
On Reliability of Clock-Skew-Based Remote Computer Identification

Libor Polčák1 and Barbora Franková1

1 Faculty of Information Technology, Brno University of Technology, Božetěchova 2, 612 66 Brno, Czech Republic
ipolcak@fit.vutbr.cz, xfrank08@stud.fit.vutbr.cz

Keywords: Device Fingerprinting, Clock Skew, Security, Counter-measures.

Abstract: Clocks have a small in-built error. As the error is unique, each clock can be identified. This paper explores
remote computer identification based on the estimation of clock skew computed from network packets. The
previous knowledge of the method is expanded in various ways: (1) we argue about the amount of data that is
necessary to get accurate clock skew estimation, (2) the study of different time stamp sources unveils several
irregularities that hinders the identification, and (3) the distribution of clock skew in real network makes the
precise identification hard or even impossible.

1 INTRODUCTION

Each computer has internal clock to measure time. As
the manufacturing process is not precise on atomic
level, each clock has its own deficiencies. Conse-
quently, each computer measures time with its own
in-built inaccuracy, clock skew. When the inaccuracy
accumulates, clock skew impact becomes visible and
measurable.

In remote clock-skew-based computer identifica-
tion, a detector (fingerprinter) gathers time stamps of
computers to be identified (fingerprintees) with the
goal of unique identification of all computers. (Kohno
et al., 2005) proposed tracking ICMP and TCP time
stamps. Later, others introduced other sources and
studied the method. Previously reported results sug-
gest high reliability and applicability of the clock-
skew-based identification.

This paper revisits the results of previous studies
of clock-skew-based identification and focuses on the
applicability in real networks. This paper contributes
in the following areas:

• The duration of a clock skew estimation is more
important than the number of evaluated time
stamps.

• There is an anomaly in TCP time stamps of Apple
devices.

• Clock skew is not unique enough for networks of
several hundred computers.

• All users running Windows, Mac OS, Linux and
their derivatives, e.g. Android or iOS, can easily
evade the identification.

This paper is organized as follows. Section 2
overviews the method to estimate clock skew and dis-
cusses previous work. Section 3 elaborates on the data
required for sufficient clock skew estimates. Section 4
explores the time stamp properties and lists irregulari-
ties observed during experiments. Section 5 evaluates
the identification in real network; the results show that
the method is not precise enough to uniquely identify
devices. The impact of the findings is considered in
Section 6 and the method is compared to similar iden-
tification methods. Section 7 concludes the paper.

2 CLOCK SKEW ESTIMATION

The original idea behind clock skew computation to
identify network devices was introduced by (Kohno
et al., 2005). Let us denote the time reported by clock
C at time t (as defined by national standards, i.e. the
true time) as RC(t). The offset is a difference between
two clocks: offC,D(t) = RC(t)−RD(t). Assume that
offC,D is a differentiable function in t, then, clock skew
sC,D is the first derivative of offC,D. Clock skew is
measured in µs/s, generally denoted as parts per mil-
lion (ppm).

Consider C to be the clock of the fingerprinter
and D to be the clock of the fingerprintee. As RD
is not observable by the fingerprinter, it sees packets
marked with time stamps delayed by ε(t), i.e. the net-
work delay. If ε were a constant, the first derivative of
off′C,D = RC(t)− ε−RD(t) would have been equal to
the first derivative of offC,D. Unfortunately, ε is not a
constant.

Let us represent observed packets from the finger-
printee as offset points (x,y) where x is the observa-
tion time, either RC(t) or the elapsed time since the
start of the measurement; and y is the observed off-
set off′C,D(t) Kohno et al. proposed to estimate clock
skew by the slope of the upper bound of all offset
points. They have shown that the slope of the upper
bound is similar to the slope of the offC,D. Conse-
quently, the first derivatives are similar and the clock
skew can be estimated by computing the slope of the
upper bound of all offset points. See Figure 1 for an
example.

