
How to Evolve Complex Combinational Circuits
From Scratch?

Zdenek Vasicek and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology

Brno, Czech Republic
Email: vasicek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—One of the serious criticisms of the evolutionary
circuit design method is that it is not suitable for the design of
complex large circuits. This problem is especially visible in the
evolutionary design of combinational circuits, such as arithmetic
circuits, in which a perfect response is requested for every possible
combination of inputs. This paper deals with a new method which
enables us to evolve complex circuits from a randomly seeded
initial population and without providing any information about
the circuit structure to the evolutionary algorithm. The proposed
solution is based on an advanced approach to the evaluation
of candidate circuits. Every candidate circuit is transformed
to a corresponding binary decision diagram (BDD) and its
functional similarity is determined against the specification given
as another BDD. The fitness value is the Hamming distance
between the output vectors of functions represented by the two
BDDs. It is shown in the paper that the BDD-based evaluation
procedure can be performed much faster than evaluating all
possible assignments to the inputs. It also significantly increases
the success rate of the evolutionary design process. The method is
evaluated using selected benchmark circuits from the LGSynth91
set. For example, a correct implementation was evolved for a
28-input frg1 circuit. The evolved circuit contains less gates (a
57% reduction was obtained) than the result of a conventional
optimization conducted by ABC.

I. INTRODUCTION

Evolutionary design is an approach which could provide us
with new and efficient implementations of digital circuits. We
will only deal with combinational circuits in this paper. Un-
fortunately, the evolutionary design shows several limitations
where the most serious ones are that: (a) the evaluation time
of a candidate circuit grows exponentially with the number
of inputs; and (b) corresponding search spaces are large and
complex.

Various techniques have been proposed to reduce the search
space [1]. The enormous evaluation time can partially be
reduced by using advanced fitness calculation techniques in
the case that the goal is to minimize the number of gates (or
delay) of an already functional, but unoptimized circuit [2].
However, it is unknown how to evolve complex combinational
circuits (with more than about 15 inputs) from scratch.

This paper deals with an efficient method capable of reduc-
ing the evaluation time. The goal is to evolve complex circuits
(tens of inputs, thousands of gates) from a randomly seeded
initial population and without providing any information about
the circuit structure to the search method. Problems related to
constructing of efficient circuit representations and efficient
search algorithms are left untouched in this paper.

The proposed solution is based on a new fitness func-
tion transforming every candidate circuit to a correspond-
ing binary decision diagram (BDD), functional equivalence
checking against the specification given as another BDD
and measuring a similarity between these BDDs if they are
not functionally equivalent. The proposed fitness function is
embedded into Cartesian genetic programming (CGP), which
is a well-established method for digital circuit evolution [3].
The method is evaluated using selected benchmark circuits
from the LGSynth91 set.

The rest of the paper is organized as follows. Section II
surveys the state of the art in the area of evolvable hardware
and determines the domain of our contribution. The principles
and variants of binary decisions diagrams are presented in
Section III. The proposed method based on embedding BDD
into CGP is described in Section IV. Section V summarizes the
obtained results and analyzes advantages and disadvantages of
the proposed method. Conclusions are given in Section VI.

II. STATE OF THE ART

This section briefly surveys the main subareas developed
within evolvable hardware and identifies the domain of evolv-
able hardware which is relevant for this paper.

A. Subareas of Evolvable Hardware

Evolvable hardware is usually understood as an approach
which utilizes evolutionary algorithms (and other bio-inspired
algorithms) in order to automatically design, optimize, adapt
and/or repair various types of hardware [4]. Two main subareas
of evolvable hardware are evolutionary hardware design and
adaptive hardware [1]. The former one deals with the scenario
in which the evolutionary algorithm is used only in the design
phase of hardware. Its goal is to increase the level of design
automation and produce new designs automatically. Candidate
solutions are usually evaluated using simulators. A typical
evolved solution would exhibit a better quality with respect
to existing designs of the same category. For example, the
solution would occupy a smaller area on a chip, compute faster,
provide better precision, reduce power consumption, increase
reliability etc. In the case of adaptive hardware, the role of
bio-inspired methods is to ensure the autonomous adaptation
and/or repair which partly involves the concept of evolutionary
hardware design. Candidate solutions are evaluated in situ, i.e.
in reconfigurable devices.

We will only deal with the evolutionary design of digital
circuits in this paper. For purposes of this paper, the applica-
tions of digital circuit evolution can be divided into two main

classes which we will call the approximate design and the
accurate design.

In the case of approximate design it is sufficient to evolve
a circuit responding correctly for a reasonable subset of all
possible input vectors. The problem is that specifications are
in principle incomplete since a correct output is not explicitly
defined for every input vector. The design of filters, classifiers,
predictors or hash functions falls into this class. The fitness
value is usually calculated on the basis of circuit responses
obtained for a carefully chosen training set, a subset of all
possible input vectors. The behavior of evolved solution has
to be validated using a test set at the end of evolution, i.e.
using some vectors unseen during the evolution.

In the case of accurate design, the goal is to obtain a
circuit responding perfectly for all possible assignments to the
inputs, i.e. no error is accepted. The evolution of arithmetic
circuits is a typical example of this class. Let us further focus
on the evolutionary design of accurately working gate-level
combinational circuits in the rest of the paper.

