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Abstract—This paper examines the detection properties of
obfuscated network buffer overflow attacks by selected IDS and
NBA. The obfuscation was performed by tunneling the malicious
traffic in HTTP and HTTPS protocols with the intention of
simulating the usual legitimate characteristics of the HTTP
traffic’s flow. The buffer overflow vulnerabilities of four services
were used: Samba, BadBlue, Apache, DCOM RPC. Exploitation
was performed in a virtual network environment by using
scenarios simulating real traffic’s conditions as well as legitimate
traffic simulations which were performed. Captured data were
examined by SNORT and by ASNM network features of the
AIPS representing statistically and behaviorally based NBA.
The achieved results show an obfuscated attacks transparency
for SNORT detection and low detection performance of the
AIPS trained by direct attacks and legitimate traffic only in
contrast with high classification accuracy of the AIPS trained
with an inclusion of obfuscated attacks. Data mining analysis
was performed by using both bi-nominal and poly-nominal
classifications, resulting into better performance of poly-nominal
classification. At the summary, we emphasize the necessity of
training the statistically and behaviorally based NBAs with
divergent obfuscation techniques to strengthen their detection
capabilities.

Keywords—traffic obfuscation; protocol tunneling; buffer over-
flow; network vulnerabilities; NBA; IDS

I. INTRODUCTION

Buffer overflow attacks exploiting the network vulnerabil-
ities continues to be the one of the most dangerous threads in
the domain of information security.

This class of attacks form a substantial portion of all
security attacks simply because buffer overflow vulnerabilities
are very easy to perform [1], [2], [3]. Buffer overflow attacks
dominate in the class of remote penetration attacks because
a buffer overflow vulnerability presents the attackers exactly
what they need: the ability to inject and execute an attack code.
The injected attack code runs with the privileges of the vulner-
able application and allows the attacker to bootstrap whatever
other functionality in order to control the compromised PC [4].

The impact can be very crucial either in commercial or
personal network environments nearly every time. This fact
encourages many researchers and developers to design new
methods and approaches for detection of known and unknown
(zero-day) network attacks. All designers have to deal with
poly-morphism (code encryption) and meta-morphism (code
obfuscation) enabling the malware to avoid positive signature
matching of the malware’s behavior or the malware alone. This

is the reason why the most of the intrusion detection systems
(IDS) fail in detecting such malware and their consequences or
behavior. Therefore, researchers tend to use various artificial
intelligence (AI) and data mining techniques or their combi-
nations in order to achieve as accurate result as possible.

The authors of the paper [5] described a method called
Automated Intrusion Prevention System (AIPS) which uses
extended behavioral and statistical meta-information extracted
from networks communications called Advanced Security Net-
work Metrics (ASNM) originally designed in [6]. The AIPS
uses honeypot systems as a source of expert knowledge for
AI models learning. Their next work [7] performs an analysis
of the results achieved by various data mining methods using
data captured by simulated attacks in laboratory conditions. A
related paper [8] describes a formal definition of the ASNM
extraction process and performs experiments comparing per-
formance of the ASNM with state-of-the-art network features
set designed by A. Moore [9] using a publicly available dataset
CDX 2009 [10]. The presented results of this paper show
the similar NBA detection properties of the both features sets
(offering high attacks’ detection capability).

The authors demonstrated the applicability of their ap-
proach by performing the experiments which detect network
attacks with consideration: an attack executes ’dangerous’
communication directly from its source machine laying outside
of the attacked network. They did not consider that network
vulnerability can be exploited from the inside of the attacked
network, using a previously exploited machine without any
alert of IDPS or NBA. This consideration became the in-
spiration for our actual research. We consider the previously
exploited machine which serves as a mediator between attacker
and new vulnerable target machines. This machine performs
obfuscation by the tunneling of every communication with
attacker. The obfuscation we decided to use in this work was
previously designed in [11].

The paper is organized as follows. Section II discusses
related work in the field of network traffic obfuscation with
an emphasis on malicious traffic and statistical analysis of the
communication’s behavior. Section III describes the method of
obfuscation we used and our network architecture. Section IV
describes simulations of our experiments on specific network
services with various testing scenarios as well as mention-
ing techniques used for IDS and NBA detection. Section V
describes data processing and analysis of captured data and
section VI presents the summary of achieved data mining
results. The conclusion is presented in section VII.



