
Fast and Robust Tessellation-Based Silhouette Shadows
Tomáš Milet

Brno University of Technology
Czech Republic

imilet@fit.vutbr.cz

Jozef Kobrtek
Brno University of Technology

Czech Republic
ikobrtek@fit.vutbr.cz

Pavel Zemčík
Brno University of Technology

Czech Republic
zemcik@fit.vutbr.cz

Figure 1: Test scenes - Crytek Sponza and Spheres

ABSTRACT
This paper presents a new simple, fast and robust approach in computation of per-sample precise shadows. The
method uses tessellation shaders for computation of silhouettes on arbitrary triangle soup. We were able to reach
robustness by our previously published algorithm using deterministic shadow volume computation. We also pro-
pose a new simplification of the silhouette computation by introducing reference edge testing. Our new method
was compared with other methods and evaluated on multiple hardware platforms and different scenes, providing
better performance than current state-of-the art algorithms. Finally, conclusions are drawn and the future work is
outlined.

Keywords: shadows, shadow volumes, silhouette, tessellation shaders, geometry shader

1 INTRODUCTION
Shadow Volumes (SV) algorithm was introduced in
1977 by [Crow, 1977], first implementation using hard-
ware support via stencil buffer was carried out by [Hei-
dmann, 1991]. Heidman’s implementation is generally
called z-pass, but does not produce correct results when
observer is in shadow. This problem was eliminated in
the z-fail method [Bilodeau and Songy, 1999; Everitt
and Kilgard, 2002], which reverses depth test function,
but requires shadow volumes to be capped.

Shadow Mapping (SM) algorithm, proposed by
[Williams, 1978], is an alternative approach to shadow
volumes. It uses depth information from light source
stored in a texture. Shadow mapping is nowadays mas-
sively used in games thanks to its performance. Due to
discrete nature of shadow maps, this technique suffers
from spatial and often temporal aliasing problems and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

produces imperfect shadows because of limited shadow
map resolution [Donnelly and Lauritzen, 2006]. Low
resolution is not an issue for games, because scenes
can be adjusted so that visual artifacts are suppressed
or a filtering method is applied, but applications for
visualization in architecture or industrial design require
pixel-correct shadows for object visualization, thus
shadow mapping is not suitable for such applications.
Per-sample precise alias-free shadow maps (AFSM)
algorithm was proposed by [Sintorn et al., 2008].
Their method stores multiple samples into a list for
each shadow map pixel and conservatively rasterizes
triangles into shadow map using CUDA. Individual
samples stored in lists are then tested against shadow
volume of the triangle. As they stated, their per-sample
precise method is three times slower than standard
shadow mapping with resolution of 8096 by 8096
texels.

While producing per-sample correct shadows, SV are
affected by performance issues. In its naive form, when
a volume is generated for every triangle in the scene,
resulting performance is very low due to rasterization
of a large amount of triangles. More efficient way is to
construct shadow volumes only from silhouette edges
of the occluding geometry, which has positive impact

1



on fill-rate. Silhouette extraction on CPU was first pub-
lished by [Brabec and Seidel, 2003].

Several silhouette-based methods were published since
then, utilising novel hardware features to speed up sil-
houette calculation. [McGuire et al., 2003] managed to
implement the algorithm in vertex shader. [van Wav-
eren, 2005] described CPU implementation of silhou-
ette extraction using SSE2 instruction set in Doom3
game and [Stich et al., 2007] used geometry shaders.

Most of the methods mentioned above are not com-
pletely robust and also cannot handle non 2-manifold
casters. [Kim et al., 2008] proposed an algorithm for
non 2-manifold casters, but unfortunately it is not com-
pletely robust. We managed to improve Kim’s algo-
rithm in [Pečiva et al., 2013] using deterministic mul-
tiplicity calculation, which we further simplified in this
paper.

2 METHOD DESCRIPTION
We developed three methods - two per-triangle ap-
proaches and robust silhouette method.

Our silhouette method is based on the work of Kim
et al. [2008]. This algorithm calculates so-called multi-
plicity of an edge - light plane from light source through
the edge is casted and all opposing vertices are tested, if
they are above or bellow the plane. According to result
of the test, multiplicity is incremented or decremented.
Absolute value of multiplicity is the number of times an
infinite quad needs to be drawn from this edge.