B. Evolutionary Design of Combinational Circuits

The most common approach to the evolutionary design of
combinational circuits, which one can find in the literature
(e.g. [3]), is as follows: Requested circuit behavior is provided
in the form of truth table together with a set of available
gates and constraints. A suitable evolutionary algorithm (EA)
is then chosen and applied with the aim of discovering a fully
functional solution in the first phase and optimizing additional
criteria such as the number of gates, area or power consump-
tion in the second phase. A candidate circuit is evaluated using
a circuit simulator by applying all possible assignments to
the inputs and comparing the obtained outputs with desired
values. It is important that the initial population is randomly
seeded as the approach is called the evolutionary design and
it is expected that a solution is discovered from “nothing”.
However, the aforementioned approach suffers from various
limitations:

1) The circuit evaluation time grows exponentially with
the number of inputs. Hence the method is only
applicable to the evolution of relatively small circuits.

2) If a direct gate-level encoding is employed, complex
circuits are represented by long chromosomes, which
usually lead to complex and difficult search spaces.

3) Obtaining a fully functional solution from a ran-
domly seeded population consumes a considerable
time because the approach exploits the “generate and
test” principle and no additional knowledge about the
problem is used.

4) Because the specification is given in the form of truth
table, it is impossible to specify complex circuits in
practice.

The problems 1) – 3) are known as the scalability problems
of evolutionary circuit design, often referred to as the scalabil-
ity of evaluation and the scalability of representation [5]. Sev-
eral methods have been proposed to eliminate these problems,
see an overview in [1]. The most complex circuits evolved in
this category are, for example, 6-bit multipliers, 9-bit adders,
and 17-bit parity circuits [6], [7].

The fourth problem, which has not been reflected in the
literature at all, could also be understood as the scalability
problem. We will call it the scalability of specification problem
in this paper. Despite some successes with the evolution
of small accurate circuits (such as compact multipliers [8]),
the aforementioned evolutionary approach has not fully been
accepted by industry, mainly because it is not scalable and
evolutionary algorithms are too non-deterministic and time
consuming in comparison with common circuit design and
optimization methods.

However, there are good reasons why it makes sense to
develop the aforementioned evolutionary approach. Firstly, the
circuit design problem can serve as a useful test problem
for the performance evaluation and comparison of genetic
programming systems. Secondly, the approach seems to be
suitable for adaptive embedded systems. If a new (but relatively
simple) logic function has to be implemented in a reconfig-
urable device, employing an EA which utilizes a training set
(i.e. a truth table) in the fitness function could be a good
approach because running standard circuit design packages
is usually impossible in embedded systems. Moreover, the
reconfigurable device is seen as a black box in the context
of evolvable hardware. A fully functional solution can be
obtained even if some (unknown) parts of the reconfigurable
device are faulty; which is impossible using conventional
synthesis, placement and routing algorithms which expect
fault-free chips.

C. Evolutionary Optimization of Complex Circuits

In order to bring the evolutionary circuit design methodol-
ogy closer to the conventional design flow, it is important to
accept how circuits are specified in conventional tools and en-
able the evolution of really complex circuits. The conventional
circuit synthesis and optimization process usually starts with
an unoptimized fully functional circuit which is supplied by a
designer. Truth tables are usually utilized to describe functions
of small circuits having up to twenty primary inputs. Large
circuits are described using (a) a hierarchical description such
as BLIF or (b) a high level hardware description language such
as Verilog or VHDL.

If a fully functional (unoptimized) circuit is available
then the fitness calculation based on applying all possible
input vectors can be replaced by a more efficient procedure.
The method exploits the fact that efficient algorithms were
developed in the field of formal verification which enable us to
relatively quickly decide whether two circuits are functionally
equivalent. In our context, the task is to decide whether the
parent and its offspring (created by a mutation operator)
are functionally equivalent, assuming that the evolutionary
algorithm was seeded by a fully functional solution and the
current parent is also fully functional. If the equivalence
holds, the fitness of the offspring is given by the number
of gates if the task is to minimize the number of gates. An
evolutionary circuit optimization method was introduced in [2],
which employs a satisfiability problem solver (SAT solver) in
the fitness function. An average gate reduction of 25% was
reported for benchmark circuits containing thousands of gates
and having tens of inputs in comparison with the state of the art
academia as well as commercial tools [9]. While the scalability
of evaluation problem has been partly eliminated, the method

still suffers from long execution times (tens of minutes for
the aforementioned circuits) and non-deterministic behavior.
The method should be called the evolutionary optimization
rather than the evolutionary design because circuit’s function
is known in advance and only the number of gates is opti-
mized. Using the word optimization is also consistent with
terminology developed for digital design [10].

An open question is whether complex accurately working
circuits can be evolved from randomly seeded initial pop-
ulations, i.e. whether a truly evolutionary circuit design is
possible for complex circuits. Another motivation is that better
(more compact) solutions could be obtained because the EA
starting with a randomly generated population is not biased by
conventional circuits.

Unfortunately, the approach based on equivalence checking
[2] can not be used to solve this task. The reason is that the
outcome of equivalence checking is a Boolean value, but no
additional information showing to what extent the candidate
circuit fulfills the specification is provided if the circuits are not
functionally equivalent. Such information has to be available
in order to construct a fitness function which can distinguish
small differences in the quality of phenotypes.

III. BINARY DECISION DIAGRAMS

Decision diagrams, and especially reduced binary decision
diagrams, are the most frequently used data structure for
representation and manipulation of Boolean functions in the
area of digital circuit design. Among others, verification, test
generation, fault simulation, sat-solving and logic synthesis
represent their typical applications.

A Binary Decision Diagram (BDD) is a directed acyclic
graph with one root and two terminal nodes that are referred to
as ’0’ and ’1’. All other nodes are called non-terminal nodes.
Each non-terminal node is associated with a primary input
variable and has exactly two outgoing edges, called the E-edge
(else edge) corresponding to assigning the variable a false truth
value, and the T-edge (then edge) corresponding to assigning
the variable a true truth value, respectively. Every path in a
BDD is unique (i.e. no variable appears more than once in
the path). This means that if we arbitrarily trace out a path
from root to the terminal node ’1’, then we have automatically
found a value assignment to function variables for which the
function will be evaluated to 1 regardless of the values of the
other variables.