II. RELATED WORK

The authors Fogla et al. realize the obfuscation of network
attacks by proposing a new class of polymorphic attacks,
called polymorphic blending attacks (PBA) [12], which can
effectively evade byte frequency-based network anomaly IDS.
The attacks carefully match the statistics of the mutated
attack instances to the normal profiles. They demonstrate the
efficiency of PBA attacks on PAYL. In the next paper [13] they
show that in general, generating a PBA that optimally matches
the normal traffic profile is a hard problem (NP–complete), but
can be reduced to SAT or ILP problems. They present a formal
framework for PBA attacks and also propose a technique to
improve the performance of an IDS against PBAs.

The paper [14] shows how obfuscated application layer
protocols, such as BitTorrent’s MSE [15] or Skype [16], can be
identified by an analysis of statistically measurable properties
of TCP and UDP sessions. The authors depict that many of
the analyzed protocols have statistically measurable properties
in payload data, flow behavior, or both. Based on their insight,
they propose a few techniques for improving protocol obfusca-
tion which inhibits traffic identification by statistical analysis.
These techniques include better obfuscation of payload data
and flow properties as well as hiding inside tunnels of well-
known protocols. The purpose of this work is not to provide
more effective intrusion classification of NBA systems, but
rather to provide feedback to protocol creators who want to
contribute on the network neutrality of the Internet.

Dusi et al. presented a mechanism called Tunnel Hunter,
which can successfully identify protocols tunneled inside tun-
neling protocols such as HTTP, DNS and SSH [17]. It is
performed by the statistical analysis of simple IP level flow
features (i.e. packets sizes, inter–arrival time and packet order).
Their technique suffers from the problem of sensitivity to
packet-size and timing value manipulation.

Bar-Yanai et al. presented a method for real-time clas-
sification of encrypted traffic [18]. The proposed statistical
classifier is based on a hybrid combination of k-means and
k-nearest neighbor geometrical classifiers and is shown to be
very robust, even to obfuscated traffic such as Skype and
encrypted BitTorrent. The statistical feature set is composed
of 17 parameters based on packet and payload byte counts,
packet sizes and packet rates for each direction.

The authors of the work [19] deal with buffer overflow
attacks by an internal analysis of exploits content. They
propose method scanning network traffic for the presence of
a decryption routine, which is characteristic for obfuscated
malware. The method uses static analysis and techniques for
emulated instruction execution. It has been implemented and
tested on polymorphic exploits, including ones generated by
state-of-the-art polymorphic engines [20], [21] and Metasploit
[22]. They achieved a false positive rate close to 0%. This
method supposes deciphering of communication data and thus
it can be used only as a source of expert knowledge from the
view of NBA.

Sommer et al. [23] examine the surprising imbalance
between the extensive amount of research on machine learning-
based anomaly detection pursued in the academic intrusion
detection community, versus the lack of operational deploy-
ments of such systems. They claim that the task of finding

attacks is fundamentally different from other tasks, making
it significantly difficult for the intrusion detection community
to employ machine learning effectively. They support this
claim by identifying challenges particular to network intrusion
detection and then, they provide a set of guidelines meant to
strengthen future research on anomaly detection.

III. OBFUSCATION OF ATTACKS

The obfuscation of malicious communications was created
with the aim of similarity maximization of obfuscated exploit-
ing data and real network traffic [11]. The major requirement
of the obfuscated traffic is obfuscation’s transparency for upper
network layers. Based on these requirements, the Hyper Text
Transfer Protocol (HTTP) and HTTP Secure (HTTPS) proto-
cols were selected as carrying protocols, thus the obfuscation
is based on the encapsulating of suspicious data into standard
HTTP or HTTPS packets. This makes the obfuscated data
hard to detect by classic signature based approaches and even
by statistical and anomaly based methods. Another reason
why these protocols were selected is because they are heavily
spreaded in nearly all computer networks, so it gives a higher
probability of obfuscated communications that would not be
detectable. The advantage of these protocols is also their
challenge-response character which is ideal for our testing
scenarios.

