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Abstract
Fast sorting is an important step in many parallel algorithms,
which require data ranking, ordering or partitioning. Parallel
sorting is a widely researched subject, and many algorithms
were developed in the past. In this paper, the focus is on im-
plementing highly efficient sorting routines for the sparse lin-
ear algebra operations, such as parallel sparse matrix - matrix
multiplication, or factorization. We propose a fast and simple
to implement variant of parallel radix sort algorithm, suitable
for GPU architecture.

Extensive testing on both synthetic and real-world data
shows, that our method outperforms other similar state-of-
the-art implementations. Our implementation is bandwidth-
efficient, as it achieves sorting rates comparable to the theo-
retical upper bound of memory bandwidth. We also present
several interesting code optimizations relevant to GPU pro-
gramming.

1. INTRODUCTION
Efficient parallel sorting is an important building stone of

many algorithms. Although parallel sorting algorithms have
been researched extensively in the past, implementing the
same algorithms on GPU presents a significant challenge, due
to the necessary amount of communication and synchroniza-
tion, not to mention high irregularity of memory accesses. In
this paper, a highly efficient implementation of efficient radix
sort is discussed. The ultimate goal is to support sparse lin-
ear algebra calculations, where sorting is often employed as a
preprocessing step of matrix compression [1] in order to im-
prove load balancing and to increase utilization [2] of parallel
processors. On Fig. 1 you can see that sorting takes a sub-
stantial portion of execution time of the current sparse matrix
multiplication algorithms, running on GPU.

Sparse matrix multiplication is characteristic by scattering
the elementwise products in not easily predicted pattern. In
order to be efficient, it must calculate products in the order
in which the matrices are stored (such as compressed sparse
column). When implemeted in parallel, this scattering would
cause a lot of conflicts where different threads would require
access to the same element of the output matrix. To resolve
this, the current implementations calculate the product as a
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Figure 1. Relative amount of time spent in different phases
of sparse matrix multiplication on GPU.

set of destination coordinates and associated values, which
are then sorted and compacted.

This puts the problem in a different perspective: the data
to be sorted is produced by the GPU (e.g. by a matrix multi-
plication routine), and the sorted results are consumed by the
GPU. Therefore we are not burdened by having to transfer
the data between CPU and GPU, much to the contrary: the
conventional approach would be to only use GPU for large -
enough problems and to process small problems on the CPU.
In our perspective, such processing would involve the pro-
hibitive cost of data transfers and CPU - GPU synchroniza-
tion. On the other hand, there is some prior knowledge about
the range and distribution of the sorted data. Our algorithm
is able to use such knowledge to significantly accelerate the
sorting, but still remains general.

When comparing the state-of-the-art GPU accelerated li-
braries that provide sorting functionality, there is a significant
performance gap: implementations based on CUDA achieve
about twice the sorting rates of the OpenCL-based ones. The
proposed implementation is intended to show that efficient
sorting can be implemented even without advanced features
exposed by CUDA, such as dynamic parallelism or thread
voting. The proposed approach outperforms all of the com-
pared implementations.

2. RELATED WORK
Some of the first attempts on efficient sorting on GPU [3],

[4], [5] were implemented using the programmable shading
pipeline, and were based on sorting network [6] approach.
Govindaraju et. al. [7] extended the idea to fully utilize the



vector pipeline of the shading units and implemented a large-
scale out-of-core sorting. The obvious disadvantage is a con-
siderable overhead of using a graphics API, but general-
purpose computing API did not exist yet. Sorting networks
furthermore require relatively large number of passes, which
grows with the size of the sorted sequence. These passes re-
quired communication through global (texture) memory, and
the upper bound of performance was relatively low.

One of the first influential sorting implementations in
CUDA, Satish et. al. [8] proposed to use the radix sort al-
gorithm. Their method processed data in four passes that in-
cluded local block sorting using 1-bit split operations [9], lo-
cal histogram calculation, global prefix sum over histograms
and finally reordering the data. Although this method is sim-
ilar to the Algorithm 1 from this paper, it is not optimal. The
first local block sorting step was intended in order to improve
memory access patterns in the last scattering step, which can
have detrimental effects on performance if not properly han-
dled. However, such sorting is not work efficient.

