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Abstract—A divide and conquer approach is one of the
methods introduced to get over the scalability problem of the
evolutionary circuit design. A complex circuit is decomposed
into modules which are evolved separately and without any
interaction. The benefits are in reducing the search space and
accelerating the evaluation of candidate circuits. In this pa-
per, the evolution of non-interacting modules is replaced by
a coevolutionary algorithm, in which the fitness of a module
depends on fitness values of other modules, i.e. the modules are
adapted to work together. The proposed method is embedded
into Cartesian genetic programming (CGP). The coevolutionary
approach was evaluated in the design of a switching image filter
which was decomposed into the filtering module and detector
module. The filters evolved using the proposed coevolutionary
method show a higher quality of filtering in comparison with
filters utilizing independently evolved modules. Furthermore, the
whole design process was accelerated 1.31 times in comparison
with the standard CGP.

I. INTRODUCTION

Evolutionary circuit design is one of possible utilizations
of evolvable hardware. First survey papers dealing with evolv-
able hardware and evolutionary circuit design (e.g. [22] from
1996) clearly identified main advantages of this method: the
evolutionary circuit design approach can explore a much wider
space of design alternatives than conventional methods or
human designers; no a priory knowledge is needed; constrains
can easily be handled; and novel designs can, in fact, be
discovered in a fully automated manner. Potential problems
of the method were also surveyed already in 1996 [22] and
the so-called scalability problem was mentioned on the first
place. Unsurprisingly, it is still considered among the most
serious issues in current surveys on evolvable hardware such
as [2]. Let us restrict ourselves to digital circuits only in this
paper.

The scalability problem is usually understood as a problem
in which the evolutionary algorithm (EA) is able to provide
a very good solution to a small problem instance; however,
only unsatisfactory solutions can be generated for larger prob-
lem instances. Because a kind of evolutionary algorithm is
employed, the user is supposed to design a suitable problem
encoding, search strategy (i.e. search algorithm including ge-
netic operators) and fitness function. All these components can
suffer from the scalability problems.

As complex solutions are usually represented by long
chromosomes, it is difficult to establish a fast and accurate
search method which will be capable of finding good solutions
in the corresponding complex search spaces. This problem
is referred to as the scalability of representations problem.
Moreover, in order to evaluate a complex candidate solution, a
time consuming fitness function has to be undertaken in which
the evaluation time typically grows exponentially with the size
of the problem. This difficulty is known as the scalability of
the fitness calculation.

Hence various approaches have been developed to elim-
inate the aforementioned scalability problems. All these ap-
proaches bring some knowledge into the problem which
enables us to either reduce the search space, simplify the
fitness calculation, or perform a more intelligent search. The
most important approaches will be surveyed in the following
paragraphs.

A divide and conquer approach firstly (either determinis-
tically or heuristically) divides the target circuit into modules
(or subcircuits) and then evolves a solution for each module
separately [18]. The benefits are twofold: reducing the search
space and simplifying the fitness calculation. The approach can
be applied iteratively [17].

Functional level evolution allows utilizing complex circuit
elements (such as adders, multipliers or comparators) instead
of elementary gates [8]. Relatively complex circuits can then
be encoded using a shorter chromosome and the search space
is thus restricted. The functional level evolution is often
combined with a suitable decomposition scheme [13].

Another class of approaches, inspired by the biological
development, employs an indirect problem encoding [4], [1].
A program is encoded in the chromosome rather than a circuit.
When executed, the program is capable of constructing a
complete phenotype from an initial solution, which is usually
called the embryo. While designing a suitable developmen-
tal encoding is tricky, main advantages are shortening the
genotype and obtaining a natural support for modularity and
scalability in resulting circuits.

The fitness evaluation time can be reduced by using well
prepared (i.e. short) training sets, fitness estimation tech-
niques or functional equivalence checking algorithms (see an



overview in [20]). All these approaches are usually accom-
panied by application-specific acceleration techniques such
as parallel circuit simulation, phenotype precompilation or
parallel implementation.

At the level of the search algorithm, modularization has
been introduced for genetic programming (e.g. in the form of
automatically defined functions [5]) as well as Cartesian ge-
netic programming [21]. In the framework of co-evolutionary
algorithms, several methods have been developed to reduce the
computational requirements. A survey will be given in Sec. II.