2.1 Per-Triangle Methods
These methods require no pre-processing and work
with arbitrary triangle soup. In the first variant, input
patch has 3 points, which are original points of the
triangle. Tessellation factors are 3 (inner) and 1 (outer,
for all sides), equal spacing and reversed triangle
winding. The resulting patch can be seen in the picture
2b.

Figure 2: Creating semi-enclosed shadow volume from
a triangle. Initial triangle in a) is tessellated using outer
factors (1, 1, 1) and inner (3) b). Points A′, B′, C′ are
given positions of points A, B, C c) and then pushed to
infinity to form a volume with back cap d). Front cap
is absent and must be rendered in second pass.

We construct a simple volume in evaluation shader as in
Algorithm 1. Basically, points A′, B′ and C′ are moved

Data: original points P[3], light position L, tessellation
coordinates T = (x,y,z), x,y,z ∈ 〈0,1〉

Result: world-space coordinates X
c = x · y · z;
if c == 0 then

X = P[0] · x+P[1] · y+P[2] · z;
Xw = 1;

else
i = getIndexO f LargestVectorElement(T);
X = lw ·P[i]−L;
Xw = 0;

end
Algorithm 1: Evaluation shader in two-pass per-
triangle method

to positions of A, B, C and then pushed to infinity, form-
ing a back cap. Vertex ordering must be reversed in or-
der the sides face outwards. In the second pass, light
caps are rendered in order to close the volumes for z-
fail.

We also designed a single-pass version for z-fail. This
method takes a triangle as an input, but adds one more
point to form a quad (four control shader invocations
per patch). This quad is then tessellated using outer fac-
tors (1, 5, 1, 5), inner (5,1) and fractional odd spacing,
resulting in a shape seen in Fig. 3b.

a)

0

1

2

3

4

5

6

7

8

9

10

11

b)

0

1

2

3

4

5

6

7

8, 10

9, 11

c)

5

6

7

0

1

2

3 4

8, 10

9, 11
d)

e)

Figure 3: Single-pass per triangle method, a full
shadow volume is created in a single pass. One point is
added to the triangle in order to form a quad a) which
is then tessellated using factors (1, 5, 1, 5),(5, 1) b).
Points 10 and 11 are merged with 8, 9. Light cap is vi-
sualized as blue, dark cap grey c). Then we join points
0-7, 1-5, 2-9, 4-8 and push points 5, 6, 7 to infinity d)
to make the volume e).

Evaluation shader then twists the shape in order to cre-
ate a volume, note Figure 3.

2.2 Silhouette Method
The method finds silhouette edges by looping over eve-
ry edge in the model. Each edge is processed in paral-
lel in Tessellation Control Shader where multiplicity is
computed. An input patch primitive is composed of two

2



vertices that describe an edge, one integer that contains
number of opposite vertices and n opposite vertices, see
Figure 4. Because patch the size must be constant, some
positions are not used.

Figure 4: Input patch for tessellation control shader

Model Vertices Extra Vertices

... ...VBO:

EBO: ...

Patch

Figure 5: Combining per-edge patch data using Ele-
ment Buffer Object. Vertex Buffer Object only needs
to be extended by En (number of edges) vertices, where
Xi is number of adjacent triangles to edge Ei. Because
input vertices are 4-component vectors and Xi is scalar
value, only a single value per vector is used.

A vertex buffer of model has to be extended by En ver-
tices, which is the number of edges in the model. We
used element buffer to reduce memory requirements, as
can be seen in Fig. 5.

Byungmoon’s algorithm [Kim et al., 2008], as in its
core proposal, has a flaw that multiplicity is not calcu-
lated in a deterministic way. In older approach [Pečiva
et al., 2013], it was fix this by calculating multiplicity
per triangle and if the 3 results troughout all 3 edges
were not consistent, we discarded the triangle from fur-
ther processing, because it meant that the triangle is al-
most parallel to the light and does not cast a shadow.
We further improved this approach - multiplicity is now
computed only once for each opposite vertex using re-
ference edge.