Sintorn et. al. [10] was able to develop a method based
on a combination of merge sort and bucket sort. The bucket
sort is used to improve parallelism at the later stages of sort-
ing, where the number of lists to be merged becomes lower
than the number of parallel processors. Their implementa-
tion, although based on comparison sorting algorithms, out-
performed the work of Satish [8] for arrays of 8 M elements,
or more. One disadvantage of this method is the use of atomic
counters to perform the bucket sort, and as such it depended
on the distribution of the sorted data, as atomic operations on
the same counter are subject to serialization in many parallel
architecture, including GPUs.

The efficiency of radix sorting was improved by Ha et. al.
[11] by focusing on the arithmetic intensity of the sorting. To
reduce the number of arithmetic operations in sorting, several
optimizations such as accumulating three 10-bit histogram
bins in a single 32-bit integer or use of mixed-data structure
are applied. It is based on the observation that bigger value
types suffer less from irregular memory access pattern at the
scatter phase. Therefore, array of key-value structures is pre-
ferred for this step, rather than the usually used structure of
arrays. As a result, about 30 % greater sorting rate is achieved,
compared to the Satish [8] implementation.

Currently the fastest state-of-the-art implementation is that
of Merrill [12] and [13], which was greatly influential also to
our method. They build on work of Satish [8] and also use
the idea of accumulating four 8-bit histogram bins in a sin-
gle 32-bit integer. Several novel ideas are introduced in these
works, one of the most important ones being the reduction of
number of steps per radix to three, as in Algorithm 1 where
lines 3, 4 and 5− 9 can run each as one step that only re-
quires global communication at the beginning or at the end.
This reduction in global communication effectively increases

the upper bound on sorting throughput. It is made possible
by performing local sorting at the end of the scattering step,
where it can be done in work-efficient manner.

The remainder of the paper is structured as follows. The
next section introduces nonlinear least squares problem as the
motivation of this work. Section 4. details the proposed im-
plementation and optimizations used. Section 5. shows the
performance of the proposed solution through benchmarks
and time comparisons with the exiting implementations. Con-
clusions and future work are given in Section 6.

3. MOTIVATION
Many sparse numerical applications ranging from physics,

computer graphics, computer vision to robotics rely on effi-
ciently solving large systems of equations. In case of nonlin-
ear systems, the solution can be approximated by incremen-
tally solving a series of linearized problems. In some applica-
tions, the size of the system considerably affects performance.
The most computationally demanding part is to solve the lin-
earized system at each iteration.

A matrix is called sparse if many of its entries are zero.
Considering the sparsity of the matrices can bring impor-
tant advantages in terms of storage and operations. Some of
the existing implementations of nonlinear solvers rely on fast
sparse linear algebra packages for solving the linearized sys-
tem. Here is where CSparse [14] or CHOLMOD [15] libraries
are used to perform the matrix factorization. Similar libraries
have also been developed for GPUs.

In our previous work [16], we proposed a fast and cache
efficient data structure for sparse block matrix representation,
which takes advantage of the block structure naturally oc-
curing in many of the nonlinear least squares problems, and
showed its advantages in nonlinear least square applications
[17], [18]. The data structure enables simple matrix modifi-
cation, be it structural or numerical, while also maintaining,
and often even exceeding the speed of element-wise opera-
tions schemes.

In order to accelerate the same scheme on GPU, a fast lin-
ear solver needs to be implemented. Cholesky decomposition
is suitable for parallelization, however it involves highly ir-
regular memory access patterns and sequential dependences,
and as such would not scale well [19] on a GPU. In order to
get arround this problem, we propose the use of Schur com-
plement [20]. Let us consider the following system of linear
equations: [

A U
UT D

]
·
[

x
y

]
=

[
a
b

]
(1)

Supposing that D is invertible, the Schur complement of the
block D of the system matrix is:

A−UD−1UT (2)



This can be used to solve the system of equations in the fol-
lowing manner:

(A−UD−1UT )x = a−UD−1b (3)
y = D−1(b−UT x) (4)

Note that solving for x is done using Cholesky decomposi-
tion of the Schur Complement, followed by backsubstitution.
Solving for y only involves sparse matrix-vector multiplica-
tion. This divides the problem of factorization of the whole
system matrix to inversion of D and factorization of A-sized
Schur Complement. It is possible to use maximum indepen-
dent set to reorder the original system matrix, in order to make
D a diagonal matrix. Inverting D is then reduced to invert-
ing its elements, and is embarrasingly parallel. The rest of
the computation is then involved in matrix multiplication for
calculating the Schur Complement, and in factorization of a
smaller, but possibly more dense matrix.