An important factor which influences the choice of a
suitable technique is whether the task is to evolve a functional
solution using available training data or whether, in addition
to functionality, the goal is to minimize the number of compo-
nents or other objectives. For example, if a system is decom-
posed into several modules and they are evolved separately,
the resulting circuit usually contains multiple instances of the
same subcircuit allocated in several modules. The question is
whether some EA-based method can be used to minimize the
number of gates; or a conventional method has be employed
because no EA method is capable of doing so for a complex
circuit; or the solution is simply left unoptimized because
sufficient resources are available on a chip.

In this paper, we propose to extend the well-known di-
vide and conquer method introduced to evolvable hardware
many years ago. In the original version of the method, the
implementations of modules are evolved separately. The goal
of this paper is to show that when a co-evolution of modules
is allowed, the overall evolution time can be reduced. The
proposed method will be evaluated in the task of switching
image filter design.

The rest of this paper is organized as follows. Sec. II
introduces principles of coevolutionary algorithms, Cartesian
genetic programming (CGP) and utilization of coevolution in
CGP. In Sec. III, a new compositional coevolutionary approach
to CGP is presented in the task of evolutionary switching
filter design. Sec. IV compares the proposed coevolutionary
algorithm with non-coevolutionary CGP and discusses the
experimental results. Finally, conclusions are given in Sec. V.

II. COEVOLUTION AND CARTESIAN GENETIC
PROGRAMMING

This section introduces the principles of coevolutionary
algorithms, Cartesian genetic programming and coevolutionary
Cartesian genetic programming.

A. Principles of Coevolutionary Algorithms

Coevolutionary algorithms (CoEAs) are characterized by
utilizing more populations of individuals (of the same or
different type). Properties of individuals in one population
can be changed in response to properties of individuals in
other populations and vice versa. Fitness of individuals is
then established by interaction with individuals from the other
populations. CoEAs are traditionally used to evolve interactive
behavior which is difficult to evolve with an EA employing
absolute fitness function. The state of the art of coevolutionary
algorithms has recently been summarized in [9].

Historically, the terms cooperative and competitive have
been used to classify the domains to which coevolution is
often applied. These terms appear from game theory, but they
have not been appropriate for classifying problems over which
CoEA operates or for algorithms themselves. According to [9],
problems are primarily divided into classes based on what con-
stitutes a solution. Two types of problems are mentioned in this
context – test-based problems and compositional problems. A
test-based problem is one in which the quality of a potential
solution is determined by its performance when interacting
with a set of tests. However, this paper deals with the second
type – a compositional problem – in which the quality of
solution to the problem involves an interaction among many
components that together might be thought of as a team or
assembly.

Compositional coevolution sprang from cooperative coevo-
lutionary algorithms, wherein the originally stated aim was to
attack the problem of evolving complicated objects by explic-
itly breaking them into parts, evolving these parts separately
and then assembling the parts into a working whole [10].
There is a number of successful applications of CoEAs to
compositional problems. Perhaps the most studied and nontriv-
ial examples are neuro-evolutionary algorithms, which often
involve a separation between components of neural networks
to small assemblies of neurons and associated weight synapses,
and the topology of a complete network, which functions as a
blueprint for how assemblies are put together ([16], [7]).

B. Cartesian Genetic Programming

Cartesian genetic programming (CGP) is a variant of
genetic programming (GP) that uses a specific encoding of
directed acyclic graphs and a mutation-based search. CGP has
been successfully employed in many traditional application
domains of genetic programming such as symbolic regression,
but it has been predominantly applied in evolutionary design
and optimization of logic networks.

In standard CGP [6], a candidate program is modelled as a
matrix of nc × nr (columns × rows) programmable elements
(nodes). The number of primary inputs, ni, and outputs, no,
of the program is defined for a particular task.

The supported na-input node functions are defined in the
set Γ. Each node input can be connected to either one of
the program primary inputs or the output of a gate placed
in previous l columns. The l-back parameter thus constrains
where the node inputs can be connected to.

Each node is encoded by na+1 genes. One gene is devoted
to the node function, the remaining genes are the indexes of the
node input connections. Therefore, every individual is encoded
using nc ·nr · (na + 1) +no integers. Fig. 1 shows an example
of a candidate program and its encoding in the chromosome.