A choice of reference edge has to be the same for all
occurrences of a triangle. This can be achieved for ex-
ample by introducing vertex ordering - Equations 1 and
Algorithm 2.

A < B⇔ Greater(A,B)< 0
A = B⇔ Greater(A,B) = 0
A > B⇔ Greater(A,B)> 0 (1)

In order to guarantee consistency, reference edge of a
triangle in our algorithm is constructed using smallest
and larges vertex of a triangle, as in Algorithm 2. More
options for such method are available, but as mentioned

Data: Vertices A,B
Result: Result r of comparison
S = sgn(A−B);
K = (4,2,1);
r = S ·K
Algorithm 2: Function Greater(A,B) used for vertex
ordering.

above, evaluation per each triangle occurance must be
consistent in order to get correct results.

To simulate behaviour of Byungmoon’s algorithm
(edge casts a quad as many times as it has multiplicity),
we tessellate the casted quad from the edge 6using
inner tessellation levels (Multiplicity · 2 − 1,1) and
then we bend the tessellated quad in evaluation shader
in a way to create m overlapping quads, as seen in Fig.
6, which demonstrates edge A-B having multiplicity of
3.

The procedure of multiplicity calculation is described
in Algorithm 3 and 4.

a) b)

0

1

2

3

4

5

6

7

8

9

10

11

c)

1 3 5 7 9 11

0 2

4

6

8

10

d)
1

3,4

5

7,8

9

11

0 2

6
10

2
5e)

0

1 3,4

6

7,8

11
9

10

Figure 6: The image shows the transformation of a quad
into three overlapping shadow volume sides. The tran-
sition from part a) to part b) is tessellation of quad with
Multiplicity = 3. Only green and blue triangles will
be drawn. Yellow and gray triangles will be degener-
ated. The transition from part b) over part c) to part d)
shows degeneration process. Red and purple vertices
3, 4 and 7, 8 from part a) form only one vertex in part
d). The transition from part d) to part e) shows rota-
tion around red and purple vertices. This transforma-
tion creates three overlapping sides of shadow volume.
Positions of vertices A, B, C, D that form initial quad,
can be computed according to equations 2.

After tessellation, we have to transform tessellation co-
ordinates into vertex position of the shadow volume
quad in the evaluation shader. The algorithm for its im-
plementation is described in Algorithm 5 and Equations
2.

3



Data: Edge A,B, A < B, set O of opposite vertices
Oi ∈O, light position L in homogeneous
coordinates

Result: Multiplicity m
m = 0;
for Oi ∈O do

if A > Oi then
m = m+CompMultiplicity(Oi,A,B,L);

else
if B > Oi then

m = m−CompMultiplicity(A,Oi,B,L);
else

m = m+CompMultiplicity(A,B,Oi,L);
end

end
end
Algorithm 3: Modified algorithm for computation of
final multiplicity of edge A,B

Data: Vertices A,B,C; A < B < C; light position L in
homogeneous coordinates

Result: Multiplicity m for one opposite vertex
X =C−A;
Y = (lx−axlw, ly−aylw, lz−azlw);
N = X×Y;
m = sgn(N · (B−A));
Algorithm 4: CompMultiplicity(A,B,C,L) function
used in algorithm 3

A = (ax,ay,az,1)T

B = (bx,by,bz,1)T

C = (ax− lx,ay− ly,az− lz,0)T

D = (bx− lx,by− ly,bz− lz,0)T (2)

Because caps are not generated, this method can also be
used with simpler z-pass algorithm.

2.3 Implementation
All our methods were implemented in Lexolights open-
source multi-platform program based on OpenScene-
Graph and Delta3D, using OpenGL.