Since sparse matrix multiplication scales reasonably well
on GPUs [1], [2], we argue that performing Schur Comple-
ment will improve scaling of linear solving on GPU as well.
Fast sorting operations are required in both calculating the
approximate maximum independent set and matrix multipli-
cation. As shown in section 5., there is a performance gap
between OpenCL and CUDA sorting implementations. This
paper proposes a sollution that closes this gap.

4. PROPOSED IMPLEMENTATION
The next section contains a brief description and perfor-

mance analysis of the radix sort algorithm, followed by a
detailed description of our implementation and the methods
used for optimizing it. Our algorithm consists of the same
three steps as [13], but they are executed on GPU in just two
steps, for reasons described below. Although our implementa-
tion is written in OpenCL, the design considerations are with
respect to NVIDIA hardware, and when referring to some
particular hardware specifics, it is that of the NVIDIA plat-
form, unless specified otherwise.

In the proposed algorithm design, the emphasis is on
low arithmetic density, taking advantage of OpenCL just-in-
time compilation model for flexible scheduling, and paral-
lel programming with minimal synchronization using warp-
synchronous programming where possible.

4.1. The Radix Sort Algorithm
Radix sort [21] is a stable sorting algorithm, which is suit-

able for sorting keys that map to integral values, such as in-
tegers or to certain extent the floating-point values. Note that
this is converse to the widely used sorting paradigm that uses
a comparison predicate, and is implemented in e.g. C++ Stan-
dard Template Library. It works by grouping the given integer
keys by their corresponding digits. This is done in succes-
sive fashion, starting with the least significant digits. Once

Algorithm 1 Segmented Parallel Radix Sort.
1: function RADIXSORT(input)
2: for each digitplace in {LSB, . . . ,MSB} do
3: Calculate segment histogram of digits at digitplace
4: Inplace global scan of all the histograms
5: begin
6: Segment scan of counts of digits at digitplace
7: Add histogram scan to get global offsets
8: Scattter temp← input
9: end

10: Swap input↔ temp
11: end for
12: return input
13: end function

grouped, the keys are then read out, starting with the group
corresponding to the lowest value and maintining relative or-
der of the keys in the same group. After going through all of
the digits, the sequence is sorted. The parallel version of this
algorithm, called split radix sort [9], relies on parallel prefix
sum primitive extensively, to facilitate grouping of the sorted
elements. Parallel prefix sum, or scan, can be implemented
efficiently on GPU [22]. In order to extend radix sort algo-
rithm to run efficiently on multi-processor machines such as
GPUs, a notion of segments [9] is introduced. The sort can be
broken down to local operations on the individual segments
of the input sequence, which can be performed with reduced
amount of communication between processors, working on
different segments. The final sorting algorithm is described
in Algorithm 1. A similar algorithm was used in [13].

In the first step inside the loop, counts of digit values in
each segment of the input sequence are calculated. Prefix sum
of those counts gives the global position of the first occur-
rence of each digit in the output sequence, for each segment.
Finally, the last step will calculate prefix sums of each digit,
determining output position of each key in terms of the seg-
ment and by using the histogram prefix sum also the global
output position. The output sequence of one loop iteration be-
comes input to the next one, output of the last iteration is the
sorted sequence. In order to sort k-bit numbers, one needs to
perform k/d iterations of the loop above, where d is size of a
digit, in bits. Each segment histogram will therefore contain
2d bins. An example of a single step of the loop is depicted
on Fig. 2.

Since sorting is certainly a bandwidth-limited operation,
let us analyze the cost in terms of memory accesses. Given
that the length of input sequence is n, and the hardware ar-
chitecture dictates us to use m segments (where each segment
corresponds to an individual parallel processor), the required
bandwidth can be found in Table 1.