A simple (1 + λ) evolutionary strategy is used as a search
mechanism in CGP. The initial population is constructed ran-
domly, by a heuristic procedure or seeded by existing solutions.
Every new population consists of the best individual of the
previous generation (so-called parent) and its λ offspring. A
new parent is selected as an offspring with equal or better
fitness than the previous parent. In order to create the offspring
individuals from the parent, a point mutation operator is used,
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Fig. 1: A candidate program in CGP, where nc = 4, nr = 3,
l = nc, ni = 4, no = 2, na = 2, Γ = {NOT (0), AND (1), OR
(2)} and the chromosome is: 0, 3, 1; 3, 1, 0; 2, 0, 1; 2, 4, 2; 5, 1, 2;
0, 6, 1; 2, 9, 1; 6, 0, 0; 8, 3, 0; 10, 7, 0; 4, 2, 2; 9, 1, 1; 15, 11.

which modifies h randomly selected genes to new randomly
generated, but valid values. The algorithm is terminated when
the maximum number of generations is exhausted or a suffi-
ciently working solution is obtained.

C. Coevolution in Cartesian Genetic Programming

The design process entails finding useful and productive
ways of mapping problem particularities into the algorithmic
framework. CGP has some important differences compared to
genetic algorithms (GAs) and standard genetic programming.
CGP uses very small populations (usually 1 + 4 individuals)
which implies that many generations have to be performed
(compared to GAs and GP) to obtain a solution. This feature is
the main aspect to consider while designing the coevolutionary
interactions in CGP.

In our previous work, inspired by the principles of Hillis’
competitive coevolution [3] and coevolution of fitness predic-
tors introduced by Schmidt and Lipson [11], we proposed a
coevolutionary CGP for test-based problems [15]. The generic
coevolutionary principles have been adapted for CGP and
a significant improvement (in terms of computational cost
reduction) in comparison with CGP without coevolution has
been obtained in 5 symbolic regression tasks [15] and in the
task of evolutionary image filter design [14].

III. PROPOSED METHOD

A. Initial Considerations

Successful design and application of any heuristic depends
on a number of key representation decisions of how search
knowledge is encoded and manipulated. When designing di-
gital circuits using the compositional coevolution, the target
circuit has to be divided into (sufficiently small) logical mod-
ules. Each of them is a single entity (individual) that has to be
represented in terms of chosen evolutionary algorithm. In this
work, the modules will be represented as Cartesian programs.
Furthermore, individuals representing the same module form
the population. The number of populations in compositional
coevolution is equal to the number of modules in the target
circuit.

In coevolutionary methods, there is another type of collec-
tion, typically referred to as an archive. It is a collection of
individuals (of the same or different type) that spans multiple

generations of a coevolutionary algorithm [9]. In CoAEs, the
individual fitness is evaluated using interaction with other
individuals. As individuals in each population are changed
in dependence on other individual changes, the best obtained
individuals are not necessarily present in the last generation.
Archives are thus utilized as a kind of search memory and
usually contain the final solution. In the course of evolution,
the individuals showing the best-scored composition with other
modules are added to the archive. Another approach employs
an archive of individuals for each module, i.e. the number of
archives is equal to the number of populations.

When using multiple populations, a strategy of interactions
between individuals in the same population, or especially in
different populations, has to be defined. The simplest choice
is to enable all possible interactions (i.e. complete mixing).
However, in order to reduce the computational cost, only some
of all possible interactions are allowed and assessed.

In the case of CGP, where only one parent is selected in
every generation, we propose to evaluate individuals of a given
population using the top-ranked individual (module) from other
populations. Our recent work dealing with the test-based type
of coevolution had shown that frequent interactions between
populations do not lead to correctly working solutions, because
of very fast changes in the fitness calculation procedures [15].
As CGP uses small populations, the search process needs more
generations to adapt to the changes of the selective pressure.
We propose to add to each population a new archive containing
the top-ranked individual (resp. individuals) available to evalu-
ate individuals from other populations. Individuals stored in the
archives are updated according to the user-defined policy (e.g.
after some number of generations is reached) whose setting
influences the CGP search progress.

B. Case Study – Coevolution of Image Filters and Noise
Detectors

The principles of compositional coevolution will be applied
in the image filter design task which will be carried out by
coevolutionary CGP. The goal is to eliminate the so-called
impulse noise (salt-and-pepper noise) which is a basic type of
non-linear noise typically affecting a single pixel in different
regions of the image. A conventional solution is usually based

Image
filter

Corrupted image                                                              Filtered image

Fig. 2: An image filter with the 3× 3 pixel window.