In our approach, we assume a private network connected
to an outer network through the gateway which uses the
Network Address Translation (NAT) and is monitored by
the Intrusion Detection System (IDS) and by the Network
Behavioral Analysis system (NBA). The network architecture
is shown in figure 1. On the right side of the picture the private
network with vulnerable machines and a previous exploited
machine is illustrated. The left side of the picture represents
the outer network with the legitimate user and the attacker.
In the middle of the picture is situated the gateway which
interconnects inner and outer networks.

The gateway is running on Debian Linux with a 2.6.32-
5-686 kernel. The attackers station and the exploited machine
are running on Ubuntu Linux with a 3.11.0-12 kernel. The
Windows server is running on the Windows 2000 with SP4
and the Linux server is running on the Red Hat Linux with a
2.4.7-10 kernel.

The obfuscation system is divided into two separate mod-
ules. When the first one – named the Callback, has to be
deployed into the internal network, the second one – called
the Fake HTTP Server, acts as the remote HTTP server. The
installation of the Callback module into the internal network
can be done by the exploitation of a target machine laying at
the internal network without detection of IDS or NBA system.

The Fake HTTP Server module of the obfuscation waits
for a connection. When the connection is established from the
Callback module, all traffic affected by obfuscation is tunneled
through the carrying protocol. This module represents the main
logic of the system because it has to apply advanced filters to
all traffic and select only relevant packets for obfuscation.

The Callback module acts as a proxy because the main
function of this module is to translate incoming encapsu-
lated communications, restore their original content and then
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Figure 1: Scheme of virtual network’s architecture.

distribute it into the internal network. The Callback module
also forges IP addresses inside of processed packets, thus the
responses of internal network can be caught by the Exploited
machine. The caught packets are then encapsulated and sent as
a callback message to the external Fake HTTP Server machine.

A. Implementation notes

All obfuscation routines are implemented at a lower net-
work level. Transmitted encapsulated packets are bypassed us-
ing standard iptables with custom dynamic rules. Dynamic
rules depend on a character of obfuscated communication,
therefore it is important not to process all packets due to
performance impact on host system. Next, packets are pro-
cessed through the libnetfilter_queue library which
provides the interface for working with packets in the user
space. The packets affected by obfuscation are encapsulated
here or restored from carrying packets before they reach the
kernel space for regular processing. This solution is transparent
for upper network layers and the host kernel cannot detects
whether packets were modified or not. The solution is also
protocol independent and no other configuration of host system
is necessary.

IV. EXPERIMENTS’ DESCRIPTION

For the purpose of our work we created a set of experiments
in a virtual network environment. In these experiments we
simulated both legitimate and malicious traffic. The legitimate
traffic’s experiments were performed manually because of
adding some human factor and diversity to data and further-
more, we want to reach maximal authenticity of users behavior.
Malicious content was created using Metaspolit [22] and some
widespread public exploits. Well-known attacks were selected
because they are easily detectable by classic IDSs, thus we can
demonstrate functionality of our obfuscation technique.

Traffic was dumped and saved on the gateway node because
traffic seen on the gateway contains all transmitted pack-
ets during our experiments. Packets were dumped using the
Wireshark tool [24] directly from a software network bridge
interface which interconnects internal and external networks.
Data obtained here serves as input for further post-processing
and analysis.

A. Testing scenarios

Each experiment was executed four times in different
conditions for every single vulnerability and legitimate com-
munication. Our testing scenarios should improve the relevance
of the experiments’ outputs and make our synthetic data
more similar to real network traffic. We used a different
configuration of virtual network environment for each testing
scenario. Testing scenarios are divided into four categories:

1) The first scenario represents reference output without
any modification to configuration. All experiments
ran on the same host machine to minimize deviations
among different tests.

2) The second scenario is dedicated to simulate traffic
shaping. Therefore, all packets were forwarded with
higher time delays. For this purpose, the special gate-
way machine with limited processor’s performance
was used. This machine was also fully loaded to
emulate slower packets processing than in the first
scenario.