Single-pass per-triangle method suffers from inconsis-
tent rasterization of two identical triangles at the same
depth but with different winding - depth of fragments
from both triangles differs, which resulted in z-fighting
artiffacts. We had to manually push the front cap’s frag-
ments into depth of 1.0f, so they would fail the depth
test, otherwise we observed self-shadowing artiffacts.
Bypassing early depth test in rasterization due to as-
signing depth values in fragment shader causes perfor-
mance loss over two-pass method. On the other hand,

Data: Vertices A,B,C,D, tessellation coordinates
x,y ∈ 〈0,1〉 and multiplicity m

Result: Vertex V in world-space
P0 = A;
P1 = B;
P2 = C;
P3 = D;
a = round(x ·m);
b = round(y);
id = a ·2+b;
t = (id mod 2) ˆ (bid/4c mod 2);
l = b(id +2)/4c mod 2;
n = t + l ·2;
V = Pn;
Algorithm 5: This algorithm transforms tessellation
coordinates into the vertex of side of shadow volume.
Vertices A,B,C,D are computed using Equation 2.

this method served as basis for silhouette-based ap-
proach.

For caps generation in silhouette-based method, we
used gemetry shader and multiplicity calculation, us-
ing which we calculated triangle’s orientation towards
light source via reference edge. It was also necessary
for keeping discarding calculations consistent through-
out the rendering process of shadow volumes.

Because tessellation factors are limited, at the time of
writing, to 64, there is also a limit of maximum multi-
plicity per edge that this algorithm is able to process.
Acording to equation to calculate tessellation factor
Multiplicity · 2− 1, maximum multiplicity of an egde
is 32, which should be more than enough for majority
of models. But for example well-known Power Plant
model (12M triangles) has some edges, which have
multiplicity of 128. In that case, they would have to
be splitted into more edges.

3 EXPERIMENTS

We compared our methods against already available
shadow volumes implementations on modern hardware
- robust geometry shader implementation and standard
shadow mapping, using which we also tried to evalu-
ate performance against Sintorn’s AFSM [Sintorn et al.,
2008]. We also tested two-pass per-triangle method
against similar geometry shader implementation. For
shadow volumes approaches, z-fail was used; shadow
map resolution was set to 8k x 8k texels.

Testing platform had following configuration: Intel
Xeon E3-1230V3, 3.3 GHz; 16GiB DDR3; GPUs:
AMD Radeon R9 280X 3 GiB GDDR5, nVidia
GeForce GTX 680 2 GiB GDDR5; Windows 7 x64;
driver version: 13.12 (AMD), 334.89 (nVidia).

4



Sponza R280 G680
Resolution TS GS TS GS
800x600 112 130 51 49 175 178 62 61

1024x768 116 124 49 50 177 178 61 60
1366x768 107 116 48 48 159 160 60 61

1920x1080 95 101 47 46 122 126 60 59

Table 1: Performance of two deterministic methods
measured in FPS on Sponza scene at different resolu-
tions. First column for each method denotes original
algorithm (3 edges) and second value denotes our new
method using a single reference edge.

3.1 Testing Scenes
We created a camera fly-through in two testing scenes,
each having one point light source. The scenes can be
seen in Fig. 1

• Sphere scene: synthetic scene containing adjustable
number of spheres (typically 100) with configurable
amount of detailness. Fly-through has 16 seconds.

• Crytek Sponza: popular model used to evaluate
computer graphics algorithms. 262 267 triangles,
40 seconds.

3.2 Results
In the first set of our tests we used Crytek Sponza
scene (first and second part of Fig. 1), being a popu-
lar model to evaluate performance of computer graph-
ics algorithms. This scene has fixed amount of triangles
(262K), so we evaluated our method in different resolu-
tions, compared it to the geometry shader implementa-
tion and also both implementations with older variant of
deterministic multiplicity calculation. as seen in Table
1 and Figure 7. Geometry shader implementation pro-
vides more stable frames per second (FPS) with change
of resolution, but fails to outperform our new tessella-
tion algorithm on both graphic cards. Moreover, our
new determinism method is faster in majority of cases,
with some exceptions in geometry shader implementa-
tion, where it is on-par with older type of determinism,
using all 3 edges.

105.7 105.8 105.9 106 106.1 106.2 106.3

40

60

80

100

120

140

160

180

Number of pixels

FP
S

Dependence of performance on resolution for Sponza scene

R280TS Orig
R280TS Ref

G680TS Orig
G680TS Ref

R280GS Orig
R280GS Ref

G680GS Orig
G680GS Ref

Figure 7: Dependence of performance (FPS) on resolu-
tion of original and new method, measured on Sponza
scene.