# function # function
0 255 8 i1 � 1
1 i1 9 i1 � 2
2 i2 10 (i1 � 4) ∨ (i2 � 4)
3 i1 ∨ i2 11 i1 + i2
4 i1 ∨ i2 12 i1 +s i2
5 i1 ∧ i2 13 (i1 + i2)� 1
6 i1 ∧ i2 14 max(i1, i2)
7 i1 ⊕ i2 15 min(i1, i2)

TABLE I: CGP node functions according to [12].

on median filters. Various approaches to evolutionary design
of this type of filters by means of the standard CGP have been
surveyed in [12].

As the considered filters evolved using CGP operate over
a filtering window (the so-called kernel) consisting of 3 × 3
pixels, each candidate filter can utilize up to nine 8-bit inputs,
i.e. ni = 9. The filters produce a single pixel, i.e. no = 1.
Table I gives a set of functions working over two pixels i1
and i2 that are typically used for image filter evolution. Fig. 2
shows an overall scheme of the method.

In the fitness function, the goal is to maximize the peak
signal-to-noise ratio (PSNR) between an incorrupted version
of the training image w and the resulting image (v) produced
by a candidate filter. The PSNR is defined as

PSNR = 10 · log10
2552

1
MN

∑
i,j(v(i, j)− w(i, j))2

, (1)

where M ×N is the size of the image.

However, for higher noise intensities or arbitrary values of
noisy pixels (in the range 0 – 255), these simple approaches
usually lead to introducing additional noisy pixels, smudging
and detail loosing in resulting images. Hence advanced filtering
techniques have been developed including the concept of noise
detection and iterative filtering.

In [19], the image filtering approach based on CGP has
been extended in such a way that an image filter is evolved
together with a noise detector. The image filter and detector
are encoded in a single CGP grid of nodes, which produces
two outputs. The first one is the filtered pixel value and the
second one is a Boolean value representing the output of the
detector. If the detector produces log. 1 then the first output is
taken and utilized as the result of filtering. Otherwise, if the
detector produces log. 0, it is indicated that the central pixel
of the kernel is not corrupted and the result of filtering is the
unmodified central pixel of the kernel. The resulting filter is
called the switching filter (see Fig. 3).

1) Decomposition and Representation: Switching filters
are good candidates for decompostion. In this task, the whole
circuit is decomposed into two modules: (1) the image filter
eliminating the noise; and (2) the noise detector. Fig. 3 shows
the overall scheme of the target circuit. Each module is
represented using the CGP representation (see Sec. II-C) and
uses a grid of 8 × 5 of nodes performing functions given in
Table I. Each individual from the filter population has one 8-
bit output, where the filtered value (0 – 255) of the pixel is
expected. While the detector also outputs an 8-bit value, only
the most significant bit is utilized to control the switch – shown
in Fig. 3.

Image
filter

Noise
detector

Fig. 3: Decomposition to the filter module and the noise
detector module.

2) Interaction of Populations and Fitness Evaluations: At
first the complete mixing approach has been employed. The
interactions of individuals in the population of filters with
each individual in the population of detectors (and vice-versa)
has been allowed in every generation. All pixels (and their
neighbourhoods) in corrupted image were executed by a pair
of filter and detector. The resulting filtered image (as shown
in Fig. 3) was compared to the uncorrupted image in terms
of PSNR. The most successful pair was selected to produce
a filter offspring and a detector offspring and a new iteration
of the search process has been initiated. However, this type of
interaction has led to filters with poor quality of filtering in
comparison with filters without detectors evolved for the same
number of generations. Moreover, the cost of evaluation has
exponentially grown.

Inspired by our previous work on test-based coevolution
in CGP, another approach to interaction has been employed.
Filters and detectors are evolved separately for some number
of generations. Therefore, three archives have been introduced:
(1) the archive of filters (Afilters) with filtering results (i.e.
filtered images); (2) the archive of detectors (Adetectors) with
the results of detection (i.e. images with pixels classified as
corrupted); and (3) the archive of top-ranked target circuits
(Atargets) with the most successful composed pairs.

