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ABSTRACT
A novel method for a representation of the optical system distortion using the discrete wavelet transform is pro-
posed in this paper. Using the presented approach, virtually any complex distortion can be represented only with a
small number of wavelet coefficients. Moreover, one can represent the distortion up to the resolution of one pixel
or even finer. The experiments shown in the paper suggest that the introduced wavelet interpolation reconstructs
distorted data very realistically. The proposed method was evaluated on two scenes comprising a projector and
irregular surfaces using dataset of images of various type.
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1 INTRODUCTION
This paper proposes a method for a representation and
correction of images geometrically distorted by a com-
plex optical distortion. The distortion may be caused by
optical beam refraction or reflection. The refraction can
be consequence of passing of the beam through optical
lens. An image distorted by reflection is observable for
example in an imperfect flat mirror or a curved mirror.
In our case, a scene consisting of a projector displaying
an image onto an irregular surface is considered as an
example.

When the projector displays the image onto an arbitrary
surface, the projected image appears distorted. The
viewer is represented by a camera. The distortion is
caused by passage of the original image through the
optical system composed of the projector, surface and
camera. The main idea of a distortion correction is to
obtain the mapping relation between the captured and
the original image. This relation is used for pre-warping
of original image which is then displayed by the projec-
tor. The mapping relation can be represented as a vector
grid [12, 17, 16, 8]. These vectors describe displace-
ment between pixels from original and captured image.

In this paper, we propose a novel method for a repre-
sentation of such distortion using the discrete wavelet
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transform. In our approach, the distortion of an opti-
cal system is acquired by capturing of projected struc-
tured light pattern onto irregular surface. The measured
distortion is represented by a rectangular grid of dis-
placement vectors. The grid is then decomposed into
the discrete wavelet transform using a suitable wavelet.
An approximation of the original field can be com-
puted from only a small number of wavelet coefficients.
Moreover, the interpolation of missing displacement
vectors can be performed using an inverse transform
going beyond the resolution of original vectors.

The presented approach is verified using an optical sys-
tem consisting of a dataprojector displaying images
onto irregular surfaces. The experiments performed on
the scenes suggest that the proposed wavelet interpola-
tion can recover the data more precisely compared to
naive linear interpolation. This is a consequence of
a larger width of a support of well performing CDF
9/7 scaling function in comparison with a support of
a linear-interpolating one. The experiments were eval-
uated on two scenes comprising the projector and irreg-
ular surfaces and dataset of six images of various type.

The further sections of this work are organized as fol-
lows. The following Related Work section briefly re-
views the discrete wavelet transform and methods for
modelling of optical distortion. Proposed Method sec-
tion proposes a novel method of such the representation
using the discrete wavelet transform. Using the pro-
posed method, consequent Evaluation section evaluates
the approximation for N largest coefficients as well as
the interpolation of missing vectors. Finally, Conclu-
sion section closes the paper.



2 RELATED WORK
An optical system is a set of optical devices, which af-
fect an optical beam of light passing through. In our
case, the optical system consists of a data projector, a
projection surface and a digital camera. The camera
and the projector affect the optical beam by refraction
during passage through their lenses. Optical properties
of both devices can be defined by the intrinsic and ex-
trinsic parameters. These parameters describe projec-
tive transformation of 3-D points into 2-D image space.
The distortions caused by lens shape and position may
be described by radial and tangential distortion parame-
ters [7]. Reflection of the optical beam on the projection
surface is defined by the laws of reflection [6].
Considering an unknown geometry surface, several
methods for a projector distortion correction and a
camera-projector automated calibration have been
proposed.
R. Raskar [12] proposed a method for irregular surface
distortion correction. In his work, a camera captures
key points in one image frame of the surface. Mapping
relations in these points are calculated utilizing coded
projector pattern. Mapping relations in the rest of the
projector pixels are computed by bilinear interpolation.
In the context of our paper, this method is basically
equivalent to interpolation using the linear-interpolating
wavelet.
Q. Yuan [17, 16] brought forward a calibration method,
which can achieve inner-projector distortion correction
and multi-projector registration in a single process.
The projector distortion parameters are computed by
analysing the coded structured light displayed by the
projector using bilinear interpolation. The established
mapping relation is stored in relation table which
is used for projection source image pre-warping.
Also, this method is basically equivalent to using the
linear-interpolating wavelet.
Another geometric image calibration method was pub-
lished by J. Jung [8]. This approach is designed for a
handheld data projector to correct geometric distortion
of the image projected on non-flat screen surface. The
method is using information, such as a slope and cur-
vature extracted from projected pattern key points. The
other vertices between key points are obtained by sym-
metry relation.
D. Cai [1] described non-linear distortion correction
surface for continuous curved projective surface. In the
approach, a neural network is used to approximate the
nonlinear projective transform mapping from camera
image to projector image. After the mapping has been
established, a transform converter table is constructed
from the output of the neural network. The table is uti-
lized for real-time image correction process.
The discrete wavelet transform (DWT) [11] is a math-
ematical tool which is able to decompose discrete sig-