Sponza R280 G680
Variant TS GS TS GS

tex 121 130 48 49 176 185 60 62
notex 112 123 51 52 197 219 64 63

Table 2: Performance of two deterministic methods
measured in FPS on Sponza scene, but without tex-
tures. First column for each method denotes original
algorithm (3 edges) and second value denotes our new
method using a single reference edge.

Spheres10x10 R280 G680
Triangles TS GS TS GS

32400 984 995 490 484 739 825 542 540
67600 921 963 488 487 624 667 494 513

102400 615 729 484 479 491 555 372 402
360000 203 233 270 272 218 228 131 135
1081600 72 88 104 110 82 94 46 49
1440000 56 72 84 91 67 81 36 39
1960000 34 41 59 62 49 58 26 28

Table 3: Performance of two determinism methods
measured in FPS on a scene with 10x10 spheres at dif-
ferent triangle count.

We also tested the same scene without textures in re-
solution of 800x600 to speed up fragment processing,
so more processors on the GPU are assigned to geom-
etry/tessellation shader executions. Radeon R9 280X,
when using tessellation, surprised us with higher per-
formance when using textured model. Currently, we
have no explanation for this behaviour. Apart from that,
geometry shader methods benefited only slightly from
lack of texturing, but tessellation on GeForce GTX680
was speeded up by up to 18%.

Majority of our tests was performed on a scene with
spheres (Fig. 1 on the right), in which we can control
the amount of geometry. First, we made a flythrough in
a scene containing 100 spheres with different amount
of triangles per scene, the results can be seen in Table 3
and graph in Fig. 8.

On GTX680, tessellation using reference edge is the
fastest, no matter the number of triangles, although the
performance gaps gets smaller with increasing number
of triangles in scene. The situation was different on
R9 280X - tessellation was more than 2x faster when
the scene contained only 32K triangles but at approxi-
mately 300K, geometry shader method took lead.

We also tested a scene with only 1 box (12 triangles)
and a sphere, triangle amount of which we increased
in steps, results can be seen in the Table 4 and Fig-
ure 9. The reults have the same characteristic as those
from a scene having 100 spheres - tessellation is dom-
inant on GTX680, whereas on Radeon R9 280X it is
geometry shader. In previous measurement, geometry
shader became dominant at about 3500 triangles per
sphere, which also observable in this measurement, so
both cards keep their performance tendency, no matter
the object count.

We further extended this test to performance depen-
dency on number of objects in a scene while maintainig

5



105 106

200

400

600

800

104.51 5 ·104 2 ·105 3 ·105 5 ·105 106.29

Number of triangles

FP
S

Dependence of performance on number of triangles for 10x10 spheres

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 8: Dependence of performance (FPS) on num-
ber of triangles on a scene with 10x10 spheres using
original and new deterministic method.

Spheres1x1 R280 G680
Triangles TS GS TS GS

336 3000 3010 2830 2750 2940 2990 2780 2780
1308 2950 2980 2730 2700 2830 2860 2650 2630
15612 1820 2050 2540 2650 1960 1980 1460 1570

102412 613 741 945 995 822 992 465 503
360000 196 245 299 323 281 353 149 163
577600 122 155 186 203 180 224 94 103

1000000 73 92 111 119 106 134 55 60
1960000 37 46 56 60 54 68 28 31
3686400 19 25 30 32 29 36 0.5 0.5

Table 4: Performance of two deterministic methods
measured in FPS on a scene with 1 sphere having dif-
ferent amount of triangles. First value denotes original
method and second value denotes our new method. On
GTX 680, GS and 3.6M triangles, the GPU ran out of
it’s memory and performance dropped to 0.5 FPS.

103 104 105 106
0

500

1,000

1,500

2,000

2,500

3,000

102.53 3 ·103 3 ·104 3 ·105 106.57

Number of triangles

FP
S

Dependence of performance on number of triangles for 1x1 spheres

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 9: Dependence of performance on number of
triangles for one tessellated sphere for original and new
method.

constant amount of geometry. This measurement was
carried out on Sphere scene, having 1 million triangles
(with deviation max 2%) in every case. No hardware
instancing was used, every object was drawn via sepa-
rate draw call. Results can be seen in Table 5 and graph
in Figure 10.