Two fitness values are calculated for each individual. The
first fitness of filter (fitnessf ) is evaluated in terms of PSNR
between the image filtered using the filter (without detector)
and the reference image (according to scheme in Fig. 2). The
second fitness of filter is established using the composition with
the detector actually present in Adetectors (fitnessf+d, in terms
of PSNR). Then the individual with the best fitnessf is selected
as a parent. If more individuals have the same fitnessf value
then another criterion is taken into account – the individual
with the best fitnessf+d is selected.

Similarly, the first fitness of detector (fitnessd) is evaluated
as the score of correctly classified pixels:

fitnessd =

j∑
i=1

f (y (i)) , where (2)

f (y (i)) =

{
0 if pixel is incorrectly classified
1 if pixel is correctly classified (3)

where y(i) is the output of detector y for pixel i. The second
fitness of detector is established using the filter which is



Fig. 4: The overall coevolutinary interaction scheme.

actually present in the archive of filters (fitnessf+d, in terms
of PSNR). If more individuals have the same fitnessd value
then the individual with the best fitnessf+d is selected.

The evaluation of filters and detectors is carried out si-
multaneously. After producing a given number of generations,
the global coevolutionary interaction is accomplished. Each
individual from the current generation in the filter population
is evaluated in composition with each detector from the cur-
rent generation in the detector population in terms of PSNR
(fitnessf+d). If more pairs achieve the best score fitnessf+d,
the pair with the least number of nodes (in sum of filter and
detector), in order to minimize the number of nodes, is selected
as the best pair.

If the best pair has better fitnessf+d, then it replaces the
previous pair in Atargets; in the case of identical score, the
number of used nodes is considered. The filter module of the
best pair is sent to Afilters (where is used to evaluate detectors)
and becames the parent of a new generation in filter evolution.
The detector module is sent to Adetectors (where is used to
evaluate filters) and becames the parent of a new generation
in detector evolution. The overall scheme of interactions is
shown in Fig. 4.

After producing a predefined number of generations, the
target circuit can be composed of the best-evolved individuals
from each population or it can be found in the archive of target
circuits.

The evaluation of each module may require training data
differing from training data used to evaluate the whole circuit,
because each module has performed just a part of the whole
task. When filters and detectors are evolved separately, some
pixel evaluations are usually unnecessary if the whole training
image is used. Training data for the filter module can be com-
posed of corrupted pixels only, which can significantly reduce
the computational cost of filter evaluation. This property is
also considered in our experiments.

IV. EXPERIMENTAL RESULTS

This section presents benchmark problems, experimental
setup and experimental evaluation of the proposed coevolu-
tionary approach and its comparison with non-coevolutionary
CGP.

A. Test Scenarios

In order to evaluate the proposed approach, five scenari-
os and thus five types of salt-and-pepper noise filters were
designed using CGP:

F1: filter evolved using standard CGP and all pixels in
training image (no detector);

F2: filter and detector evolved separately, filter evolved
using just corrupted pixels;

F3: filter and detector evolved separately, filter evolved
using all pixels in training image;

F4: coevolved filter with detector, filter evolved using just
corrupted pixels;

F5: coevolved filter with detector, filter evolved using all
pixels in training image.

The salt-and-pepper noise is characterized by noisy pixels with
the value of either 0 or 255 (for 8-bit gray-scaled images). In
order to obtain training images, the Lena image with the size of
256× 256 pixels was corrupted by 10%, 20%, 30%, 40% and
50% salt-and-pepper noise. The evolved filters were tested on
6 different images with the size of 512×512 pixels containing
the same type of noise.

B. Experimental setup

The experimental setup of CGP for filters as well as
detectors is as follows: nc = 8, nr = 5, l = 8, ni = 9,



(a) Image filter.

(b) Noise detector.

(c) Composed image filter with noise detector.

Fig. 5: An example of coevolved image filter and noise detector
and user-defined composition into one grid. Node functions are
numbered according to Table I.

no = 1, λ = 3, every node has two inputs, the number of
mutations per new individual is h = 6 and Γ contains the
functions from Table I.

The initial populations are randomly seeded. The archive
of noise detectors is initialized with a detector containing a
constant outputting circuit (255) in order to indicate all pixels
as corrupted. The archive of image filters is initialized with
the best filter of the first generation of the filter evolution.

The global interaction in the compositional coevolutionary
design is activated every 100 generations of the filter evolution.
For every scenario, the evolution/coevolution is terminated af-
ter 100,000 generations of the filter evolution. When detectors
are evolved separately, 100,000 generations of the evolution of
detectors are performed. Each experiment is repeated 30 times.