-800

-700

-600

-500

-400

-300

-200

-100

0

0 30 60 90 120 150 180 210 240 270 300 330

O
ffs

et
 [μ

s]

Elapsed time [s]

Upper bound line

clock skew ≡ tan α
Offset points

Real offC,C'

α α

ε

Figure 1: Clock skew estimation.

The original paper studied the advantages and
disadvantages of the clock-skew-based identification.
(Kohno et al., 2005) used two sources of time stamps:
time stamps from TCP can be collected passively
whereas gathering time stamps from ICMP needs ac-
tive approach. The downside of the ICMP-based mea-
suring is the non-uniform implementation in current
operating systems described in Section 4. TCP time
stamps (Jacobson et al., 1992) are present in each TCP
segment header when the client and the server negoti-
ate this option during the initial TCP phase. As Kohno
et al. observed, TCP time stamps are not generated by
Windows machines by default. We evaluated that this
is valid to this date and Windows 8.1 still does not add
TCP time stamps by default.

Later, time stamps carried on the application layer
were considered (Murdoch, 2006; Zander and Mur-
doch, 2008; Ding-Jie Huang et al., 2012). Zander
and Murdoch computed clock skew from time stamps
present in HTTP protocol. Ding-Jie Huang et al. ap-
plied AJAX to send additional time stamps to the web
server that computes clock skew of its clients as one
of the input of multi-factor authentication. In this
case, the fingerprintee accessed a special web page
prepared by the operator of the fingerprinter.

In addition, separate line of study emerged in the
field of rogue access point identification (Jana and
Kasera, 2010; Lanze et al., 2012). This approach
uses yet another source of time stamps — IEEE

802.11 Time Synchronization Function time stamps
exchanged in Wi-Fi networks.

(Sharma et al., 2012) improved the detection by
introducing a batch of ICMP packets to compensate
for the latency and loses on the network path. We
did not consider using this approach for two rea-
sons: (1) our primary focus was on passive detection,
(2) ICMP time stamps are not supported by Windows
in a standard way, and (3) ICMP time stamps are dis-
abled by default in Apple operating systems.

Although (Ding-Jie Huang et al., 2012) improved
the clock skew estimation by linear regression, the re-
ported error was still in the range of ±1 ppm, i.e. the
same as discussed by (Kohno et al., 2005). Hence, we
did not use their improvements.

One of our previous work (Polčák et al., 2013)
reported that NTP-enabled Linux hosts became im-
mune to the clock skew computed from TCP. This pa-
per elaborates on NTP influence on other sources of
time stamps.

3 ACCURACY OF ESTIMATES

This section revisits the discussion (Kohno et al.,
2005; Sharma et al., 2012) about the time required to
accurately estimate the clock skew of a specific com-
puter. This is important especially for applications
that need to decide whether a new short-time mea-
surement (Ding-Jie Huang et al., 2012) matches a pre-
viously calculated value. (Sharma et al., 2012) claim
that a minimum number of 70 system time stamps are
required before the computed clock skew estimation
becomes stable. However, our measurements sug-
gest that simply stating the number of required time
stamps is not enough.

For example, a computer uploading a large file
through a 1 Gbps network link generates up to 81,274
Ethernet frames per second (the longest Ethernet
frames takes 1,538 B on the wire including inter frame
gap, preamble, and frame check sequence). 70 con-
secutive packets are sent within about 861 µs. Con-
sider a computer with in-built clock skew of 100 ppm
(which is relatively large considering the study pre-
sented in the Section 5). The inaccuracy caused by
the clock skew after 861 µs is only 86 ns. Current op-
erating systems update the clock with frequency of
10–1000 Hz, i.e. the resolution of the clock value is in
milliseconds. Thus, the inaccuracy cannot be visible
during this short period of time.