This test was biased by CPU overhead of draw calls.
Contrary to previous measurements, tessellation was
faster on R9 280X, starting from 103 objects, although

Spheres 1M R280 G680
Objects TS GS TS GS

1 73 92 111 120 106 134 55 60
4 74 94 113 121 101 126 53 58

25 64 76 97 101 76 88 46 50
64 68 76 90 89 61 66 40 43

100 64 70 84 82 58 62 39 42
240 58 55 70 64 50 49 35 36
399 53 48 61 54 36 36 27 28
625 43 38 53 46 29 27 22 22
851 40 44 46 50 24 25 19 20
1250 35 37 28 31 19 19 16 16
2500 23 19 15.1 15.4 12 11 10.8 10.1
3116 21.2 21.5 12.8 12.5 11.1 11.2 9.1 9.2
3920 15.7 14 10.1 10.12 9.1 8.7 7.7 7.5
5100 14.8 14.2 7.8 7.75 8.2 8.2 6.7 6.8

15600 7.45 6.45 3.07 3.14 10.5 9.1 3.6 3.6

Table 5: Dependence on number of objects for spheres
scene with 1M triangles. Bold values represent the
fastest algorithm/implementation for respective number
of objects, per GPU.

100 101 102 103 104

20

40

60

80

100

120

Number of objects

FP
S

Dependence of performance on number of objects for 1M triangles

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 10: Dependence on number of objects for
spheres scene with 1M triangles.

Spheres10x10 R280 G680
Triangles TS SM TS SM

32400 995 252 825 245
67600 963 250 667 237

102400 729 244 555 225
360000 233 219 228 190
1081600 88 168 94 135
1440000 72 155 81 115
1960000 41 120 58 103

Table 6: Shadow Mapping vs Tessellation Silhouettes,
10x10 sphere scene, FPS

reference edge was faster only in 40% cases. More-
over, as can be seen in Fig. 10, there is a slight in-
crease in FPS in both geometry shader and tessellation
implementations at about 1000 objects on Radeon. On
GTX680, tessellation method was faster in every case;
eferenge edge provided increased performance only in
a half of measurements, but in all other cases the differ-
ence was only 1-3 FPS.

Sintorn in his AFSM paper Sintorn et al. [2008] stated
that his per-pixel precise shadow maps are 3-times
slower than standard 8Kx8K shadow mapping. In
order to evaluate our algorithm against AFSM, we
conducted a measurement against shadow mapping
having resolution metioned above, results of which are
in table 6 and graph 11.

6



105 106

200

400

600

800

104.51 2 ·105 3 ·105 6 ·105 106.29

Number of triangles

FP
S

Dependence of performance on number of triangles for Shadow Mapping and Tessellation Silhouettes

R280TS
R280SM
G680TS
G680SM

Figure 11: Shadow Mapping vs Tessellation Silhouettes
on a scene with 10x10 spheres, measured in frames per
second.

Sponza R280 G680
Variant TS GS TS GS

Spheres1x1 1.24 1.3 1.36 1.4 1.19 1.25 1.13 1.11
Spheres50x50 1.65 1.98 1.77 2.07 3.81 5.04 3.16 3.35

Table 7: Performance speed up for non-visible shadow
volumes. First column denotes original method and
second one our new method using reference edge.

Not only we managed to outperform shadow mapping
with triangle count up to ~400K triangles, but at al-
most 2M triangles our method was on par or faster
than AFSM - R9 280X dropped to 34% of SM perfor-
mance whereas GTX680 was only 44% slower than 8K
shadow mapping.

Throughout the test we noticed different behaviour on
both cards when dealing with camera position, where
the scene is not visible. Despite the fact that Open-
SceneGraph, on which our testing program was based,
culls non-visible geometry, shadow volumes were not
culled from rendering process and we noticed that both
cards deal with such situation differently, as can be seen
from Table 7. The values are ratios between views when
whole scene is visible and when there is no scene geom-
etry present. The same view location and direction was
used in all respective cases.

GTX680 was more effective when it comes to discard-
ing non-visible shadow volume geometry from rasteri-
zation, with speedup up to 5-times compared to a full
scene view, whereas R9 280X was only 2x faster.