Since m is quite limited by the hardware (up to tens on
GPUs, or hundreds on Intel MIC), and d is limited by regis-



Line of algorithm Memory reads Memory writes
3 n 2dm
4 2dm 2dm

5−9 n+2dm n

Table 1. Memory Complexities of Algorithm 1, the Seg-
mented Radix Sort

ter pressure, the memory complexity is roughly 3nk/d. This
can give us an idea about the upper bound of the sorting rates
achievable on the current hardware. For example, NVIDIA
GeForce GTX 780 has maximum bandwidth of 288.4 GB/sec,
which can yield peak sorting rates up to 3.0 GKeys/sec for the
common case of k = 32, d = 4. The proposed implementation
is efficient, in the sense of achieving performance, compara-
ble to this upper bound. Note that in the following text, the
convention of binary units is used, where 1 M equals 10242,
1 G equals 10243, and so on.

4.2. Segmented histogram calculation
Histogram calculation is fairly straightforward algorithm

if implemented on a serial processor. On a parallel processor,
two common approaches prevail. Sintorn [10] used atomic
operations for incrementing the histogram bin counters, but
despite recent architectural improvements, atomic operations
still serialize if working on the same variable (the same his-
togram bin). The efficiency of histogram accumulation is then
heavily dependent on the data, and is reduced up to 32× on
NVIDIA platforms in the worst case (since threads execute
in groups of 32, called warps), or even slower on AMD plat-
forms (similarly, threads execute in waveforms of 64 threads).

The other solution, which our implementation uses, is to
trade time for space, having each thread accumulate in its pri-
vate histogram, and have the threads reduce the histograms
at the end. Segmented histogram is highly advantageous for
GPU implementation, as there is no communication between
the segments, and the reduction can take place entirely in the
fast shared memory. The size of the segments is of great im-
portance, as it affects performance greatly. If the segments are
too small, the costs of each thread initializing its private his-
togram with zeros and of the final reduction will easily out-
weigh the time, spent in the actual accumulation of values,
rendering the calculation inefficient. If, on the other hand, the
segments are too large, there may not be enough segments to
occupy all the streaming multiprocessors of the GPU. Many
of the previous implementations restrict the size of the seg-
ment to a constant, implementation of Satish [8] is an exam-
ple, it uses tiles of 1024 items. Instead, our implementation,
similarly to that of Merrill [13] uses variable length segments.
The number of segments is chosen as a minimum that can
keep the GPU fully utilized.

A distinguishing feature of our algorithm is the choice of
memory space for thread histogram storage. On GPU, there

are several memory spaces with varying suitability. Global
memory is mostly unsuitable for histogram accumulation,
due to its latency. Shared memory is roughly two orders of
magnitude faster, but it is accessed through a small amount of
banks (16, or 32 on newer Fermi GPUs). If bank conflicts oc-
cur, the I/O operations are serialized. Therefore, even though
not using atomic instructions, the accumulation would still be
dependent on the data. Local memory [23] (not to be con-
fused with local memory in OpenCL) is a memory space,
specific to GPUs. It is a memory space, which is private to
each thread. The values written to local memory space are
stored in L1 cache, but can be evicted to L2 and eventually
to global memory (highly likely for bandwidth-intensive ap-
plications). This memory space is used only for register spills
and addressable arrays. This is due to the absence of register
addressing. In vertex program specification, there is the ARL
instruction, but its use is limited. That means that code like in
Algorithm 2 will actually store values in global memory, and
will be dependent on the data.

Instead, the proposed histogram algorithm accumulates the
histogram in registers. Due to the nature of GPU execution
model, to use branching to decide which histogram bin should
be incremented would result in thread divergence, serializa-
tion and again dependence of execution speed on the data. On
GPU, it is better to compare data at the input to all histogram
bins, and use the results of the comparison to increment all the
histogram bins, for every item of data. This approach, how-
ever, yields high arithmetic intensity and is only efficient if
there are enough threads running to cover up the latency. In-
stead, bit masking operations are employed to calculate the
comparison. That enables accumulation of several different
values at once by simply or-ing their masks together. Special
care needs to be taken for accumulating duplicate values. The
final accumulation part is summarized in Algorithm 3.