To illustrate that the estimation of clock skew de-
pends on time rather than the number of packets, we
captured a communication between two computers to
a pcap file. The original captured pcap file was sam-

pled into seven sample files. Each of the sample files
contained the closest packets distributed with a gap
of at least n seconds. The considered gaps between
consecutive packets were 1, 3, 5, 10, 20, 30, and 60
seconds. So the file number 1 contained 60-times
more packets than the file number 7. We estimated
the clock skew after each received packet.

The data from the whole measurement, which
took more than 330 minutes, are shown in the Fig-
ure 2. The shape of the curves, formed by the points
of estimated clock skew, suggests that the estimated
clock skew value of about −30.2 ppm can be im-
proved even after such a long time. However, shortly
after the beginning of the experiments, the clock skew
estimation was in the range of ±1 ppm as originally
described by (Kohno et al., 2005) and used also by
(Ding-Jie Huang et al., 2012).

-33

-32.5

-32

-31.5

-31

-30.5

-30

-29.5

-29

-28.5

-28

30 60 90 120 150 180 210 240 270 300 330

E
st

im
a
te

d
 c

lo
ck

 s
ke

w
 [

p
p

m
]

Elapsed time [min]

1 sec
3 sec
5 sec

10 sec
20 sec
30 sec
60 sec

-30.2 ppm
Tolerance range

Figure 2: The clock skew estimation can be improved even
after several hours of measurement. The duration of the
measurement is the dominant factor in clock skew estima-
tion as the seven estimates converge to the final value with
a similar pace.

The detail view at the beginning of the clock skew
estimation is depicted in Figure 3 and 4. As shown in
the Figure 3, estimation of clock skew from all sample
sets are in the range of−31.2 ppm to−29.2 ppm after
about 2 minutes and the precision of the clock skew
computation does not depend on the number of pack-
ets. Although Figure 4 contains the four most sparse
sample files, the clock skew estimation is in the de-
sired range after 4–6 minutes. Note that the second
largest data file, with 20 seconds packet gaps, takes
the longest time to fit into the final range. This is be-
cause the external influence, such as the state of the
network, is heavier than the benefits of having higher
number of packets available.

Since (Sharma et al., 2012) claim: For TCP mea-
surements, the same set of 100 time stamps was
yielded in only a few minutes of data capture depend-
ing on the network load. We believe that our findings

-33

-32.5

-32

-31.5

-31

-30.5

-30

-29.5

-29

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

E
st

im
a
te

d
 c

lo
ck

 s
ke

w
 [

p
p

m
]

Elapsed time [min]

1 sec
3 sec
5 sec

10 sec
-30.2 ppm

Tolerance range

Figure 3: Detail view on the clock skew estimation from
the four largest data files. The estimated clock skew of the
computer is in the desired ±1 ppm tolerance range from the
final clock skew of−30.2 ppm after about two minutes. The
influence of the duration of the measurement dominates the
number of packets.

-32.5

-32

-31.5

-31

-30.5

-30

-29.5

-29

-28.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
st

im
a
te

d
 c

lo
ck

 s
ke

w
 [

p
p

m
]

Elapsed time [min]

10 sec
20 sec
30 sec
60 sec

-30.2 ppm
Tolerance range

Figure 4: Detail view on the clock skew estimation from the
four smallest data files. Even though the number of packets
is smaller compared to Figure 3, the estimated clock skew
of the computer is in the desired range after 4–6 minutes.

are in conformance with their observation of needing
at least few minutes of data capture. However, we
consider that the duration of the measurement is more
important than the actual number of packets.

4 TIME STAMP PROPERTIES

This Section presents the properties that we found
during the evaluation of the clock-skew-based identi-
fication. Firstly, there are inconsistencies between op-
erating systems, especially inconsistency in TCP time
stamps of Apple devices. Then, we argue that differ-
ent sources of time stamps usually result into compa-
rable clock skew estimates. Finally, we evaluate time
changes and their influence on time stamps; any clock
skew estimation can be jammed by the fingerprintee.