3) The third scenario is supposed to simulate traffic
policing when some of packets were dropped during
the processing on the network gateway node. In this
case, a custom packet dropper was used on the gate-
way node and 25% of packets were dropped, resulting
in output which contains re-transmitted packets.

4) The fourth scenario represents transmission on an
unreliable network channel, thus 25% of packets were



corrupted during processing on the networks gateway
node.

B. Vulnerabilities

The vulnerabilities were selected with the aim of getting
the variety of different attacks. Our experiments were executed
on four vulnerabilities – two against a Linux based machine
and the next two against a Windows based machine. These
machines correspond to the PC stations in the right segment
of Fig. 1. Each attack exploits well-known vulnerability and
its execution leads to full privilege escalation, thus the attacker
can get the root’s permission. The details about each vulnera-
bility and its exploitation are the following:

• The Apache web service – this attack exploits buffer
overflow vulnerability in mod_ssl plugin of an
Apache web server (old versions up to 1.3.22), so
the obfuscated communication had to be transparent
to higher network layers. All packets of this attack
are sent to port number 443 of a vulnerable web
server. This attack is not detectable by standard sig-
nature based approaches (including SNORT) due to
the encryption of all packets. The CVSS score of this
vulnerability is 7.5 and it is described by CVE-2002-
0082 [25].

• Bad Blue web service – the second attack exploits
a stack-based buffer overflow vulnerability in a Bad
Blue web server (version 2.72b). In this case port
number 80 was used. In the attack performing phase,
the special crafted packet with a long header is sent
which leads to an overflow of processing buffer. This
attack is easily detectable by signature based detection
systems. The CVSS score of this vulnerability is 7.5
and it is described by CVE-2007-6377 [26].

• Microsoft DCOM RPC – the third attack uses
vulnerability in Microsoft Windows DCOM Remote
Procedure Call (DCOM RPC) service of old versions
of Windows 2000 (up to Service Pack 4) and Windows
XP. A standard RPC service runs on port 139. This
vulnerability allows a remote attacker to execute an
arbitrary code based on buffer overflow in DCOM
interface. The vulnerability is well documented and it
was used, for example, by Blaster worm. The CVSS
score of this vulnerability is 7.5 and it is described by
the CVE-2003-0352 [27].

• Samba service – the last selected exploit is aimed to a
buffer overflow in call_trans2open function for
the same versions of Samba. This vulnerability allows
a remote attacker to execute an arbitrary code. In our
case public exploit was used which sends malformed
packets to a remote server in batches. Packets differ
in a one shell-code address only because the return
address depends on versions of Samba and host op-
erating systems. The CVSS score of this vulnerability
is 10 and it is described by CVE-2003-0201 [28].

C. IDS detection

For the purposes of IDS detection, we used the SNORT
2.9.4 with rules distributed as snapshot 2940. There were

performed direct attacks on previously described vulnerable
services. All attacks were captured by the SNORT except the
attack on the Apache service. In the Apache service case, the
communication was encrypted, thus the signatures could not
be matched in the payload. Captured SNORT alert messages
are listed below and are delimited by newline in a particular
vulnerability exploitation:

• BadBlue:
ET SHELLCODE Rothenburg Shellcode
INDICATOR-SHELLCODE x86 OS agnostic fnstenv

geteip dword xor decoder
http_inspect: LONG HEADER

• DCOM RPC:
ET SHELLCODE Rothenburg Shellcode
INDICATOR-SHELLCODE x86 OS agnostic fnstenv

geteip dword xor decoder
OS-WINDOWS DCERPC NCACN-IP-TCP
IActivation remote activation

overflow attempt

• Samba:
GPL NETBIOS SMB trans2open buffer

overflow attempt
GPL NETBIOS SMB IPC$ share access

Next, we performed obfuscated exploitation of each vul-
nerable service and there were not generated any alerts by the
SNORT. Therefore, the tunneling obfuscation of attacks was
successful in the breaking of the signature based IDS.