Note that the >> and << operators represent bitwise shift
to the left and to the right, respectively, while ∪ and ∩ repre-
sents logical or and logical and. Also, the algorithm accumu-
lates two symbols at once, and for the sake of simplicity does
not handle the situation of odd-sized input. The code can be
further optimized by sacrificing several bits of accumulator
precision, and instead of performing 2b shifts of bin (16 in
Algorithm 3), only one shift (by 0 and by 8 bits) is used and
the (constant) binary masks are shifted instead. That reduces

Algorithm 2 Naı̈ve Histogram Calculation.
1: function HISTOGRAM(input)
2: histogram[16] = {0, 0, . . . , 0}
3: for each i in input do
4: histogram[i]← histogram[i] + 1
5: end for
6: return histogram
7: end function



Algorithm 3 Register Histogram Accumulation.
1: function THREADPRIVATEHISTOGRAM(input)
2: {ha,hb, . . . ,hp}= {0,0, . . . ,0}
3: for each (i, j) in input do
4: bin← 1 << i
5: bin← bin∪ (1 << j)
6: multiplicitylog2 ← i = j
7: ha← ha+((bin >> 0)∩1)<< multiplicitylog2
8: hb← hb+((bin >> 1)∩1)<< multiplicitylog2

...
9: hp← hp+((bin>> 15)∩1)<<multiplicitylog2

10: end for
11: return {ha,hb, . . . ,hp}
12: end function

the work to 26 simple instructions per accumulated value. The
accumulators need to be shifted at the end but that is a small,
constant overhead. Note that the maximum size of the input
is not reduced, thanks to parallelism.

After thread private histograms have been calculated, the
values need to be reduced. The first part of the reduction is
dome in warp-synchronous manner, where each warp coop-
eratively reduces all its thread private histograms to a single
histogram in shared memory. In order to completely avoid
synchronization, each thread rotates its histogram bins by its
id modulo 2b. Afterwards, standard tree-based reduction is
applied in shared memory. As a result, to reduce 512 his-
tograms of 16 bins each, only four barrier synchronizations
are required.

4.3. Fast Scan & Scatter
After accumulating the segment histograms, their prefix

sum is calculated much like in [8], which will be used as a
global destination offset for the sorted elements. Since the
number of segments required to occupy the GPU is small, this
step is not large enough to be efficiently issued as a separate
kernel, and is fused with the last scattering step. Note that al-
though this saves kernel execution, it does not save significant
amount of communication and Table 1 still applies.

In order to perform scattering of the sorted sequence,
global indices need to be calculated for each of the elements.
Segmented prefix sum of histogram bin affiliation flags yields
local ranks of the sorted elements. By adding value of his-
togram prefix sum for the corresponding segment and his-
togram bin, global position in the output sequence is obtained,
as illustrated on Fig. 2. This requires us to calculate 2b pre-
fix sums, each of the size of the segment, or alternately more
shorter prefix sums with carry.

Several interesting observations can be made. The prefix
sums are of binary flags, and sum up to segment length. This
gives us knowledge of how many bits are needed for the accu-
mulators and it is possible to employ data-level parallelism.
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Figure 2. An example of segmented radix split operation for
b = 1, best viewed in color.

Ha [11] performs accumulation of three 10-bit accumulators,
similarly Merrill [13] accumulates four 8-bit numbers in a
single 32-bit variable.

It is possible to perform dynamic scheduling of accumu-
lator precision in case of prior knowledge of the final sums,
such as the histograms calculated in the first step of the algo-
rithm. For example, a tile of 1024 element flags summed in
16 bins requires up to 128 bits, in 8 bins up to 64 bits. It is
therefore possible to scan 1024×16 flags in two 64-bit num-
bers (always 8 in each), and if the distribution is favorable,
a single 64-bit number suffices. This can be verified by solv-
ing unordered partition problem for 1024, 16. This however
relies on calculating segment histograms for relatively small
segments which reduces performance on the current GPUs,
and we choose to use Merrill’s method. This technique is,
however, relevant to the future GPUs that would have more
multiprocessors or more registers.

In the proposed implementation, each thread calculates lo-
cal scan of two flags. Warp-synchronous prefix sums with
carry are used to calculate segment scan. Threads working on
a single segment exchange sorted elements in shared memory
as in [13] and write them out to the temporary array.