Table 1: Time stamp support in current OS (X= enabled by default).

OS TCP ICMP L7
Windows Not enabled by default Non-standard values X
Linux X X X
FreeBSD X X X
Mac OS X/iOS Very high, frequently changing clock skew Not supported X
Android X X X

4.1 Operating Systems

Although the clock-skew-based computer identifi-
cation is applicable to all common operating sys-
tems (Microsoft Windows, Apple Mac OS X/iOS,
Linux/Android), the default behaviour of the clock
skew generating algorithms differs (Kohno et al.,
2005; Sharma et al., 2012).

The Apple operating systems (Mac OS X and iOS)
do not support ICMP time stamps anymore. In addi-
tion, computations from TCP time stamps result into
very high clock skew estimations (hundreds or thou-
sands of ppm). Moreover, the estimations are not sta-
ble and clock skew changes on unknown occasions.
We closely investigated at least 5 different devices
(including Mac Book Air, iPad, Mac Mini) and all
of them behaved in a similar way (see Figure 5 for
a result of one of the measurements). Note that the
upper bound method of all offset points yields incor-
rect results. Instead, we detect a change in the clock
skew and compute upper bounds segments, each for a
period with constant clock skew.

-30000

-25000

-20000

-15000

-10000

-5000

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

O
ffs

et
 [m

s]

Elapsed time [s]

Upper bound segments
Offset points

Clock skew change

Figure 5: An example of unstable clock skew of devices
running Mac OS X 10.8. Apple iOS behaves similarly.

None of the previous work reported similar be-
haviour, therefore, we tried to identify the source of
the jamming. In order to exclude a bug in the soft-
ware, we examined the packet traces manually. We
indeed learnt that the computed clock skew is valid. In
addition, we tested a virtual machine running Mac OS
X that exhibited similar properties. In contrast, Win-

dows running on a Mac mini generated time stamps
with reasonable clock skew.

To investigate possible sources of the jamming,
we tried experiments with controlled CPU load, in-
stalled new updates, used the computer or left it run-
ning without any user input. Nevertheless, we did not
isolate the cause of the jammed time stamp values as
the clock skew was changing in an unpredictable way
in both Mac OS X and iOS.

The properties of the clock skew measured from
other operating systems and other sources of time
stamps were in expected range. The support of time
stamps is summarized in the Table 1.

4.2 Time Stamp Sources

Our experiments with various time stamp sources
show that estimations of clock skew computed from
different time stamp sources generated by a single
computer result into the same clock skew estimate.
Figure 6 provides an example of a measurement of
a Linux computer. Packet time stamps from ICMP,
TCP as well as time stamps generated by JavaScript
code were considered. All three sources converged to
a clock skew estimate of −30.2 ppm.

-11

-10.5

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

0 15 30 45 60 75 90 105 120 135 150

E
st

im
a
te

d
 c

lo
ck

 s
ke

w
 [

p
p

m
]

Elapsed time [min]

ICMP
TCP

JavaScript
-8.9 ppm

Tolerance range

Figure 6: Clock skew estimated from different time stamp
sources produced by the same computer converge to the
same value.

However, as discussed above, computers running
Apple operating systems are an exception. The clock
skew computed from time stamps generated on the

application level has the expected properties while
it is impossible to compute a reasonable estimation
from TCP time stamps (see Figure 7).

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

0 15 30 45 60 75 90 105 120 135 150

E
st

im
a
te

d
 c

lo
ck

 s
ke

w
 [

p
p

m
]

Elapsed time [min]

TCP
JavaScript

Figure 7: Clock skew estimated from different time stamp
sources produced by Apple operating system. A reasonable
clock skew estimation cannot be computed from TCP time
stamps.