An Ordered Binary Decision Diagram (OBDD) is a BDD
where variables occur along every path from the root to
a terminal node in strictly ascending order, with regard to
fixed ordering. A Reduced Ordered Binary Decision Diagram
(ROBDD) is an Ordered BDD where each node represents
a unique logic function, i.e. it contains neither isomorphic
subgraphs nor nodes with isomorphic descendants. The most
important property of ROBDD is the canonicity of the rep-
resentation. If there are two logic functions representing the
same Boolean function, the canonicity of the representation
implies that the corresponding ROBDDs are isomorphic. This
represents the well known property that is useful especially
when checking the equivalence of two Boolean functions
(digital circuits) represented as a BDD. Implicit sharing of the
nodes represents another feature of ROBDDs. For example,

when two or more Boolean functions are simultaneously
represented using ROBDD (i.e. there co-exist several root
nodes), the merging of isomorphic subgraphs, which represents
the basic reduction operation on Ordered BDDs, is applied on
all of them. Hence, a node can be reused by several Boolean
functions.

Although the ROBDDs offer an efficient way of represent-
ing Boolean functions and provide a tool for solving many
practical problems in digital circuit design, there are situations
in which BDDs perform unsatisfactory. It is the requirement of
canonicity which makes BDDs inefficient in representing cer-
tain classes of functions. For example, multipliers are known
for their exponential memory requirements for any variable
ordering [11]. It is also a well known fact that the size of BDD
(i.e. the number of non-terminal nodes) for a given function is
very sensitive to the chosen variable order. Depending on the
actual variable order, there are Boolean functions for which
the size of the ROBDD can be either linear or exponential in
the number of nodes [12].

A. Operations and Algorithms on ROBDDs

One of the advantages of ROBDDs is the possibility to
efficiently peform many of the operations needed for the
manipulation of Boolean functions.

The synthesis in general and Boolean operations in particu-
lar probably represent the most important operations since they
can be used to construct ROBDDs. In order to treat the synthe-
sis in a unified way, so-called If-Then-Else operator (ITE) was
introduced [13]. ITE is a ternary Boolean function with inputs
f , g, h that computes the function: if f then g else h. Result of
ITE is a binary decision diagram for function f(g, h). As one
of the inputs of ITE for binary operations is always a terminal
node, the overall time complexity of ITE is O(|F | · |G|),
where |F |, |G| stands for the size of BDD corresponding
with function f , g, respectivelly. The implementation of the
synthesis operator depends on a particular BDD package.
For example, Buddy package offers not only ITE operator
as function ite(f, g, h) which takes three ROBDDs as its
arguments, but also a ternary function apply(op, a, b) which is
optimized for binary operations. This function takes a binary
operator op and two ROBDDs a and b as arguments and returns
a ROBDD corresponding with the result of a op b [14].

Satisfiability and equivalence test represent another class
of operations that can be efficiently computed due to the
canonicity and compactness of ROBDDs. The satisfiability
problem (sometimes denoted as Sat-One) is defined as follows.
Let f be a Boolean function. Then, the goal is to decide
whether Onset(f) 6= ∅ and if this is the case, determine
a ∈ Onset(f). It means that for an OBDD F representing
function f one has to find an input assignment a for which
f(a) = 1 or inform that no such a exists. As it is sufficient to
consider a single path, a satisfying assignment can be easily
computed in linear time O(n) with respect to the number of
variables n. One operation closely related to the satisfiability
is Sat-Count which computes the number of input assignments
for which f(a) = 1, i.e. it determines |Onset(f)|. Sat-Count
can be performed in time O(|F |). The equivalence test of two
functions f and g is even easier because in most cases it is
sufficient to check whether pointers for f and g lead to the
same node. This can be done in constant time.

Fig. 1. Principle of equivalence checking of two combinational circuits CA

and CB using ROBDD. As the ROBBD for z2 (shown on the right side)
contains a path from root node z2 to the terminal node ’1’, the circuits are
not equivalent. ROBDD for z1 contains only terminal nodes which means that
the outputs y1 and y′1 capture the same Boolean function.

B. Equivalence of Boolean Functions

Let CA and CB be combinational circuits, both with k
inputs denoted x1 . . . xk and m outputs denoted y1 . . . ym and
y′1 . . . y

′
m, respectively. In order to check whether the circuits

are functionally equivalent, i.e. perform the equivalence test,
the following method can be used. Corresponding primary
inputs of both circuits are aligned and corresponding primary
outputs yi and y′i are connected using the XOR gates. The goal
is to obtain one circuit that has only k primary inputs x1 . . . xk
and m primary outputs z1 . . . zm, zi = yi XOR y′i. In order to
disprove the equivalence, it is sufficient to identify at least one
output zi whose Onset(zi) is not empty, i.e. to find an input
assignment x for which the corresponding outputs yi and y′i
provide different values and thus zi = 1. In order to achieve
this goal, Sat-One operation can be performed for each output.
This approach is illustrated in Figure 1.

C. Towards a Fitness Function Based on ROBDDs

The aforementioned method returns a single Boolean value.
However, in evolutionary algorithms we require fitness func-
tions returning a rich scale of values in order to distinguish
small differences among candidate solutions. Instead of utiliz-
ing the Sat-One function, we propose to apply the Sat-Count
function on every output zi and count up all the results. The
resulting value represents the Hamming distance between CA
and CB . In the example shown in Fig. 1, Sat-Count will return
3 for z2 and 0 for z1, i.e. the Hamming distance is 0 + 3 = 3.
It can easily be checked that if x ∈ {001, ∗11}, CA and CB
provide different output values.