We also compared silhouette methods with two-pass
per-triangle tessellation implementation and 8K
shadow mapping (only on sphere scene, our framework
does not support omnidirectional shadow mapping),
results in table 8 and graph 12.

One can observe that per triangle tessellation method
is even faster than both geometry shader methods run-
ning on Sponza scene. It is also worth noting that per-
triangle geometry-shader-based method provides more
performance on this scene than silhouette-based ap-
proach. On GTX680, the difference between silhouette
and per-triangle tessellation method is 122%, whereas
on R9 280X card it is only faster by 27%.

R280 G680
Method Spheres Sponza Spheres Sponza

TS Triangle 5.8 102 7.9 83
TS Silhouette 23.7 130 32 185
GS Triangle 3.1 51 4.9 73

GS Silhouette 34 49 14.8 62
SM 93 0 74 0

Table 8: Overall comparison of GS, TS methods and
classic 8K shadow mapping on testing scenes - Sponza,
and Spheres with 4M triangles. Shadow mapping was
not evaluated on Sponza scene (zeros).

Spheres 100k R280 G680
Objects TS GS TS GS

1 630 765 962 1025 825 1003 470 510
4 561 657 881 920 660 742 410 441
25 534 583 630 645 445 453 340 352
64 443 448 485 475 297 289 273 273

100 485 531 403 408 234 237 211 212
225 307 258 199 203 147 145 124 125
900 99 103 48 49 61 61 45.5 45.7

2500 34 36 16 17 28.5 28.6 17 16.8
3600 24 25 11 12 20.3 20 11.8 11.7

Table 9: Dependence on number of objects for spheres
scene with 100k triangles.

With increased amount of geometry in our synthetic test
scene, the situation turns around in favor to silhouette
methods. Also performance difference between shadow
mapping and tessellation on Radeon drops under 1/3
ratio, but GeForce is still able to maintain 43% of SM
performance.

R280Spheres R280SponzaG680Spheres G680Sponza
0

50

100

150

200

3.1

51

4.9

73

5.8

102

7.9

83

34
49

14.8

62

23.7

130

32

185

93

0

74

0

FP
S

GS Triangle TS Triangle GS Silhouette TS Silhouette SM

Figure 12: Overall comparison of methods on testing
scenes - Sponza and Spheres with 4M triangles.

100 101 102 103

200

400

600

800

1,000

103.56

Number of objects

FP
S

Dependence of performance on number of objects for 100k triangles

R280TS Orig
R280TS Ref
G680TS Orig
G680TS Ref
R280GS Orig
R280GS Ref
G680GS Orig
G680GS Ref

Figure 13: Dependence on number of objects for
spheres scene with 100k triangles.

7



4 CONCLUSIONS
We have developed new methods for computing
shadow volume silhouettes using tessellation shaders.
Our two-pass per-triangle tessellation method is, in
some cases, faster than silhouette algorithm imple-
mented in geometry shader, but loses performance
as geometry amount in the scene grows. Compared
to geometry shader per-triangle implementation, the
tessellation method proved to be faster in all our tests,
no matter the amount of scene complexity.
The silhouette method is more efficient, and as we have
proven in our measurements, mostly in scenes with
higher amount of geometry. GeForce GTX680 bene-
fited mostly from this algorithm, being faster than ge-
ometry shader silhouette method in every case. As for
Radeon R9 280X based on GCN architecture, geome-
try shader method is more suitable. Tessellation method
on Radeon proved to be faster in Sponza scene, but our
synthetic tests on scene with configurable amount of
spheres and level of detail showed that it’s performance
is dominant only up to ~300K of triangles when having
multiple objects in the scene, or only up to 15K trian-
gles when only a single detailed object was drawn. In
less detailed scenes it was able to outperform nVidia-
based card, but only up to aforementioned 300K trian-
gles.
We also tested hardware’s culling capabilities. R9
280X does not cull non-visible volumes so efficiently
as it’s counterpart, being able to speed up rendering of
virtually empty scene by only 2-times max, whereas
GTX680was able to gain 5-times higher frame rate.
Our robust algorthm was sped up by using a novel
method of multiplicity computation, which was able
to provide up to 31% performance gain in tessellation
method (13.5% in average), maximum speedup in ge-
ometry shader was 10.7% with average of 3.4%.
In comparison to standard SM and Sintorn’s Alias-Free
Shadow Maps (AFSM), our tessellation method pro-
vides better performance than 8K shadow maps up to
~400K triangles and then fall to 43% performance of
shadow mapping at 4M triangles on GeForce, 34% on
Radeon, which is on par or better than AFSM (it’s 3-
times slower than 8K SM) and is also simplier to im-
plement.
In the future, we would like to see an arbitrary± stencil
operation in hardware, configurable in shaders, which
would allow us to increase the speed of our method
even more, due to a lower number of triangles being
drawn. We also encountered inconsistent rasterization
of two identical triangles but with different winding, on
both GPUs, while experimenting with single-pass per
triangle method. Fixing this issue yields a large per-
formance penalty, although not mentioned in measure-
ments, this method is 5-times slower than two-pass per-
triangle tessellation. We also want to evaluate more