4.3 Time Synchronisation

Figure 8 depicts a measurement of a Linux finger-
printee running a utility called ntpdate. When ntpdate
is started, it computes the offset between local time
and the time advertised by NTP servers (Mills et al.,
2010). If the time difference between the reference
server and local time is lower than a threshold (0.5 s
by default), ntpdate calls function adjtime(). Conse-
quently, the system slowly compensates the time dif-
ference so that the internal clocks are synchronized to
the value advertised by NTP without a big change in
of time value. Then, the computer returns to the orig-
inal value of system clock period and ntpdate exits.

Whenever ntpdate detects that the difference be-
tween local time and the reference NTP server is big-
ger than the threshold (0.5 s by default), it calls the
function settimeofday(), which fixes the local time at
once. TCP time stamp values are not affected in any
way (see Figure 9) because TCP time stamps carry
the time since the Linux kernel started, which is not
influenced by the settimeofday(). ICMP and usually
application-layer-generated time stamps reflects the
local time. Hence, the call of the settimeofday() is
visible for a third party observer, see Figure 9.

The experiments with other systems revealed that
time stamps generated on application level are always
affected by NTP as applications do not access the sys-
tem clock directly, but they access the same time that
is typically visible to the user.

As a result, similarly to application layer time
stamps on Linux machines being affected by usage

-500

-400

-300

-200

-100

0

100

200

300

60 120 180 240 300

O
ff

se
t

[m
s]

Elapsed time [min]

Figure 8: Time stamp values generated by a recent Linux
kernel are influenced by time synchronisation of adjtime().
In this case, time was synchronised by a utility called nt-
pdate every hour. The graph shows different clock skew
in the periods when ntpdate was trying to fix the clock (e.g.
146 ppm, the specific value varies) and periods without time
synchronisation (about −354 ppm).

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

30 60 90 120 150 180 210 240

O
ff

se
t

[m
s]

Elapsed time [min]

TCP
Javascript (L7)

Figure 9: The clock skew of a computer with clock changed
by settimeofday() every 30 minutes. The computer keeps its
clock skew of about −354 ppm. While a TCP fingerprinter
does not see any change in the clock skew, a fingerprinter of
the time stamps sent by JavaScript code sees a shift in the
time stamp value after every call of settimeofday().

of settimeofday(), every time a user or a script mod-
ify the system time, the application layer time stamps
are affected (see Figure 10). This can be exploited by
a privacy-seeking user who can prevent the estima-
tion of the clock skew by modifying his or her system
clock more often than is the minimal observation pe-
riod discussed in Section 3.

BSD 9.2 hosts are also affected by NTP. In con-
trast, TCP time stamps generated by Windows hosts
are not influenced by NTP. Our experiments suggest
that TCP time stamps produced by Apple devices are
not affected by NTP. However, as discussed above,
TCP time stamps of Apple devices are not stable
enough to compute a reasonable clock skew.

-150

-100

-50

0

50

30 60 90 120

O
ff

se
t

[m
s]

Elapsed time [min]

Windows 7 offset points
-34.1 ppm
-34.1 ppm
-34.1 ppm
-34.0 ppm
-34.0 ppm
-34.1 ppm

Figure 10: Clock skew measurement of a machine running
Windows 7. Although the clock value was periodically
modified, the clock skew can be estimated for periods of
stable clock skew.

5 CLOCK SKEW DISTRIBUTION

For our final test, we focused on real network mon-
itoring. We mirrored the traffic going through the
network link that connects our faculty with the Uni-
versity network. From this traffic, we filtered TCP
segments with time stamp options and estimated the
clock skew for each recognized address. The moni-
tored computers included:

• laboratory computers,

• desktops and laptops of the faculty staff,

• mobile devices connected to the faculty Wi-Fi,

• faculty servers,

• remote servers accessed by the above mentioned
computers,

• remote clients that connected to local servers.

We focused only on TCP time stamps, we did not
consider Windows clients because they do not send
TCP time stamps by default. In addition, for privacy
reasons, we did not look at the specific cases in de-
tails and we did not compare the gathered information
to external sources. We observed 350–649 hosts dur-
ing working hours and 120–170 hosts during night.
The goal of this experiment was to gather more infor-
mation about the feasibility of the clock-skew-based
identification in real network environment.