nal into lowpass and highpass frequency components.
Such a decomposition can even be performed at sev-
eral scales. In this paper, we use the CDF 9/7 and 5/3
wavelets [2, 3] which are often used for image compres-
sion (e.g., JPEG 2000 standard). Responses of these
wavelets can be computed by a convolution with two
FIR filters, one with 9 and the other with 7 coefficients
in case of CDF 9/7. The transform employing such
wavelets can be computed with several successive lift-
ing steps [4, 13]. The resulting coefficients are then
divided into two disjoin subbands – approximate and
detail coefficients. Another wavelet we employed is
the linear-interpolating wavelet (a degenerate instance
of the CDF 5/3 in [5]). Considering the lifting scheme
of this wavelet, it essentially corresponds to CDF 5/3
wavelet scheme in which an update of the coarse coef-
ficients was omitted.

In case of 2-D transform, the DWT can be realized
using separable decomposition scheme [10]. In this
scheme, the coefficients are evaluated by successive
horizontal and vertical filtering resulting in four disjoin
subbands.

The distortion of an optical system can be represented
by 2-D equidistant vector field. The DWT of this field
is computed separately on its two components (x and
y). However, more sophisticated wavelet decomposi-
tions for vector fields have been developed, e.g. multi-
wavelets [15]. Note that one wavelet coefficient is thus
a vector in context of this article.

Accelerated image resampling algorithms for geome-
try correction are available. For example, the algorithm
in [18] implements essentially same fast resampling as
the linear interpolation wavelet used in our paper. The
method in [18] can be extended to exploit results of this
paper.

3 PROPOSED METHOD

In this section, the method of the optical distortion rep-
resentation using the discrete wavelet transform is pre-
sented.
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Figure 1: A block diagram of a scene with a human
observer (top) which was replaced by a camera and a
test pattern (bottom).



While watching the surface on which an original im-
age O(x,y) is projected using a dataprojector, a human
observer will see a distorted image

D = F(O) (1)

where F defines the distortion.

This system is generalized in a top part of Figure 1.
Modelling such distortion

F(x,y)(X) = X(x,y)+ f (x,y) (2)

requires measuring of an underlying displacement vec-
tor grid v(x,y). The displacement vectors v(x,y) (the map-
ping relation) can be viewed as

f (x,y) = v(x,y) (3)

where f is called a distortion mapping.

In more detail, the values from the original image O
at coordinate (x,y) are placed into a distorted image D
at a coordinate (x,y)+ f (x,y). Note that f is a vector-
valued function. The set of these displaced values forms
D.

During the measurement, the distorted test image D(x,y)
is obtained by the projection of a test image O(x,y) or
series of such images. In our experiments, a classical
chessboard image was used. The acquisition of distor-
tion is illustrated in a bottom part of Figure 1. Further-
more, the corrected image

C = F(F−1(O)) (4)

can be observer by projecting F−1(O). The correspond-
ing correction is given by

F−1
(x,y)(X) = X(x,y)+ f−1(x,y) (5)

where f−1 is a correction mapping. The similarity be-
tween C(x,y) and O(x,y) is measured using several meth-
ods in Section Evaluation.
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Figure 2: A block diagram of our setup. The acquisition
of the vector field is in the upper part.

In this generic form, the distortion f is represented with
the 2-D grid of displacement vectors v(x,y). In the scope
of this paper, this grid is rectangular and vectors are
equidistant. The acquisition was done using a classic
chessboard test pattern as shown in Figure 2. The dis-
tance between each two vectors is power of two in both
of directions. The reason for this is that interpolated
vectors should exactly fit pixels in the finest grid reso-
lution.

Considering this grid representation, we propose to
store and operate on its discrete wavelet transform

W f = 〈 f ,ψ〉 (6)

where ψ is a wavelet. In terms of this DWT, the co-
efficients of such transform are approximation a j

x,y and
detail d j

x,y vectors for each scale j. Now, one can keep
only a small number of N largest coefficients to obtain
still good approximation of the original distortion field.
Moreover, it is easy to interpolate the missing samples
using inverse transform W-1. These two opportunities
are stated in the bottom part of Figure 2. Both of them
are evaluated in the subsequent section.