Contrasted to the evaluation of circuit responses for all
input combinations, which represents a typical approach in
the area of evolutionary circuit design, the method based on
ROBDDs allows us to assess the similarity of two circuits
efficiently even for complex circuits. The similarity between
two circuits, expressed as the Hamming distance, can be
calculated in linear time with respect to the size of a ROBDD
representing those circuits, which is a significant improvement
over the current (exponential) approach. The most complex
operation is the construction of a ROBDD tree. However, the
construction process can be optimized using hashing and node
sharing. Another fact, supporting the efficiency of the ROBDD-
based approach, is that circuits to be evaluated (CA and CB)
are usually very similar, because CB is created by a genetic
operation (e.g. mutation) from its parent CA.

Getting the most out of any BDD package is not always
easy in practice. Some knowledge about the optimal order of
the BDD variables and internal implementation of the BDD
package is required. At least, it is very beneficial to be familiar
with the principle of construction of hash functions. For
example, Buddy package uses a triple (L,R, op) to compute
a hash value of a binary operation op over BDDs L and R.
The hash H(L,R, op) is, however, constructed in such a way
that H(L,R, op) 6= H(R,L, op) even if the binary operations
corresponding with basic logic expressions such as AND, OR,
XOR are commutative.

IV. PROPOSED METHOD

The proposed method is based on CGP operating at the
gate level. The specification is given in the form of BDD.
All operations over BDDs are performed using the Buddy
package [14]. Candidate circuits (phenotypes) are represented
as directed acyclic graphs in a two-dimensional array of
processing nodes (gates). CGP is characterized by [3]:

• a simple encoding system in which a phenotype is
encoded in a constant-size array of integers;

• a simple search method based on (1 + λ) evolution
strategy;

• a single genetic operator – a point mutation.

A. Circuit Encoding

The CGP parameters which the user has to define are as
follows:

• nr ·nc – the number of rows and columns of the grid
of nodes in which phenotypes are embedded to;

• ni – the number of primary inputs;

• no – the number of primary outputs;

• na – the number of inputs of a node (maximum);

• Γ – a set of functions implemented by each node;

• l – the levels-back parameter.

Primary inputs and processing node outputs are labeled
0, 1, . . . , ni−1 and ni, ni+1, . . . , ni+nc ·nr−1, respectively.
Each node input can be connected either to the output of a
node placed in previous l columns or to one of the primary
circuit inputs. A candidate solution consisting of two-input
nodes is represented in the chromosome by nr · nc triplets
(x1, x2, ψ) determining for each processing node its function
ψ (ψ ∈ Γ), and addresses of nodes x1 and x2 which its inputs
are connected to. The last part of the chromosome contains no
integers specifying the nodes where the primary outputs are
connected to. The chromosome size s is

s = nrnc(na + 1) + no. (1)

While all the genes are always included in the chromosome,
the phenotype size is variable as some nodes (gates) can be
disconnected. The nodes involved in the phenotype are called
active nodes.

B. Fitness Function

Before a fitness value is assigned to a candidate circuit C
(represented using CGP), ROBDD for the reference circuit is
constructed firstly. Note that the construction of this ROBDD
can be performed only once during the initialization. Then, a
new ROBDD, DC , which is functionally equivalent with C
has to be constructed. In order to do so, the Apply function
(available in the Buddy implementation) is called for every
active gate Nj of circuit C. It consumes the logic function
performed by Nj and two operands of Nj which are interpreted
as pointers to appropriate ROBDD nodes. Depending on the
logic function of Nj , one or several new ROBDD nodes are
thus included into DC by means of one call of Apply. The
active nodes of C have to be processed from left to right in
order to construct the ROBDD correctly. Another ROBDD (let
us denote it DS) is constructed for the specification in the case
that the specification is not directly provided in the form of
ROBDD.

Corresponding outputs of DC and DS are connected to a
set of exclusive-or gates, i.e. zi = yD

C

i xor yD
S

i . By means
of the Sat-Count function, which is available in the Buddy
package, one can obtain the number of assignments bi to the
inputs which evaluate zi to 1. Finally, the fitness function f is
defined as

f =

no∑
i=1

bi. (2)

Obtaining f = 0 in the course of evolution means that a
fully functional solution was discovered. The fitness function
is then modified to reflect the number of gates which has to
be minimized.

C. Search Algorithm

The initial population is randomly generated, but it is
ensured that all chromosomes are legal, i.e. the values for
(x1, x2, ψ) are not pointing out outside the allowed ranges. Af-
ter evaluation of the population, the highest scored individual
(parent) is selected and λ offspring individuals are generated
using the mutation operator which modifies h randomly chosen
genes (integers) of the parent. However, if two or more
individuals can serve as the parent, the individual which has
not served as the parent in the previous generation will be
selected. This strategy is important because it ensures the
diversity of population. The whole process is repeated for a
predefined number of generations.

V. EXPERIMENTAL SETUP AND RESULTS

This section provides the experimental setup, reports the
experimental results and discusses various aspects of the
proposed method.

A. Optimized Fitness Function

In order to maximize the efficiency of the proposed method,
several additional optimizations have been enabled:

• If a mutation is detected as neutral, the fitness value
is not calculated and the offspring obtains the same
fitness as its parent.