The fingerprinter was not rebooted for months and
during this period, it synchronised its clock through
NTP. Hence, its clock tick period was stable during
the experiment. Consequently, the measured values
of the computers are likely very close to the correct
clock skew compared to the universal time.

Firstly, we were interested in the clock skew dis-
tribution. With hundreds of devices, the clock skew

needs to be spread over a large ppm space so that ev-
ery single computer is identifiable. Since the distribu-
tion of clock skew did not change significantly during
the experiment, let us focus on a snapshot of the net-
work as an example — an afternoon of a working day
when 646 hosts were detected in the network. The
histogram of all estimated clock skews in the network
at that time, displayed in Figure 11, shows that major-
ity of addresses have clock skew close to zero.

0

50

100

150

200

250

<
 -

10
00

[-
10

00
, -

5
00

)

[-
50

0,
 -

10
0)

[-
10

0,
 -

50
)

[-
50

, -
25

)

[-
25

, -
15

)

[-
15

, -
10

)

[-
10

, -
5)

[-
5,

 0
)

[0
, 5

)

[5
, 1

0)

[1
0,

 1
5)

[1
5,

 2
5)

[2
5,

 5
0)

[5
0,

 1
00

)

[1
00

, 5
00

)

[5
00

, 1
00

0)

>
 1

00
0

N
u
m

b
e
r

o
f

a
ct

iv
e
 a

d
d

re
ss

e
s

Estimated clock skew [ppm]

Figure 11: Histogram of clock skew distribution in real-
network. Note that the closer a bin is to zero ppm the
smaller clock skew range it covers.

The addresses with very high (over 1000 ppm) or
low (less than −1000 ppm) clock skew showed simi-
lar properties to the Apple operating systems in our
laboratory, e.g. the clock skew was not stable (see
Section 4 for details about TCP timestamps of Ap-
ple devices). Therefore, we will not consider these
addresses in the rest of this Section.

We observed two phenomena in the data. Firstly,
considerable amount of estimated clock skew is very
close to 0 ppm. The maximal amount of IP addresses
in the 0±1 ppm range was 223. It means that 34.5 %
of computers were not distinguishable from the fin-
gerprinter. We believe that this is caused by the time
synchronisation.

The second phenomenon is closely related to the
observation made by (Lanze et al., 2012). The Figure
12 reports the number of indistinguishable computers
for each estimated clock skew (x-axis); the hosts em-
ploying time synchronisation are not plotted. Most of
the clock skew values are distributed in a relatively
close range around 0 ppm even when the estimation is
not spoiled by NTP.

To evaluate if the observed clock skew distribu-
tion is only related to our network with, for instance, a
large amount of similar computers in the laboratories,
we consulted also other related literature. We were
able to get in touch with authors of (Sharma et al.,
2012) and they did not observe this phenomenon. We

0

5

10

15

20

25

30

-250 -200 -150 -100 -50 0 50 100 150 200 250

#
 a

d
d

re
ss

e
s

w
it

h
 s

im
ila

r
cl

o
ck

 s
ke

w

Estimated clock skew

Figure 12: The estimated clock skew and number of de-
vices with similar clock skew in the range of −250 ppm to
250 ppm, the effect of NTP is omitted in the figure.

did not receive any reply from the authors of (Ding-
Jie Huang et al., 2012), however, the positioning of
the estimated clock skew in Figure 10 of (Ding-Jie
Huang et al., 2012) indicates that clock skew of de-
vices 15–85 were closer to each other in comparison
to the other devices. Indeed, our data plotted in this
fashion would look alike.

6 DISCUSSION

There is a considerable amount of external factors that
hinders the unique identification for a third party.