4.4. Register usage optimization
One of the disadvantages of register histogram accumu-

lation described in section 4.2. is the number of registers it
uses (34 in our case). That directly affects possible number of
workgroups, running on a single multiprocessor, and affects
the capability to hide computational latency. In order to re-
duce the number of registers, a simple novel technique called
volatile stripping is proposed. It is based on an observation
that the OpenCL compiler allocates registers in a manner that
will yield high processing speed, while the programmer has
very little control over it. Declaring variables as register has
no effect, and the compiler (NVIDIA 331.82) seems to ignore
the ’-cl-nv-maxrregcount’ option.

In the histogram kernel, accumulation of the bins can be
done in-place, but the compiler does not do that, possibly to
improve pipelining. In our implementation, the histogram bin



variables are declared as volatile. That makes the compiler
generate code for storing the value of the variables in local
memory. A post-processing step is applied to the generated
assembly code, which uniquely identifies each variable based
on its address in local memory, strips all the volatile load and
store instructions, and instead assigns a single register where
the variable is stored. Using this technique, we were able to
reduce register use from 34 down to 27, significantly improv-
ing occupancy.

Since this technique is rather low-level, and while general,
currently only implemented for NVIDIA PTX assembly for-
mat thus creating platform dependence, it was disabled in the
performance evaluation in order to make fair comparison to
the other OpenCL implementations, which are platform inde-
pendent. Although volatile stripping possibly damages soft-
ware pipelining, increased occupancy results in roughly 10 %
speedup for inputs of sufficient size to saturate the GPU mem-
ory subsystem.

5. PERFORMANCE ANALYSIS
In this section we compare the timing results of radix sort-

ing performed using the proposed implementation with sim-
ilar state of the art implementations such as CUDPP 2.1,
Thrust 1.6.0, CLOGS 1.2.0, CLpp v1 beta 3 and libCL 1.2.1.
All of those libraries use the radix sort algorithm. Some of
them also implement predicate-based sorting, but it is slower
than radix sorting, and therefore of no interest in our applica-
tion. The evaluation was performed by sorting vectors of ran-
dom numbers of varying lengths (the same sequences were
used for all the implementations). We also performed eval-
uation on sequences, produced by multiplying sparse matri-
ces from The University of Florida Sparse Matrix Collection
[24]. This collection was chosen because it contains sparse
matrices corresponding to a diverse set of problems, and as
such it is suitable for testing of general purpose linear algebra
implementations.

CUDA Data Parallel Primitives Library (CUDPP) is fea-
ture rich library with functions like parallel reduction, prefix
sum, radix sorting, sparse matrix operations, random number
generation and hashing. It supports comparison sorting, sort-
ing optimized for strings, and radix sorting.

Back 40 computing (B40C) is another reusable parallel
primitive library, developed in CUDA. It contains fast scal-
able radix sorting routines, designed arroung the allocation
paradigm [25]. The B40C is now deprecated, the radix sort-
ing code was reused in CUB and Thrust [26] libraries. We
will focus on Thrust in our evaluation, as it is included in
CUDA releases and is widely used. Thrust provides many
functions, including predicate-based and radix sorting, with
interface similar to the one of C++ Standard Template Libary.

CLOGS is a mature OpenCL implementation, providing
scan and sort primitives. Sorting of any combination of scalar

or vector key and value type is supported, as well as sort-
ing only keys. The implementation is ”loosely based” on
Merrill’s Back40Computing [13] radix sort implementation.
CLOGS feature auto-tuning ability, which chooses the best
parameters for target platform by exhaustively trying possi-
ble launch options, which are cached.

CLpp implements several sorting algorithms. Simple im-
plementation of Radix Sort, as described by Blelloch [9], as
described by Satish [8], and a generic version due to the au-
thors of the library. It offers functions for sorting keys or key-
value pairs. The size of the value can be configured, the keys
are expected to be 32-bit unsigned integers. The default sort
implementation, which is used in the benchmarks is based on
the paper of Satish.

libCL only offers limited sorting capability: it can only
sort key-value pairs, and only up to 4M− 1 of them. Also,
both key and value must be 32-bit types, and the key is com-
pared as 32-bit unsigned integer, reducing usability for sort-
ing floating-point numbers. There is no support for sorted
type specification.