C. The Size of Evolved Filters

It can be seen in Table II that filters utilizing a detector
need five additional functional blocks on average regardless
of design approach. Detectors contain from 2 to 11 blocks.
Examples of a coevolved filter, detector and their composition
into one circuit are displayed in Fig. 5.

Filter type
Noise intensity

10 % 20 % 30 % 40 % 50 %
Number of used blocks

F1 12.9 14.2 15.1 15.1 15.7

F2 + F3 13.9+5.1 13.9+5.5 13.9+6.3 13.3+7.1 13.9+6.3
(19) (19.4) (20.2) (20.4) (20.2)

F4 + F5 14.4+4.8 14.1+5.1 14.3+5.7 14.4+6.1 14.2+6.1
(19.2) (19.2) (20.0) (20.5) (20.3)

TABLE II: The mean number of used blocks (by filter +
detector).

Filter type
Noise intensity

10 % 20 % 30 % 40 % 50 %
Time ×103 [s]

F1 10.6 10.8 10.7 11.0 10.6
F2 9.2 9.9 11.8 11.9 12.0
F3 16.0 16.2 16.6 16.4 16.5
F4 6.0 6.7 7.4 9.1 11.8
F5 22.8 23.0 23.4 24.1 24.1

TABLE III: Mean time to execute 100,000 generations (per-
formed on the Intel Core i7-3632QM).

D. The Time of Evolutionary Design

The scenarios F1 – F5 were implemented using OpenMP
instructions and four individuals were evaluated simultane-
ously (2 + 2 while coevolving filters and detectors). In the
case of coevolution, two evolutionary processes were running
in parallel and synchronized for interactions.

The time of evolution is mainly affected by the size of
training data (i.e. the number of pixels in the training image)
and by the number of functional nodes that candidate filters
utilize. Table III shows the mean time to execute 100,000
generations for scenarios F1 – F5. The time required for filters
with separately evolved detectors (F2, F3) is assigned as the
sum of 100,000 generations of the fitler evolution and 100,000
generations of the detector evolution.

The most time-consuming design process is the coevolution
of switching filters in which filters are evaluated using all
corrupted and incorrupted pixels (F5). Note that independent
evolutionary runs of filters and detectors have not engaged the
interactions and communinacation. Furthermore, due to less
number of used blocks in detectors than in filters, the detector
evolution runs faster and executes more generations than the
evolution of filters.

Employing just corrupted pixels for evaluation of filters
reduced the mean time of evolution for images with lower
noise intensities. In this case, the coevolutionary design (F4)
outperforms scenario F1, because it uses less training pixels. It
also outperforms scenario F2, because the evolution of filters
runs faster than the evolution of detectors – therefore evolution
of detectors executes less generations than the evolution of
filters.

E. The Quality of Evolved Filters

The visual quality of evolved filters has been expressed in
terms of PSNR. Fig. 6a shows the progress of fitness of the
switching filter during one run of the independent evolution of
filter and detector components (scenario F2). Fig. 6b shows
that the coevolutionary approach (scenario F4) allows the



Noise intensity
Filter type

F1 F2 F3 F4 F4-A F5 F5-A
PSNR [dB]

10 %
Min 15.4 17.8 17.0 15.3 20.1 15.1 18.2

Mean 31.2 33.0 32.8 32.9 33.2 31.0 31.7
Max 36.9 38.7 37.6 38.4 38.9 35.6 37.2

20 %
Min 18.9 15.4 14.5 14.6 17.9 13.9 17.9

Mean 25.4 26.2 25.9 26.1 26.5 25.3 26.2
Max 30.7 31.2 30.8 31.1 31.5 30.6 30.6

30 %
Min 17.7 13.1 12.6 13.7 18.8 13.0 18.2

Mean 22.3 24.9 24.7 24.8 24.9 23.7 24.0
Max 27.8 28.6 28.5 28.0 28.0 28.1 28.2

40 %
Min 16.9 12.0 12.2 11.7 17.4 13.3 18.4

Mean 20.0 20.1 20.6 20.8 21.9 21.5 21.9
Max 25.5 27.7 27.2 26.8 26.9 26.6 26.6

50 %
Min 16.2 11.0 11.5 15.3 18.6 14.4 18.8

Mean 19.1 19.7 19.7 20.6 20.9 19.8 20.6
Max 23.1 24.6 24.5 24.2 24.7 24.1 24.2

(a) Training image.