hardware platforms and explore GPGPU potential in
the filed of shadow volumes calculation.

ACKNOWLEDGEMENTS
The work has been made possible thanks to the co-
funding by the IT4Innovations Centre of Excellence,
Ministry of Education, Youth and Sports, Czech
Republic, MŠMT, ED1.1.00/02.0070, V3C - Visual
Computing Competence Center, Technology Agency
of the Czech Republic, TAČR, TE01020415V3C,
and RODOS - Transport systems development centre,
Technology Agency of the Czech Republic, TAČR,
TE01020155.

REFERENCES
Bilodeau, B. and Songy, M. (1999). Real time shadows. Creativity

1999.

Brabec, S. and Seidel, H.-P. (2003). Shadow volumes on pro-
grammable graphics hardware. Computer Graphics Forum (Eu-
rographics), 2003:433–440.

Crow, F. C. (1977). Shadow algorithms for computer graphics. In
Proceedings of the 4th annual conference on Computer graphics
and interactive techniques, SIGGRAPH ’77, pages 242–248, New
York, NY, USA. ACM.

Donnelly, W. and Lauritzen, A. (2006). Variance shadow maps. In
Proceedings of the 2006 Symposium on Interactive 3D Graphics
and Games, I3D ’06, pages 161–165. ACM.

Everitt, C. and Kilgard, M. J. (2002). Practical and robust stenciled
shadow volumes for hardware-accelerated rendering.

Heidmann, T. (1991). Real shadow real time. pages 28–31. IRIS
Universe.

Kim, B., Kim, K., and Turk, G. (2008). A shadow-volume algo-
rithm for opaque and transparent nonmanifold casters. J. Graphics
Tools, 13(3):1–14.

McGuire, M., Hughes, J. F., Egan, K., Kilgard, M., and Everitt, C.
(2003). Fast, practical and robust shadows. Technical report,
NVIDIA Corporation, Austin, TX.

Pečiva, J., Starka, T., Milet, T., Kobrtek, J., and Zemčík, P. (2013).
Robust silhouette shadow volumes on contemporary hardware.
In Conference Proceedings of GraphiCon’2013, pages 56–59.
GraphiCon Scientific Society.

Sintorn, E., Eisemann, E., and Assarsson, U. (2008). Sample based
visibility for soft shadows using alias-free shadow maps. Com-
puter Graphics Forum (Proceedings of the Eurographics Sympo-
sium on Rendering 2008), 27(4):1285–1292.

Stich, M., Wächter, C., and Keller, A. (2007). Efficient and robust
shadow volumes using hierarchical occlusion culling and geome-
try shaders. In Nguyen, H., editor, GPU Gems 3, pages 239–256.
Addison Wesley Professional.

van Waveren, J. (2005). Shadow volume construction.

Williams, L. (1978). Casting curved shadows on curved surfaces.
SIGGRAPH Comput. Graph., 12(3):270–274.

8


	Introduction
	Method Description
	Per-Triangle Methods
	Silhouette Method
	Implementation

	Experiments
	Testing Scenes
	Results

	Conclusions