It is apparent that the CUDA implementations are of bet-
ter quality, and are influential to the mostly inferior OpenCL
implementations. This is in part given by the supported hard-
ware features: CUDA naturally supports advanced NVIDIA
hardware functions, such as dynamic parallelism or warp vot-
ing functions, which are unavailable in OpenCL. These fea-
tures are used in the CUDA implementations, giving them a
certain advantage. The one disadvantage of CUDA is that it
is compiled for certain hardware profiles, and when a new
platform emerges, the binary must be updated. This is not the
case with OpenCL, where the programs are compiled at run-
time and can therefore adapt to new hardware immediately.
This adaptation is only limited to number of registers, size of
memory and similar device parameters.

All the tests were performed on a computer with NVIDIA
GeForce GTX 680 and GTX 780, a pair of AMD Opteron
2360 SE CPUs running at 2.5 GHz and 16 GB of RAM.
Latest GPU drivers (version 331.82) were used. CUDA im-
plementations were linked against CUDA 5.5 SDK libraries.
During the tests, the computer was not running any time-
consuming processes in the background. Each test was run

GPU Type
GTX 680 GTX 780

Library Key Key-value Key Key-value
CUDPP 689.752 538.849 804.798 590.816
Thrust 696.706 540.675 792.496 621.417
CLOGS 451.049 276.837 503.756 366.238
CLpp 134.716 94.245 154.076 122.487
libCL N/A 85.106 N/A 98.655
proposed 805.605 641.969 1119.422 892.055

Table 2. Saturated sorting performance in MKeys/sec.
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Figure 3. Sorting rates on 32-bit keys (higher is better).
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Figure 4. Sorting rates on 32-bit key-value pairs (higher is
better).

at least ten times until cumulative time of at least 5 seconds
was reached, and the average time was calculated in order to
avoid measurement errors, especially on smaller sequences.
Explicit CPU - GPU synchronization was always performed,
using cuCtxSynchronize() or clFinish(), respec-
tively. Recorded times do not include any data transfers. The
computer was running Windows 7 (64 bit) and all the tested
libraries were compiled using Visual Studio 2008 SP1.

Summative results can be found in Table 2. These were
measured on random unsigned 32-bit numbers (care was
taken so that the random numbers are not banded, but indeed
span the whole 32 bits) and optionally 32-bit values. More
detailed benchmarks are seen at Fig. 3 (keys only) and Fig. 4
(key-value pairs).

Since different implementations might react differently on
the distribution of the sorted numbers, we also performed
benchmarks by sorting element indices, obtained by perform-
ing sparse matrix multiplication, and recording destination
row and column indices of results of every scalar product (see
[1] for more details). Row and column indices are combined
to a single key by multiplying column index by the number
of rows and adding row index. Average runtime results on
data generated by multiplying 160 of randomly chosen matri-
ces from University of Florida Sparse Matrix Collection with
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Figure 5. Sorting rates on 32-bit key-value pairs, keys were
generated in sparse matrix multiplication (higher is better).

their respective transposes are plotted in Fig. 5. Note that the
proposed implementation consistently gains the fastest satu-
rated sorting rates, only outperformed by CUDPP for very
short sequences.

Also note that authors of Thrust and CUDPP report greater
sorting rates than measured, comparable with the proposed
implementation. This is most likely due to the behavior on the
particular GPU models, where our implementation is better
optimized.

6. CONCLUSIONS AND FUTURE WORK
In this paper a simple portable radix sort implementation

suitable for GPU was proposed. Although the achieved sort-
ing rates are not much higher than the ones of the CUDA
implementations, it improves over the fastest state-of-the-art
OpenCL implementations by nearly 50 %. We achieved it by
implementing fast histogram accumulation in registers, using
warp-synchronous synchronization-free operation. We pro-
posed a novel technique of volatile stripping. Another pro-
posed technique of dynamic allocation of accumulator preci-
sion is currently less efficient than state-of-the-art, but will be
applicable on bigger future GPUs.

We will focus on development of fast sparse linear algebra
kernels using the proposed sorting implementation. The im-
plementation is available as a part of our block matrix library,
at http://sourceforge.net/p/blockmatrix.
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