D. NBA detection

NBA detection was performed by the AIPS system, which
uses ASNM metrics as connections’ features [8]. The ASNM
features are used to describe properties of an analyzed con-
nection based on its statistical and behavioral characteristics.
It contains 167 network features divided into five categories.
The ASNM uses the context of an analyzed connection to
compute some of the features. The context represents time
bounded TCP connections set with the same destination and
source IP addresses as an analyzed connection has.

We do not used the whole architecture of the AIPS, but only
two parts of the component Network Detector [7]: Connections
extractor and ASNM extractor. The AIPS works with TCP
connections only because of its unambiguous packets associa-
tion to connections. The summary of achieved results will be
discussed in section VI.

V. DATA PROCESSING AND ANALYSIS

The whole process of data processing and analysis stage
is illustrated in Fig. 2. There are 3 segments and data flow
direction is shown from the top to the bottom of the scheme.
Empty boxes represent data as input or output of some pro-
cesses and filled ovals represent working components which
perform some action. A working component takes input data
and outputs output data. The upper segment represents the
input of the whole experiment process and includes:

• TCP dump files – collected during the simulation of
attacks and legitimate communications.



TABLE I: TRAFFIC CLASS DISTRIBUTION (TCP CONNECTIONS AND PACKETS)

Service Legitimate traffic Direct attacks Obfuscated attacks
connections packets connections packets connections packets

Apache 268 4246 101 1741 74 3868
BadBlue 170 2035 4 39 10 198

DCOM RPC 222 2077 4 50 8 184
Samba 20 531 20 357 8 712

• Directory structure – it contains information about a
kind of simulation (attack or legitimate), identification
of a network service, identification of vulnerability
(CVE [29]).

• Mapping of services to hosts – it contains the IP
addresses of hosts relevant to our simulations with
mapping of the analyzed services to hosts. It included
information about obfuscation tunnel’s endpoints too.

The middle segment of the scheme represents a process of
ASNM network features extraction. Two upper components
of this segment serves for parsing TCP dump files with
parallel expert knowledge processing. These two components
take all inputs and exports processed data ready for storing
into persistent database storage. The next component DB
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Figure 2: Scheme of data processing and analysis.

importer achieves persisting of processed data. Next, an active
component Connection extractor performs the identification
of all TCP connections in database. It produces a list of
TCP connection objects with embedded expert knowledge
information. Then, ASNM features extraction is performed for
each TCP connection by the Metrics extractor component and
the results of this step are ASNM features values for each TCP
connection object in the CSV representation.

The last segment of the scheme illustrates the mining
and assessment process, which produces the output results
of the analysis. The RapidMiner [30] tool for the mining
purposes was used there. The class distribution of packets and
connections is depicted in Table I.

VI. SUMMARY OF THE RESULTS

In this section we describe data mining experiments from
two perspectives: bi-nominal and poly-nominal classification
according to the interpretation of processed data. The com-
munication of collected and processed data can either be
interpreted as attacking and legitimate communications in
binary representation or they can be interpreted as attacking
and legitimate communications at the specific network service
in the poly-nominal representation. Our poly-nominal classifi-
cation includes three classes for each service (resulting in 12
classes) and one class for other captured traffic.

Every result is interpreted as a performance vector and a
confusion matrix with specific recall and precision of classes.
Each table representing a confusion matrix contains a perfor-
mance vector representing an overall classification accuracy
with validation precision, which is situated in the left top cell
of the table.

The names of classes in the bi-nominal representation
are True or False indicating a malicious or a legitimate
behavior of communications respectively. The identification of
classes in a poly-nominal case consists of two parts. The first
part represents the subclass of the connection specifying its
maliciousness and may contain three labels with an intuitive
representation: legitimate traffic, direct attacks and obfuscated
attacks. The second part of the identification indicates the
specific acronym of a service. Every presented experiment uses
the Naive Bayes classifier. Most of the experiments employ the
5–cross fold validation. The exceptions are the first bi-nominal
and the first poly-nominal classifications experiments. Both
categories of classifications use a forward feature selection to
find the best features with emphasis on the selection of time
independent features (inspired by problematic issues of [17]).