Firstly, an external entity does not have precise
data from hardware clocks. When a clock skew is es-
timated from network data, time stamps are affected
by the following:

• The operating system: 1) the clock skew differs
when a computer is rebooted to different operat-
ing system and 2) the operating system impacts
the availability and quality of the generated time
stamps, e.g. Windows clients do not send TCP
timestamps by default or the clock skew cannot
be estimated from TCP time stamps of Apple op-
erating systems.

• Time shifts: the observed computer may synchro-
nise its clock with precise time sources from In-
ternet, or, the user may directly change the clock
value and jam the external clock skew estimation.

• Delays in the network: The more jitter in the
network between the fingerprintee to the finger-
printer the more packets are needed to estimate
the correct clock skew.

On top of the aforementioned external factors, all
other factors that are present locally affect clock skew,
e.g. temperature or voltage.

Secondly, the goal of clock manufacturers is to
make as precise clock as possible. Hence, the ex-
pected clock skews are bound to be close to 0 ppm.
The observation of real network suggests that the
clock skew of the majority of devices is in the range
from −50 ppm to 100 ppm.

Finally, the end user is in a good position to jam
the in-built clock skew effect on time stamps sent
from his or her computer. TCP time stamps are not
present in TCP segments in connections originating
from Windows machines. Hence, for privacy rea-
sons, disabling TCP time stamps is a valid choice.
The user space sources of time stamps are affected by
time synchronisation or manual changes of clock val-
ues. A privacy seeking user may consider permanent
synchronisation with precise time servers or frequent
changes of the clock value of his or her computer.
The former hides the user among all other synchro-
nised machines, the latter prevents a fingerprinter to
estimate the clock skew.

Whereas in a smaller network the identification of
all devices is possible provided that the users does
not take any counter-measures, in bigger network the
probability of two or more computers having similar
clock skew increases. Therefore, any fingerprinting in
bigger networks needs to take into account false pos-
itives.

Other authors published similar methods to detect
computer identity, e.g. browser fingerprinting (Ecker-
sley, 2010) based on HTTP headers, installed fonts,
etc. Browser fingerprinting works only in combina-
tion with HTTP and also suffers from false positives,
e.g. all computers in our laboratory are identified to be
the same since they have been cloned from the same
image. In contrast, their clock skew differs. The com-
bination of the two methods can limit the number of
false positives. However, we did not investigate this
in detail.

Models of user behaviour (Banse et al., 2012; Her-
rmann et al., 2012; Kumpošt, 2008) rely on specific
communication patterns of monitored users. The dis-
advantage of these models is the need to track users
for a long time, e.g. one day (Banse et al., 2012). Of-
ten, the models have difficulties when users regularly
change their IP addresses (Herrmann et al., 2012). As
the precision depends on user behaviour, they cannot
identify users without stable communication patterns.

The method can be used as a weak proof of a com-
puter not being present in a specific network. When
a user is prevented to influence the clock skew, e.g.
when he or she does not have root access to the sys-
tem, whenever a previously known clock skew is not
observed on any IP address, the computer does not
communicate via the network.

7 CONCLUSION

Since (Kohno et al., 2005) established the field of
clock skew estimation from network traces, it ex-
panded into various areas, such as identification of
anonymous services (Zander and Murdoch, 2008),
wireless networks (Jana and Kasera, 2010) and web
user identification (Ding-Jie Huang et al., 2012). The
basic idea behind the clock-skew-based identifica-
tion seems to be valid especially in small networks
but some authors already warned that the distribution
of clock skew is not ideal for unique identification
(Ding-Jie Huang et al., 2012).

This study revisited the findings from previous re-
search of the clock-skew-based identification. This
paper argues that the soundness of the clock skew es-
timation does not depend merely on the amount of
packets as previous studies suggested. Instead, the
duration of the measurement is more important as the
effects of the built-in clock skew increases with time.

During the study of the impact of operating sys-
tems on clock skew, we discovered an irregularity of
time stamps originating from Mac OS X and iOS. The
irregularity was clearly visible both during laboratory
experiments, with devices under our control, and dur-
ing the real network experiment, with devices of other
users.