• A new ROBDD is not constructed from scratch, but
the cone of influence, which is a reduction abstraction
technique aiming at simplifying the model in hand
by only referring to variables that are of interest, is
employed.

• Sat-Count is called only for the outputs that are
influenced by the mutation.

• The node’s indices are swapped during the BDD
construction in order to ensure that index1 < index2.

• In order to avoid unwanted penalties during evolution-
ary design, dynamic variable reordering is disabled.

• ROBDD representing the reference circuit (specifica-
tion) is minimized before the evolution is started.

TABLE I. PARAMETERS OF SELECTED LGSYNTH91 BENCHMARK
CIRCUITS

Circuit PI PO Gates Levels CE |BDD| Gain

x2 10 7 41 7 6.6× 102 38 44%
cm151a 12 2 28 8 1.8× 103 32 96%
9sym 9 1 228 14 1.8× 103 33 5%
ex5 8 63 505 10 2.0× 103 293 4%
cm162a 14 5 41 8 1.0× 104 43 46%
cu 14 11 47 8 1.2× 104 52 19%
apex4 9 19 2868 17 2.3× 104 1011 1%
b12 15 9 60 7 3.1× 104 72.0 11%
cm163a 16 5 42 7 4.3× 104 31 41%
t481 16 1 66 11 6.8× 104 32 0%
tcon 17 16 33 3 6.8× 104 24 21%
alu4 14 8 1059 22 2.7× 105 769 48%
table5 17 15 1500 24 3.1× 106 753 20%
cordic 23 2 63 11 8.3× 106 83 6%
frg1 28 3 103 12 4.3× 108 91 46%
C499 41 32 185 12 6.4× 1012 31699 36%

B. Benchmark Circuits and Their Properties

Table I contains benchmark circuits (and their parameters)
that were selected from the LGSynth91 set. Their selection
followed the aim of finding a threshold in circuit complexity
for which it makes sense to employ a BDD-based fitness func-
tion instead of the standard evaluation of all assignments to the
inputs. The number of primary inputs (PI) and primary outputs
(PO) are given. First, we applied a conventional optimization
tool ABC [15] and obtained the number of gates (in the column
Gates) and the longest path from inputs to outputs (in the
column Levels). The CE column gives the computational effort
needed to simulate all input combinations on a 64-bit processor
for a circuit consisting of k gates. Because a parallel simulation
is utilized, CE = k · 2B , where B = PI − 6 if PI > 6, and
B = 1 otherwise. Circuits are listed according to their expected
complexity for evolutionary design (i.e. CE) in Table I.

Parameters of corresponding ROBDDs are the size
(|BDD|) and Gain. Each ROBDD encodes PO Boolean
functions using |BDD| nodes. If a node is shared by more
functions, it is counted just once. Except circuit C499 and
compared to the number of gates (produced by ABC), the
BDDs can be seen as a more compact representation. The
C499 circuit is probably one of the circuits whose ROBDD
representations are exponential with respect to standard logic
networks. It should be noted that Buddy can still manipulate
over circuits of this size.

It was discussed in Section III that the variable order
significantly influences the size of BDD. In order to minimize
the size of ROBDD representing a benchmark circuit, BDDs
(constructed according to resulting logic networks produced
by ABC) were further optimized by a SIFT algorithm, which
is available in Buddy. The Gain column shows the node
reduction obtained with respect to the original variable order
x1 ≺ x2 ≺ x3 ≺ ... ≺ xPI . It can be seen that applying the
SIFT algorithm is very useful, especially for cm151a circuit
(96% reduction). On the other hand, no improvement can be
seen for t481 circuit.

Enabling all the aforementioned optimizations led to the
average construction time of 0.2 s, with the worst case of 1.8 s
for t481 circuit. Logic networks (in terms of the number of
gates) as well as the corresponding ROBDDs (the number of
nodes) can be seen as carefully pre-optimized by means of the
conventional methods (ABC and Buddy) in order to fairly eval-
uate the contribution of the evolutionary design/optimization
methods.

C. The Obtained Speedup: CGP vs. CGP-BDD

In this subsection, we will compare the standard evaluation
used in CGP and the BDD-based evaluation (CGP-BDD) in
two scenarios. In the first scenario, the initial population is
seeded by the circuits obtained from ABC. In the second one,
the initial population is seeded randomly. We will study the
impact of neutral mutations and active nodes on the evaluation
time. The results were obtained from 50 independent runs
using the following experimental setup: λ = 4, h = 5, nr = 1,
Γ = {AND,OR,XOR,NAND,NOR,XNOR,NOT,BUF}.
The number of CGP columns nc was chosen to be equal
to the size of a circuit syntesized using ABC (see Table I).
As the circuits synthesized by ABC are known to be usually
far from an optimal result, the number of available resources
should be sufficient to provide some degree of neutrality for
CGP. The evolution is terminated when a predefined number
of generations gmax = 104 is spent. This value was chosen
so that the runtime of a single evolutionary run is within tens
of seconds. All the experiments were performed on a cluster
of computation nodes equipped with Intel Xeon processors
running at 3 GHz.