The transform can be easily computed using a lifting [4]
scheme. In the next section, we employed the linear-
interpolating wavelet, the CDF 5/3 wavelet and the
CDF 9/7 wavelet. The linear-interpolating wavelet cor-
responds to the CDF 5/3 one with omitted update lifting
step. Inverse transform with such wavelet is then equiv-
alent to linear approximation (bi-linear in 2-D case)
with the fact that the already known vectors remain un-
changed.

4 EVALUATION
In this section, the performance of the introduced
DWT representation and bi-linear vector interpolation
are compared with respect to two different analysis
aspects. 1 First task evaluates fidelity of a distortion ap-
proximation from only several most significant wavelet
coefficients. The second task evaluates interpolation of
vector field up to the pixel resolution.

(a) Crumpled (b) Convex
Figure 3: The scenes used in the evaluation. The Crum-
pled scene contains sharp jumps in the distortion field.

1 The software implementation is available here:
http://www.fit.vutbr.cz/research/prod/?id=367

http://www.fit.vutbr.cz/research/prod/?id=367


Considering the Convex scene in Figure 3, the evalua-
tion of the interpolation of distortion vector field was
performed by keeping only N largest coefficients of
DWT. This is known as a non-linear approximation
in [11]. As the error of approximation, the Euclidean
norm of magnitudes of difference of approximated and
original field was used. The result for all of the wavelets
can be seen in Figure 4. Approximately above 30 coef-
ficients, CDF 9/7 wavelet overcomes every other. Be-
tween 10 and 30 coefficients, CDF 5/3 seems to be bet-
ter with respect to the Euclidean norm. This range of
coefficients is relevant in case someone needs a param-
eterization using only a very few coefficients.
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Figure 4: Plot of the Euclidean norm of the error of
the vector field approximation using all of the wavelets.
The Y axis is in a logarithmic scale.

Evaluating the interpolation of distortion vector field
was performed in the following scenario. First, the
distortion was estimated using the coarse chessboard
pattern projected onto the scene as shown in Figure 2.
The sampling interval was 26 pixels in both directions
coupled with resolution of 1280× 896 pixels. Then,
the vectors were interpolated using the above described
CDF wavelet transforms as well as using bi-linear in-
terpolation scheme up to resolution of a reference im-
age. In the following step, this image was deformed
(warped) using this dense vector field. The resulting
warped image was projected into the scene again giving
the corrected image. Now, the corrected and reference
images were compared using several metrics described
below.

All the evaluations were performed on a dataset con-
sisting of 6 images as shown in Figure 5. Two scenes
with different distortions were used as can be seen in
Figure 3.

To compare the projection of the corrected images,
three quality assessment metrics are used. The first two
are the well known PSNR (peak signal-to-noise ratio)
and SSIM (structural similarity). The third metric is a
simple patch-based correlation. The structural similar-
ity (SSIM) [14] index is a method for measuring the
similarity between two images according to human vi-

(a) Tunnel (b) Ellipses

(c) Lines (d) Photo

(e) Squares (f) Network
Figure 5: The dataset used in the evaluation.

image wavelet PSNR SSIM PBC
Tunnel CDF 9/7 10.812 0.9910 6.366
Tunnel CDF 5/3 10.665 0.9907 13.161
Tunnel bi-linear 10.918 0.9913 12.589
Ellipses CDF 9/7 12.650 0.9938 6.134
Ellipses CDF 5/3 12.395 0.9934 11.554
Ellipses bi-linear 12.422 0.9935 11.607
Lines CDF 9/7 6.936 0.9744 29.000
Lines CDF 5/3 6.952 0.9745 35.500
Lines bi-linear 6.996 0.9748 38.500
Photo CDF 9/7 17.466 0.9983 6.157
Photo CDF 5/3 17.107 0.9981 11.738
Photo bi-linear 16.690 0.9978 13.855
Squares CDF 9/7 10.667 0.9905 2.708
Squares CDF 5/3 10.826 0.9909 8.955
Squares bi-linear 10.346 0.9896 10.663
Network CDF 9/7 8.283 0.9841 4.451
Network CDF 5/3 8.123 0.9833 9.348
Network bi-linear 7.724 0.9814 9.696

Table 1: Results for scene Crumpled.

sual perception. The PSNR and SSIM metrics do not
consider the geometric distortion that actually occurs in
our case.

