with the maximal cost function or the
point obtained by averaging of the multiple points with
the fitness value above some threshold.

4 EXPERIMENTAL RESULTS
In our experiments, real data from sensors mounted on
the robotic platform (see Figure 3a) were used. The
RGB images were captured using the Kinect sensor
(43◦ vertical and 57◦ horizontal field of view), while the
3D point cloud was scanned using the Velodyne HDL-
32E LiDAR producing 32 horizontal scans that cover
360◦ horizontally and 40◦ vertically. The depth infor-
mation provided by Kinect mounted on our robot was
used neither for the calibration process nor for the ex-
periments.

Miscalibration Error
A novel criteria to experimentally evaluate quality of
the calibration is proposed in this paper. 3D points ob-
tained by the Velodyne LiDAR are projected on the im-
age segment occupied by this object. The projection is
performed according to Equation (2) using projection
matrix P (known intrinsic camera parameters) and cali-
bration matrix C we try to evaluate.



This type of criteria requires a prepared scene so
the foreground in both the Velodyne pointcloud and
the camera image can be easily distinguished from
the background using the the image segmentation.
The more 3D points are projected on a wrong image
segment, the higher error is obtained.

In this work, a dark 3D marker (Figure 4c) posi-
tioned against the white wall was used to evaluate
the precision. The segmentation in the camera image
was performed using adaptive intensity thresholding.
The foreground and the background segment in the
Velodyne scan was obtained using Otsu thresholding
[Ots79] based on the range information of points.

The value of projection error PE is computed as the
number of incorrectly projected points E (i.e. fore-
ground points projected on the background segment and
vice versa) divided by the total number of points in the
point cloud P:

EP =
E
P

(11)

Coarse Calibration Results
To evaluate the robustness and the accuracy of proposed
calibration scheme, we collected data of a distorted 3D
marker in front of a wall while adding additional clutter
(chairs, shelves, . . . ) in the background.

Table 1 shows the ratio of correctly detected markers
rotated around the X , Y and Z axis to the total num-
ber of the detections performed. A marker is correctly
detected if the verification phase of detection algorithm
succeeded. For each marker pose, 5 pairs of Velodyne
and RGB images were retrieved. The algorithm of the
marker detection proved to be robust enough to handle
these rotations and provides reliable detections for fur-
ther coarse calibration computation.

Without Our iterative
verification algorithm

X axis rotation 0.84 0.96
Y axis rotation 0.72 1.00
Z axis rotation 0.76 0.93

Table 1: Percentage of the marker detection (recall) us-
ing only RANSAC versus our iterative algorithm with
the verification and pointcloud pruning. Marker was
rotated around the all 3 axis in range 0− 20◦ for this
evaluation.

Table 1 shows that the verification and the pruning step
of our algorithm brings the significant improvement
comparing to the basic approach using only the detec-
tion of 4 best candidates for marker circular holes.

Ground truth for the captured data was manually anno-
tated using our tool enabling a user to change the trans-
lation between the sensors. The tool displays the 3D

points projected on the camera image as an overlay in
a different color channel so the operator can visually
verify the calibration.

Evaluation of the coarse calibration was performed us-
ing the miscalibration error Ep which is computed both
for the manual and the coarse calibration estimated us-
ing the rotated marker.
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Figure 9: Miscalibration error (ratio of incorrectly pro-
jected points) of the coarse calibration against the man-
ual one dependent on the rotation of the marker around
the X , Y and Z axis.

Figure 9 presents the miscalibration errors EP of param-
eters obtained through the process of the coarse cal-
ibration compared to the error of manually annotated
parameters. The results prove that the camera-LiDAR
pose estimation using the 3D marker yields similar mis-
calibration error as the manual calibration.

In comparison to the previously used cali-
brations techniques using chessboard markers
[KP10, PMSE10, GMCS12], our approach with
the 3D marker brings practical improvement – only
a single frame from the camera and the LiDAR with
a single marker appearance is needed for the sensors
calibration. In contrary, the chessboard marker tech-
niques require observations of the marker from various
view points or a single observation of multiple marker
instances placed in the scene.

Fine Calibration Results
After the initial coarse estimation of the calibration pa-
rameters, the refinement process follows in order to in-
crease the calibration accuracy. The goal of this experi-
ment is to evaluate impact of the refinement process on
the precision of the calibration.

Figure 10 shows the different solutions evaluated by
the edge cost function SE (Equation (10)) proposed by
Levinson and Thrun [LT13] and also by our novel mis-
calibration error EP (Equation (11)) which may be con-
sidered as an objective factor evaluating each approach.

The solutions compared in Figure 10 use different cost
functions for the calibration parameters evaluation dur-
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Figure 10: Refinement of the calibration results for the
different evaluation criteria compared with the manual
calibration. [LT13] maximizes the edge cost function
SE , the Averaging method computes the fine calibration
as an average of all calibration vectors with higher SE
than the initial one. Miscalibration error EP minimiza-
tion is directly used in the search process of the last
approach.

ing the search. This table also shows that the edge cost
function SE proposed by Levinson and Thrun [LT13]
and used for refinement process does not correlate with
the miscalibration error EP. We would expect that the
higher cost the solution has the lower error will be
reached.

According to Figure 10, the best results were obtained
using our projection error EP criteria as the cost func-
tion for the calibration parameters. The drawback of
using this error as a cost function is the requirement of
the scene which has to be segmented into foreground
and the background in both the LiDAR scan and the
camera image.

The modification of the search process using the aver-
aging of the all found calibration vectors better than the
initial coarse one (see Averaging method on Figure 10)
seems to be reasonable compromise between the cali-
bration accuracy and the no requirement for the scene
segmentation.

Figure 11 presents that the calibration of lower projec-
tion error (see Figure 10) yields also better visual results
in the task of the point-cloud coloring. This fact also
votes in favour of the miscalibration error rather then
the edge cost function in objectivity of the calibration
evaluation.

5 CONCLUSION
This paper presents a pipeline for the RGB camera cali-
bration with Velodyne LiDAR. The first step in the cali-
bration process estimates a coarse calibration using our
novel 3D marker which allows to estimate the calibra-
tion precisely using a single pair of image-point cloud
data and even a discplacement between the sensors is
large (tens of centimeters).

(a) (b)

(c) (d)

Figure 11: Coloured point cloud of our 3D marker
when using the coarse calibration (a), results of refine-
ment with edge cost function (b) (from [LT13]), our
modification that averages all the parameters better that
the initial one (c), and refinement computed using our
projection error criteria as the cost function (d). The
red ellipses highlight the largest errors caused by the
inaccuracies of the calibration.

The consequent step refines the coarse calibration us-
ing a dense search in a small 6DoF calibration parame-
ter subspace. The proposed modification of the calibra-
tion refinement process decreases the projection error
by 5%.

The paper also introduces a novel miscalibration er-
ror metric for the calibration evaluation. This criterion
comes from the basic calibration requirement that the
points of particular object should be projected on the
image segment occupied by this object. The objectivity
of this evaluation function was also proved by the corre-
lation with the visual quality of the point cloud colour-
ing.
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