TABLE II. THE AVERAGE EVALUATION TIME FOR ONE POPULATION
WHEN CGP AND CGP-BDD ARE SEEDED BY CONVENTIONAL DESIGNS.

tevalpop (ms) Averages

Circuit CGP CGP-BDD speedup α DIFF CEef

x2 0.04 ± 0.2 0.02 ± 0.1 2 93.5% 28.4% 6.1× 102

cm151a 0.12 ± 0.3 0.02 ± 0.2 5 85.9% 35.5% 1.5× 103

9sym 0.11 ± 0.3 0.23 ± 0.5 0.5 94.1% 15.0% 1.7× 103

ex5 0.14 ± 0.4 0.16 ± 0.4 0.9 93.7% 7.0% 1.9× 103

cm162a 0.75 ± 0.5 0.03 ± 0.2 24 88.5% 27.5% 9.3× 103

cu 0.83 ± 0.4 0.04 ± 0.2 20 95.5% 27.2% 1.1× 104

apex4 1.55 ± 0.5 0.54 ± 0.6 3 99.6% 2.3% 2.3× 104

b12 2.26 ± 0.4 0.03 ± 0.2 82 96.0% 21.6% 2.9× 104

cm163a 3.24 ± 1.3 0.02 ± 0.1 147 86.1% 24.2% 3.7× 104

t481 2.44 ± 0.9 0.03 ± 0.2 73 40.4% 10.0% 2.7× 104

tcon 3.43 ± 0.7 0.02 ± 0.1 223 72.6% 14.8% 4.9× 104

alu4 18.09 ± 2.0 0.96 ± 0.8 19 96.9% 6.5% 2.6× 105

table5 207.41 ± 19.8 0.60 ± 0.6 347 99.3% 5.7% 3.1× 106

cordic * 5.78×102 0.14 ± 0.4 4.0×104 81.5% 23.3% 6.7× 106

frg1 * 3.02×104 0.41 ± 0.6 7.3×105 90.3% 18.1% 3.9× 108

C499 * 4.45×108 78.84 ± 33.7 5.6×107 99.3% 40.8% 6.3× 1012

Table II gives the average evaluation time of one population
(standard CGP vs. CGP-BDD) when the initial population is
seeded by circuits pre-optimized by ABC. The averages are
calculated using the last 100 generations in which the whole
process is considered to be stable and the resulting values are
trustworthy. It can be seen that for the standard CGP the order
of magnitude of tevalpop is corresponding with the CE given
in Table I. The average duration of one operation performed
during the evaluation is 70 ps, while minimum is 44.5 ps and
maximum 94.4 ps. This spread is caused by changes in the
active nodes count and cache misses. Only estimated numbers
are given for circuits with more than 20 primary inputs because
conducting real experiments with such complex circuits would
be extremely time and memory consuming (see * in Tables). In
the case of CGP-BDD, the evaluation time of one population
is lower than 1 ms; the only exception is C499 circuit which
was discussed earlier. The speedup of CGP-BDD against CGP
is given in column speedup.

The average number of active gates with respect to avail-
able gates (nc) is denoted α. Considering the fact that the
evolution started with well pre-optimized circuits by ABC, one
would expect α close to 100%. However, CGP is still capable
of reducing the circuit size even if a relative small number of
generations was allowed (as reported in [2]). For example, a
60% reduction was obtained for t481 and a 28% reduction in
the case of tcon. The DIFF column gives the average number
of BDD nodes (in %) with respect to the total number of
available gates which has to be included into BDD in order to
calculate the Hamming distance to its parent (i.e. to its parent’s
BDD). One can observe that this percentage represents just a
small fraction of the total number of nodes and hence this
operation has only a small overhead. The last column gives
the average computational effort CEef = CE ·α. The CEef
values are similar to CE from Table I because almost all nodes
are active (α is relatively high). Hence the values shown in
speedup column can be considered as a good estimate of the
real speedup.

TABLE III. THE AVERAGE EVALUATION TIME FOR ONE POPULATION
WHEN CGP AND CGP-BDD ARE RANDOMLY SEEDED.

tevalpop (ms) Averages

Circuit CGP CGP-BDD speedup α DIFF CEef

x2 0.03 ± 0.2 0.01 ± 0.1 2 36.7% 10.1% 2.4× 102

cm151a 0.06 ± 0.2 0.01 ± 0.1 5 37.5% 12.9% 6.7× 102

9sym 0.01 ± 0.1 0.02 ± 0.1 0.6 8.2% 0.7% 1.5× 102

ex5 0.08 ± 0.3 0.06 ± 0.2 1 29.0% 3.3% 5.9× 102

cm162a 0.37 ± 0.5 0.01 ± 0.1 32 34.5% 7.5% 3.6× 103

cu 0.50 ± 0.5 0.02 ± 0.1 29 34.2% 9.0% 4.1× 103

apex4 0.11 ± 0.3 0.17 ± 0.4 0.6 4.0% 0.1% 9.3× 102

b12 1.09 ± 0.6 0.01 ± 0.1 89 29.6% 5.8% 9.1× 103

cm163a 1.23 ± 0.7 0.01 ± 0.1 114 27.6% 5.9% 1.2× 104

t481 0.60 ± 0.7 0.01 ± 0.1 73 8.7% 1.4% 5.9× 103

tcon 2.47 ± 1.1 0.01 ± 0.1 184 17.9% 5.9% 1.2× 104

alu4 1.71 ± 1.7 0.08 ± 0.3 21 6.1% 0.2% 1.7× 104

table5 18.14 ± 18.2 0.11 ± 0.3 163 5.3% 0.2% 1.6× 105

cordic * 1.86×102 0.01 ± 0.1 1.4×105 10.8% 2.0% 9.0× 105

frg1 * 9.72×103 0.02 ± 0.1 6.4×106 8.5% 1.1% 3.7× 107

C499 * 1.43×108 1.84 ± 2.0 7.8×108 21.1% 2.2% 1.3× 1012

Table III shows the average evaluation time for one pop-
ulation in the case that the initial populations are randomly
seeded. The obtained speedup (CGP-BDD vs. CGP) is very
close to the values reported in Table II despite the fact that
the number of active gates (α) is low. Randomly seeded CGP

typically operates with small phenotypes whose evaluation is
less time consuming and CE is thus lower in comparison with
the previous scenario. For example, in the case of apex4, CGP
is faster than CGP-BDD and the corresponding computational
effort is one order of magnitude smaller than for seeded initial
populations. In addition to low α (4%), the reason is that the
size of a BDD used as reference for apex4 is relatively high
(1011 nodes).