The study of time synchronisation and manipula-
tion unveiled that clock skew can be influenced by
NTP which may prevent to estimate correct clock
skew.

The real network experiment revealed consider-
able difficulties of clock-skew-based identification in
large networks. In our network, the detected clock
skew of almost all devices is in the range between
−50 ppm and 100 ppm with majority much closer to
0 ppm. Time synchronization was employed by up
to 40 % of observed devices as their clock skew was
very close to 0 ppm and they were not distinguishable
between each other.

Passive TCP-level fingerprinting of Windows ma-
chines is not possible, Apple operating systems have
unstable clock skew and clock skew of Linux and
BSD machines is affected by running NTP. Appli-
cation level time stamps are always affected by time
modifications.

ACKNOWLEDGEMENTS

This work is a part of the project VG20102015022
supported by Ministry of the Interior of the Czech
Republic. It was also supported by the project FIT-
S-14-2299 of Brno University of Technology.

REFERENCES

Banse, C., Herrmann, D., and Federrath, H. (2012).
Tracking users on the internet with behavioral
patterns: Evaluation of its practical feasibility. In
Information Security and Privacy Research, volume
376, pages 235–248. Springer Berlin Heidelberg, DE.

Ding-Jie Huang, Kai-Ting Yang, Chien-Chun Ni,
Wei-Chung Teng, Tien-Ruey Hsiang, and Yuh-Jye
Lee (2012). Clock skew based client device
identification in cloud environments. In Advanced
Information Networking and Applications, pages
526–533.

Eckersley, P. (2010). How unique is your web browser? In
Privacy Enhancing Technologies, volume 6205 of
Lecture Notes in Computer Science, pages 1–18.
Springer Berlin Heidelberg, DE.

Herrmann, D., Gerber, C., Banse, C., and Federrath, H.
(2012). Analyzing characteristic host access patterns
for re-identification of web user sessions. In
Information Security Technology for Applications,
volume 7127, pages 136–154. Springer Berlin
Heidelberg, DE.

Jacobson, V., Braden, B., and Borman, D. (1992). RFC
1323 TCP Extensions for High Performance.

Jana, S. and Kasera, S. (2010). On fast and accurate
detection of unauthorized wireless access points
using clock skews. IEEE Transactions on Mobile
Computing, 9(3):449–462.

Kohno, T., Broido, A., and Claffy, K. (2005). Remote
physical device fingerprinting. IEEE Transactions on
Dependable and Secure Computing, 2(2):93–108.

Kumpošt, M. (2008). Context Information and User
Profiling. PhD thesis, Masaryk University, CZ.

Lanze, F., Panchenko, A., Braatz, B., and Zinnen, A.
(2012). Clock skew based remote device
fingerprinting demystified. In Global
Communications Conference, pages 813–819.

Mills, D. L., Martin, J., Burbank, J., and Kasch, W. (2010).
RFC 5905 Network Time Protocol Version 4:
Protocol and Algorithms Specification.

Murdoch, S. J. (2006). Hot or not: Revealing hidden
services by their clock skew. In Computer and
Communications Security, pages 27–36, New York,
NY, USA. ACM.

Polčák, L., Jirásek, J., and Matoušek, P. (2013). Comments
on ”Remote physical device fingerprinting”. IEEE
Transactions on Dependable and Secure Computing.
Pre-prints.

Sharma, S., Hussain, A., and Saran, H. (2012). Experience
with heterogenous clock-skew based device
fingerprinting. In Workshop on Learning from
Authoritative Security Experiment Results, pages
9–18. ACM.

Zander, S. and Murdoch, S. J. (2008). An improved
clock-skew measurement technique for revealing
hidden services. In Proceedings of the 17th
Conference on Security Symposium, pages 211–225,
Berkeley, CA, USA. USENIX Association.