A. Bi-nominal classification

In the experiments of bi-nominal classification were all
numeric attributes discretized into five bins due to a better



TABLE II: REFERENCE CONFUSION MATRIX

Accuracy:
97.64% (± 0.45%) True True True False Class precision

Predicted True 151 3 98.05%
Predicted False 16 635 97.54%

Class recall 90.42% 99.53%

classification performance. First, we performed an experiment
which performs a malicious obfuscated traffic detection by a
classifier trained by direct attacks and legitimate traffic only.
Many modifications of classifier’s settings and preprocessing
phases to improve it were performed and as a result we
achieved classification accuracy and recall of the attack class
which were both equal to 24%.

The result of our first bi-nominal classification experiment
was an impulse for the second one – we proposed the ob-
fuscated and the direct attacks class unification. Therefore, we
validated the classifier by direct attacks and obfuscated attacks
labeled as one class for the purpose of this experiment (True
label). The resulting classification accuracy and the confusion
matrix are shown in Table II. The outcome of this experiment
indicates a fine classification accuracy with respect to the class
precision of the model trained by explicit information about
obfuscated attacks.

The third experiment describes a validation of classifier
using different subsets of training data by means of obfuscated
or direct attacks exclusion. Therefore, in the first case we
validated it by direct attacks and legitimate traffic only and
in the second case we validated it by obfuscated attacks and
legitimate traffic only. The results we achieved are depicted in
Table III.

TABLE III: OBFUSCATED/DIRECT ATTACKS’ EXCLUSION

(a) OBFUSCATED ATTACKS EXCLUDED

Accuracy:
99.18% ± 0.50% True True True False Class precision

Predicted True 101 0 100.00%
Predicted False 6 628 99.05%

Class recall 94.39% 100.00%

(b) DIRECT ATTACKS EXCLUDED

Accuracy:
98.09% ± 0.75% True True True False Class precision

Predicted True 42 2 95.45%
Predicted False 11 625 98.27%

Class recall 79.25% 99.68%

The outcome of this experiment shows a better clas-
sification accuracy for both cases in comparison with the
reference accuracy from the second experiment, and it also
indicates more accurate results of separated obfuscated and
direct attacks’ representation for malicious traffic detection. In
the other words, the outcome indicates the different behavior
of obfuscated and direct attacks because there it was more

difficult to represent direct attacks and obfuscated attacks
together as one class which resulted in a lower classification
accuracy and lower class precision in the case of obfuscated
and direct attacks unification.

The fourth binary classification experiment differs from the
previous one in assumption, where obfuscated attacks or direct
attacks can be undetected by NBA and therefore, they are
labeled as legitimate communications in the training phase.
We performed this assumption by neutralization of the target
malicious class – labeling it as legitimate. Accordingly, we
performed two validations: the first contained legitimate labels
for the direct attacks’ class and the second contained legitimate
labels for the obfuscated attacks’ class. The results we achieved
are depicted in Table IV.

The accuracy results of the fourth experiment are lower
in the cases of neutralized direct attacks and neutralized
obfuscated attacks in comparison with originally labeled data
(Table II), which stands for various statistical and behavioral
characteristics of these classes. This fact can be observed when
we compare the results of the previous experiment with the
result of this one. In the actual experiment there is achieved a
lower classification accuracy in both cases than in the previous
experiment.

B. Poly-nominal classification

Our first experiment classifies obfuscated malicious traffic
by the classifier which was trained by direct attacks and legiti-
mate traffic only in order to test obfuscated attacks’ detection.
Various experiments’ modifications to optimize classification
accuracy were tried, but it was not possible to achieve a better
accuracy than 0.00%. Modifications with sampling, discretiza-
tion and grid optimization of Naive Bayes classifier’s settings
were performed too. This result shows the impossibility of
statistically and behaviorally based NBA (ASNM of AIPS) to
detect our obfuscated attacks without any previous information
about them.