Noise intensity
Filter type

F1 F2 F3 F4 F4-A F5 F5-A
PSNR [dB]

10 %
Min 15.0 17.0 16.5 13.7 18.5 14.4 18.4

Mean 29.3 32.6 32.1 32.9 33.0 29.3 30.7
Max 35.8 42.2 40.0 40.5 40.8 37.4 38.5

20 %
Min 17.5 11.0 13.0 11.5 15.3 13.7 15.5

Mean 24.3 25.1 24.7 24.1 25.9 24.0 24.4
Max 29.1 32.6 30.9 33.1 34.5 34.0 34.3

30 %
Min 16.0 9.3 9.5 11.2 11.5 10.8 12.1

Mean 20.1 21.6 21.1 22.9 23.2 22.7 22.9
Max 25.2 28.5 28.0 29.5 29.8 27.8 28.6

40 %
Min 15.7 8.1 9.1 9.0 9.6 9.9 10.8

Mean 18.5 17.3 17.2 18.2 19.1 18.2 18.8
Max 23.9 28.6 26.6 28.1 28.2 27.9 27.9

50 %
Min 14.1 7.3 8.3 8.5 8.6 9.4 9.5

Mean 17.9 16.7 17.3 17.8 18.9 17.7 18.3
Max 22.5 24.6 24.7 25.2 25.4 25.1 25.9

(b) Test images.

TABLE IV: The PSNR values of evolved filters calculated from 30 independent runs for each filter type and each noise intensity.

(a) Independent evolutionary design of components.

(b) Coevolution of components.

Fig. 6: Fitness of a switching image filter during one run of
the evolution.

fitness value to be decreased – this feature is caused by the
fact that the fitness depends on the interaction with other
individuals and the current population does not contain the
best individual.

Table IV shows the minimum, mean and maximum PSNR
values of filtered images using scenarios F1 – F5. Table IV
also shows the importance of using the Atargets archive as a
memory of the best-coevolved target circuit. In columns F4
and F5 there are PSNR values for switching filters which are
composed of the best individuals of the last generations of
coevolution. Columns F4-A and F5-A are devoted to switching
filters situated in Atargets in the end of coevolution.

In the case of coevolutionary design, switching filters

composed of filters evaluated using just corrupted pixels (sce-
nario F4) show better quality of filtering than filters evaluated
using all corrupted and incorrupted pixels (scenario F5). The
difference is approximately 0.6 dB for training image, 1.0 dB
for test images. However, the difference is negligable for in-
dependent evolutionary design of filters and detectors (0.04 dB
for training image, 0.18 dB for test images).

It can be seen that coevolved switching filters (F4-A) show
comparable or even better mean PSNR in comparison to filters
without a detector (F1, 1.9 dB for training image, 2.0 dB for
test images) as well as to switching filters where filters and
detectors are designed independetly (F2, 0.7 dB for training
image, 1.3 dB for test images).

Fig. 7 shows the visual quality of different test images
processed using the top-ranked coevolved switching filters.

V. CONCLUSION

In this paper, a coevolutionary approach to the divide and
conquer method has been presented. Interactions of modules of
the target circuit have been allowed during the search process,
whereas the previous approach evolved the modules separately.
The composed resulting circuit then contains modules that
are adapted to work together. We have shown that the com-
positional coevolution can improve the evolutionary design
conducted by CGP. In the task of evolutionary salt-and-pepper
noise filter design we obtained switching filters with higher
quality of filtering (PSNR) in comparison with independent
evolutionary design of filters and detectors – in average 0.7 dB
for training image and 1.3 dB for test images. Furthermore,
using the coevolutionary approach we obtained a speedup 1.31
times in comparison with evolutionary design of image filters
without detectors.

Our future work will be devoted to the design of more
complex circuits using compositional coevolutionary CGP.
As the evolutionary digital circuit design using CGP has
been accelerated in FPGA, our goal will be to simplify the
interaction between components during coevolution in order
to implement the compositional coevolution to FPGA and thus
accelerate the search process.



ACKNOWLEDGMENT

This work was supported by the Czech science foundation
project 14-04197S, the BUT project FIT-S-14-2297 and the
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] T. G. W. Gordon and P. J. Bentley, “Towards development in evolvable
hardware,” in Proc. of the 2002 NASA/DoD Conference on Evolvable
Hardware. IEEE Computer Society Press, 2002, pp. 241–250.