Low α values together with a careful analysis of CGP log
files confirmed us that randomly seeded evolution typically
begins with a small phenotype which is enriched by additional
gates in the process of evolution. This means that the standard
CGP evaluation will be slower in the course of evolution,
which corresponds with increasing CE.

In comparison with the first scenario, the ROBDDs which
are constructed to evaluate candidate circuits require a lower
number of additional nodes (see the DIFF column in Table II).
This phenomenon was actually expected because phenotypes
are smaller. The consequence is the evaluation time is signif-
icantly reduced. For example, tevalpop is 10 times shorter for
alu4 or C499 (see CGP-BDD in Table II vs. Table III).

One can observe that employing CGP-BDD is useful if CE
is higher than 3.0× 103 independently of the method used to
generate the initial population. In practice, this CE corresponds
with circuits having about 14 primary inputs. The achievable
speedup then significantly increases with the number of inputs.
The standard CGP is hardly applicable for circuits with over
20 inputs because the target truth table requires a considerable
memory and many operations have to be performed to obtain
the fitness values.

D. Evolutionary Design Using CGP-BDD

The standard CGP and CGP-BDD were utilized to evolve
selected combinational circuits from scratch. We employed the
setting introduced in the previous section. A single run was
terminated after tmax = 3 hours. Statistical results which are
summarized in Table IV are presented from 100 independent
runs. Columns CGP and CGP-BDD give the average number
of generations that can be performed within the available time
tmax. The corresponding speedup is shown as speedup. The
success rate represents the number of runs in which a fully
functional (correct) solution was obtained. Employing CGP-
BDD has led to increasing the number of evaluated candidate
circuits as well as the success rate. For example, the 113
times faster evaluation allowed increasing the success rate
by 85% in the case of tcon. A relatively small increase in
the number of generations (8x) allowed us to evolve a fully
functional circuit alu4 in 58% of runs, while the standard CGP
did not provide any correct implementation within the same
time. Despite the increased number of evaluations, no correct
solution was obtained for circuits table5, cordic and C499.
Similarly to large multipliers, these circuits seem to be difficult
for the evolutionary design.

Parameters of evolved circuits are summarized in Table V.
fbst is the best obtained fitness (in %) across all the runs. If
fbst = 100% for a given circuit, gbst gives the number of
gates in the most compact solution. If fbst < 100%, gbst is
the average number of gates in the last 100 generations across
all the runs. If fbst < 100% and gbst is close to the number

of available gates (nc), we supposed that the evolution failed
because the number of gates is insufficient. However, this is
not the case of the circuits for which the CGP-BDD did not
provide any correct solution, because about 80% of available
gates are unused. The CGP-BDD was very close to desired
solutions, but get stuck in a local optimum because of the
overall hardness of the task.

Evolved circuits are much more compact (a 17.9 – 93.4%
reduction obtained) than the circuits produced by ABC (see the
Improv column). CGP-BDD provided better results than CGP
in most cases, with the exception of smaller circuits when
CGP-BDD is slower than CGP.

Figure 2 shows convergence curves (25 runs) of both
methods when applied on the tcon circuit for which they
provided the same size of a correct solution. The progress
of fitness values is very similar in both cases; however, CGP-
BDD is approximately 100 times faster than CGP.

Figure 2 also shows the average number of active gates in
all phenotypes. One can observe the spread in the number of
active gates among the runs and estimate the minimum and
maximum evaluation time of a population. The first quarter of
the runtime is characterized by a very variable number of active
gates. In the progress of evolution, the number of active gates
is growing until a correct solution is reached. Later, the number
of active gates is slightly decreasing which corresponds with
the optimization phase toward the most compact circuit.

TABLE IV. EVOLUTIONARY CIRCUIT DESIGN USING CGP AND
CGP-BDD.

generations success rate

Circuit CGP CGP-BDD speedup CGP CGP-BDD

x2 1.6× 108 1.6× 108 1.0 4.0% 4.0%
cm151a 5.8× 107 1.2× 108 2.1 97.0% 98.0%
9sym 1.9× 108 8.0× 107 0.4 100.0% 100.0%
ex5 6.1× 107 4.1× 107 0.7 13.0% 7.0%
cm162a 1.2× 107 1.2× 108 10.4 44.0% 100.0%
cu 1.2× 107 1.6× 108 13.2 0.0% 7.0%
apex4 1.5× 107 9.9× 106 0.7 0.0% 0.0%
b12 4.6× 106 1.3× 108 28.1 0.0% 19.0%
cm163a 3.4× 106 1.6× 108 47.8 0.0% 20.0%
t481 3.7× 106 1.7× 108 45.9 92.0% 100.0%
tcon 1.6× 106 1.8× 108 113.0 15.0% 100.0%
alu4 2.0× 106 1.8× 107 8.5 0.0% 58.0%
table5 3.0× 105 2.7× 107 90.2 0.0% 0.0%
cordic n.a. 2.3× 108 n.a. 0.0% 0.0%
frg1 n.a. 1.1× 108 n.a. 0.0% 54.0%
C499 n.a. 6.6× 106 n.a. 0.0% 0.0%

VI. CONCLUSION

In this paper, we proposed a new method for an efficient
evaluation of candidate circuits in randomly seeded CGP. The
method exploits the fact that the specification can be given in
the form of BDD, every candidate circuit can be transformed
to BDD and the similarity/equivalence of these BDDs can be
calculated in a relatively short time. In order to construct BDDs
and perform various operations over these BDDs, Buddy
package was utilized. Compared to the standard CGP, the
proposed method enabled us to significantly accelerate the
whole evolutionary design process and increase the success
rate, especially if the number of primary inputs of target
circuits is greater than 14.