Using the patch-based correlation (PBC), a reference
image IR is first decomposed into a set of P patches
{pR

i }0<i<P, each of a size Lx × Ly. These patches
are formed at coordinates {cR

i } around strong image
corners and may overlay each other. Corresponding
patches {pT

i } with coordinates {cT
i } are then found



(a) reference

(b) CDF 9/7

(c) linear interpolation

Figure 6: Distortion correction performance. From top: a reference image, using CDF 9/7 wavelet, using the linear
interpolation. On the latter two images, the location of edges of the original image is highlighted.

image wavelet PSNR SSIM PBC
Tunnel CDF 9/7 11.784 0.9930 2.384
Tunnel CDF 5/3 12.054 0.9935 0.723
Tunnel bi-linear 12.020 0.9934 0.786
Ellipses CDF 9/7 13.471 0.9950 4.152
Ellipses CDF 5/3 14.081 0.9957 4.196
Ellipses bi-linear 14.016 0.9956 3.580
Lines CDF 9/7 7.287 0.9764 23.818
Lines CDF 5/3 6.985 0.9747 9.308
Lines bi-linear 7.172 0.9758 3.000
Photo CDF 9/7 18.449 0.9988 2.469
Photo CDF 5/3 17.504 0.9982 1.975
Photo bi-linear 18.896 0.9989 2.000
Squares CDF 9/7 11.476 0.9923 0.978
Squares CDF 5/3 11.547 0.9924 0.966
Squares bi-linear 11.989 0.9932 1.090
Network CDF 9/7 8.494 0.9848 1.935
Network CDF 5/3 8.445 0.9845 1.837
Network bi-linear 8.544 0.9849 1.935

Table 2: Results for scene Convex.

around the original position in a test image IT . They are
identified as maxima of normalized cross-correlations

1
LxLyσRσT

〈(pR− p̄R),(pT − p̄T )〉 (7)

where p̄ is the mean and σ is the standard deviation of
p. Eventually, the metric is defined as an average over
squares of Euclidean distances of patch coordinates

1
P ∑

i
‖cT

i − cR
i ‖2 (8)

for 0 < i < P.

The results are summarized in Table 1 and Table 2.
We have chosen the patch size of 60× 60 pixels. The
patches were weighted by an appropriate Gaussian win-
dow. It can be seen that CDF 9/7 wavelet gives best
result for Crumpled scene according to PBC metric. In
case of Convex scene, the results are unclear. Accord-
ing to PBC metric, the Lines image seems to be unsuit-
able due to an absence of enough strong corners.

In general, the wavelet interpolation methods generate
more smooth vector field in comparison with the linear
interpolation. It is a consequence of larger size of the
support of wavelet and scaling functions. This prop-
erty should be more kinder to the human visual system.
The statement seems to be confirmed by the results in
Table 1 for the Crumpled scene which contains sharp
jumps. While this statement is generally valid, still the
best results are achieved when the particular wavelet is
chosen with respect to the individual scene. Note that
PBC metric should be the most significant one because
it considers the geometric distortion.

A difference in the execution time of the forward as
well as the inverse transform using one of the discussed
wavelets should be negligible. The fast algorithms,
e.g. [9], limited by the memory access for 2-D discrete
wavelet transform exist.

To give a hint on how well the distortion correction
performs, Figure 6 shows some images for compari-
son. The edges of the reference image are highlighted
here. Note that CDF 9/7 has a better ability to preserve
smooth lines through sharp jumps in the distortion field
(Crumpled scene) as compared with the linear interpo-
lation.



5 CONCLUSION
We have proposed a method for representation of the
geometrical distortion of optical systems using the dis-
crete wavelet transform. This new method allows to
approximate the distortion from only a small number of
wavelet coefficients. Moreover, it allows to interpolate
missing distortion vectors up to a fine scale.

We have evaluated the presented method in scenario in
which the image is projected on uneven ground using
a dataprojector. In comparison, we have found that
the CDF 9/7 wavelet outperforms the bi-linear inter-
polation when there are sharp jumps in the distortion
field. Using a smooth distortion, all the wavelets per-
form well. In both cases above, the average distance be-
tween points in original and observed image is mostly
below 3 pixels.

Future research could focus on employing more sophis-
ticated wavelet-like transform in the sense that the basis
functions of such transform should fit contours in dis-
tortion field. Another area for improvement can be a
better measurement of displacement vectors.
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