[2] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware:
past, present and the path to a promising future,” Genetic Programming
and Evolvable Machines, vol. 12, no. 3, pp. 183–215, 2011.

[3] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Physica D, vol. 42, no. 1, pp. 228–234, 1990.

[4] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane, Genetic
Programming III: Darwinian Invention and Problem Solving. San
Francisco, CA: Morgan Kaufmann Publishers, 1999.

[5] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, MA: MIT Press, 1994.

[6] J. F. Miller, Ed., Cartesian Genetic Programming, ser. Natural Com-
puting Series. Springer Verlag, 2011.

[7] G. A. Monroy, K. O. Stanley, and R. Miikkulainen, “Coevolution of
neural networks using a layered pareto archive,” in Proceedings of the
8th Annual Conference on Genetic and Evolutionary Computation, ser.
GECCO ’06. New York, NY, USA: ACM, 2006, pp. 329–336.

[8] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and
T. Higuchi, “Evolvable Hardware at Function Level,” in Parallel Prob-
lem Solving from Nature PPSN IV, ser. LNCS, vol. 1141. Springer,
1996, pp. 62–71.

[9] E. Popovici, A. Bucci, R. Wiegand, and E. De Jong, “Coevolutionary
principles,” in Handbook of Natural Computing. Springer Berlin
Heidelberg, 2012, pp. 987–1033.

[10] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architec-
ture for evolving coadapted subcomponents,” Evolutionary computation,
vol. 8, no. 1, pp. 1–29, 2000.

[11] M. D. Schmidt and H. Lipson, “Coevolution of Fitness Predictors,”
IEEE Transactions on Evolutionary Computation, vol. 12, no. 6, pp.
736–749, 2008.

[12] L. Sekanina, S. L. Harding, W. Banzhaf, and T. Kowaliw, “Image
processing and cgp,” in Cartesian Genetic Programming. Springer
Berlin Heidelberg, 2011, pp. 181–215.

[13] A. P. Shanthi and R. Parthasarathi, “Practical and scalable evolution of
digital circuits,” Applied Soft Computing, vol. 9, no. 2, pp. 618–624,
2009.

[14] M. Sikulova and L. Sekanina, “Acceleration of evolutionary image filter
design using coevolution in cartesian gp,” in Parallel Problem Solving
from Nature - PPSN XII, ser. LNCS 7491. Springer Verlag, 2012, pp.
163–172.

[15] ——, “Coevolution in cartesian genetic programming,” in Genetic
Programming, ser. LNCS 7244. Springer Verlag, 2012, pp. 182–193.

[16] K. O. Stanley and R. P. Miikkulainen, Efficient evolution of neural
networks through complexification. Citeseer, 2004.

[17] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware,” IEEE Transaction Systems,
Man and Cybernetics, Part B, vol. 36, no. 5, pp. 1024–1043, 2006.

[18] J. Torresen, “A Divide-and-Conquer Approach to Evolvable Hardware,”
in Proc. of the 2nd International Conference on Evolvable Systems:
From Biology to Hardware ICES’98, ser. LNCS, vol. 1478. Springer,
1998, pp. 57–65.

[19] Z. Vasicek, M. Bidlo, and L. Sekanina, “Evolution of efficient real-time
non-linear image filters for fpgas,” Soft Computing, vol. 17, no. 11, pp.
2163–2180, 2013.

[20] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[21] J. A. Walker and J. F. Miller, “The Automatic Acquisition, Evolution
and Re-use of Modules in Cartesian Genetic Programming,” IEEE
Transactions on Evolutionary Computation, vol. 12, no. 4, pp. 397–
417, 2008.

[22] X. Yao and T. Higuchi, “Promises and Challenges of Evolvable Hard-
ware,” in First International Conference on Evolvable Systems: From
Biology to Hardware, ser. LNCS, vol. 1259. Springer, 1996, pp. 55–78.

(a) Image 1 (20% noise). (b) Image 2 (30% noise). (c) Image 3 (40% noise). (d) Image 4 (50% noise).

(e) Filtered image 1. (f) Filtered image 2. (g) Filtered image 3. (h) Filtered image 4.

Fig. 7: The test images filtered using the best coevolved switching filters (one step correction).