TABLE V. PARAMETERS OF EVOLVED CIRCUITS

CGP CGP-BDD

Circuit fbst gbst Improv. fbst gbst Improv.

x2 100.0% 27.0 34.1% 100.0% 26.0 36.6%
cm151a 100.0% 23.0 17.9% 100.0% 23.0 17.9%
9sym 100.0% 23.0 89.9% 100.0% 23.0 89.9%
ex5 100.0% 152.0 69.9% 100.0% 155.0 69.3%
cm162a 100.0% 26.0 36.6% 100.0% 26.0 36.6%
cu 99.8% 24.9 n.a. 100.0% 34.0 27.7%
apex4 89.7% 648.1 n.a. 89.2% 594.0 n.a.
b12 99.3% 35.7 n.a. 100.0% 45.0 25.0%
cm163a 99.4% 23.6 n.a. 100.0% 26.0 38.1%
t481 100.0% 22.0 66.7% 100.0% 21.0 68.2%
tcon 100.0% 25.0 24.2% 100.0% 25.0 24.2%
alu4 99.3% 178.2 n.a. 100.0% 70.0 93.4%
table5 98.1% 134.3 n.a. 99.4% 157.5 n.a.
cordic n.a. n.a. n.a. 99.4% 12.2 n.a.
frg1 n.a. n.a. n.a. 100.0% 44.0 57.3%
C499 n.a. n.a. n.a. 99.6% 36.2 n.a.

0 10-2 10-1 100 101 102 103 104

t [s]

50%

60%

70%

80%

90%

100%

fi
tn

e
ss

 v
a
lu

e

cgp-ed

cgp-ed-bdd

0 10-2 10-1 100 101 102 103 104

t [s]

10%

20%

30%

40%

50%

60%

70%

80%

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f

g
a
te

s

cgp-ed

cgp-ed-bdd

Fig. 2. Convergence curves for tcon benchmark circuit.

Correct implementations were evolved for problem in-
stances which are fairly out of the scope of well-optimized
standard CGP implementations. For example, a correct imple-
mentation was evolved for a 28-input frg1 circuit. The evolved
circuit contains less gates than the result of a conventional op-
timization conducted by ABC (a reduction of 57% obtained).
A detailed comparison was performed with the standard CGP.
The results indicate that if even more complex circuits should
be evolved, the proposed fast evaluation method would be
accompanied with a suitable decomposition scheme (such as
the divide and conquer) in order to reduce the size of genotype

and thus to restrict the search space. Our future work will be
devoted to a further development and detailed analysis of the
proposed method. A research combining the proposed method
with a suitable automated decomposition scheme is expected.

ACKNOWLEDGMENT

This work was supported by the Czech science foundation
project 14-04197S – Advanced Methods for Evolutionary
Design of Complex Digital Circuits.

REFERENCES

[1] L. Sekanina, “Evolvable hardware,” in Handbook of Natural Computing.
Springer Verlag, 2012, pp. 1657–1705.

[2] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Programming and Evolvable Machines, vol. 12, no. 3, pp. 305–
327, 2011.

[3] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[4] G. Greenwood and A. M. Tyrrell, Introduction to Evolvable Hardware.

IEEE Press, 2007.
[5] X. Yao and T. Higuchi, “Promises and Challenges of Evolvable Hard-

ware,” in First International Conference on Evolvable Systems: From
Biology to Hardware, ser. LNCS, vol. 1259. Springer, 1996, pp. 55–78.

[6] R. Hrbacek and L. Sekanina, “Towards highly optimized cartesian
genetic programming: From sequential via simd and thread to massive
parallel implementation,” in Proceeding of Genetic and Evolutionary
Computation Conference, GECCO. ACM, 2014, pp. 1015–1022.

[7] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware,” IEEE Transaction Systems,
Man and Cybernetics, Part B, vol. 36, no. 5, pp. 1024–1043, 2006.

[8] V. Vassilev, D. Job, and J. F. Miller, “Towards the Automatic Design
of More Efficient Digital Circuits,” in Proc. of the 2nd NASA/DoD
Workshop on Evolvable Hardware. IEEE, 2000, pp. 151–160.

[9] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization
method for combinational circuits,” in Proc. of the Design, Automation
and Test in Europe, DATE. EDAA, 2011, pp. 1525–1528.

[10] G. D. Micheli, Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1994.

[11] R. E. Bryant, “On the Complexity of VLSI Implementations and
Graph Representations of Boolean Functions with Application to Integer
Multiplication,” IEEE Transaction on Computers, vol. 40, no. 2, pp.
205–213, 1991.

[12] R. Ebendt, G. Fey, and R. Drechsler, Advanced BDD Optimization.
Springer, 2000.

[13] C. Meinel and T. Theobald, Algorithms and Data Structures in VLSI
Design, 1st ed. Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
1998.

[14] J. Lind-Nielsen and H. Cohen. BuDDy - A Binary Decision Diagram
Package. [Online]. Available: http://buddy.sourceforge.net

[15] A. Mishchenko, “ABC: A system for sequential synthesis and
verification, Berkley logic synthesis and verification group,” 2012.
[Online]. Available: http://www.eecs.berkeley.edu/˜ alanmi/abc/