The next experiment was performed with all kind of
training data (including obfuscated attacks). The greedy for-
ward features selection of ASNM set was used in order to
maximize performance of the Naive Bayes classifier. The best

TABLE IV: OBFUSCATED/DIRECT ATTACKS’ CLASS NEUTRALIZATION

(a) OBFUSCATED ATTACKS CONSIDERED AS LEGITIMATE

Accuracy:
97.72% ± 0.87% True True True False Class precision

Predicted True 156 5 96.89%
Predicted False 13 616 97.93%

Class recall 92.31% 99.19%

(b) DIRECT ATTACKS CONSIDERED AS LEGITIMATE

Accuracy:
97.71% ± 1.59% True True True False Class precision

Predicted True 156 2 98.73%
Predicted False 17 643 97.42%

Class recall 90.17% 99.69%



TABLE V: CONFUSION MATRIX OF POLY-NOMINAL CLASSIFICATION EXPERIMENTS
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classification accuracy with respect to precision is equal to
98.87% (± 0.99%). The structured confusion matrix of this
experiment is shown in Table V.

We reached the high inter-class precision rates and recall
too. If we would consider obfuscated and direct attacks as
one class, there would only be one attack instance classified
as legitimate traffic – a true occurence of obfuscated attack on
Apache service classified as another traffic class (the field with
a black background in the last row of the table). The second
situation of an incorrect classification decision1 respecting the
previous consideration is in the case when one legitimate
communication was classified as an attack – true occurence
of other traffic classified as a DCOM RPC direct attack (the
field with a black background in the 7th row of the table). In
this situation it is possible that this communication is a sub-part
of DCOM RPC attack running on other ports and, therefore,
automated expert knowledge processing phase marks this one
communication as other traffic. But, on the other hand, the
ASNM features extraction process of the AIPS NBA takes into
account this fact in the context analysis of a potential DCOM
RPC attack and empowers the class recall of the original
attack’s sub-part.

VII. CONCLUSION

In this paper we presented malicious network traffic ob-
fuscation by tunneling in HTTP and HTTPS protocols. The
main reason of supposed malicious traffic obfuscation was the
intention of imitating characteristics of legitimate traffic by
malicious traffic and to impose low detection capabilities of
IDS and NBA. There were used advanced network features in
contrast with tunneling obfuscation stated in paper [17]. We

1There are another incorrectly classified entries but they keeps the consid-
eration.

analyzed only network services vulnerable to buffer overflow
attacks. We managed to find only four publicly available
vulnerable network services in contrast to a huge amount
of publicly available exploits. Therefore, the results of our
experiments are limited to four examined network services. On
the other hand, buffer overflow attacks have common charac-
teristics which are very similiar, therefore, the generalization
of our results is very possible and it could be part of our next
research.

We performed exploitation of chosen services with a direct
approach and by employing our proposed obfuscation. We per-
formed legitimate traffic simulations in order to balance traffic
class representatives too. All simulations were performed in
four scenarios simulating traffic shaping, traffic policing and
transmission on an unreliable network channel simulating the
real network traffics’ conditions.

We demonstrated the successful detection of direct at-
tacks and the obfuscated attacks detection incapability of the
SNORT. From the perspective of NBA, we used a statistically
and behaviorally based AIPS system and demonstrated the low
malicious traffic detection rate of the AIPS trained by direct
attacks and legitimate traffic only. Next, we demonstrated the
necessity of providing information about obfuscated attacks
in the training phase in order to achieve higher classification
accuracy of the employed Naive Bayes model. We achieved an
accuracy of 97.64% (±0.45%) in bi-nominal classification and
an accuracy of 98.87% ±0.99% in poly-nominal classification.
The results were gained by 5-cross fold validation and the
discretization of attributes into five bins. Another result is
indication of different statistical and behavioral characteristics
of obfuscated malicious traffic in contrast with direct malicious
traffic. The next outcome of our work is to emphasize the ne-
cessity of training the NBAs model with divergent obfuscation
techniques and their modifications in order to strengthen its



detection capabilities.

In future work, we plan to compare the detection properties
of ASNM features with other network feature sets (eg. discrim-
inators of A. Moore [9]) using presented tunneling obfuscation
with various testing scenarios and a larger dataset of vulnerable
network services. We plan to employ new kinds of network
attacks’ obfuscation techniques, including the PBA [12] to
make general NBAs capable of detecting various obfuscated
attacks.
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