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Abstract: A new approach of probabilistic modeling used in Estimation of Distribution Algorithms (EDAs) based
on Copula theory is described. By means of copulas it is possible to separate the structure of dependence from
the marginal distributions in a joint distribution. Two dimensional Gaussian copula is depicted in more details
including the sampling of the copula based on the conditional probabillity density function. The use of copulas
for modeling joint distributions in EDAs is illustrated on several benchmarks.
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1 Introduction

EDAs belong to the advanced evolutionary algorithms based on the estimation and sampling of graphical
probabilistic models. They do not suffer from the disruption of building blocks known from the theory of
standard genetic algorithms. The canonical sequential EDA is described in Fig. 1.

EDAs often surpass classical EAs in the number of required fitness function evaluations. However, the
absolute execution time is still limiting factor which determines the size of practically tractable problems.
Referring to Fig. 1 the most time consuming task is the estimation of probability model for many problems.

Set t← 0;
Generate initial population D(0) with N individuals;
While termination criteria is false do
begin

Select a set Ds(t) of K < N promising individuals;
Construct the probability model M from Ds(t);
Sample offspring O(t) from M ;
Evaluate O(t);
Create D(t+ 1) as a subset of O(t) ∪D(t) with cardinality N ;
t← t+ 1;

end

Figure 1: The pseudo code of canonical EDA

The EDAs algorithms can be assorted according the complexity of the probability model. The simplest
EDAs are UMDA algorithms [8], BMDA [7], MIMIC [2], and BOA [6], in the discrete domain. EDAs for the
both discrete and continuous domains are described thoroughly in [3]. The main advantage of these algorithms
is the capability to discover the variable linkage which results in successful solution of complex optimization
problem. But there are two problems that which must be taken into consideration. The first problem is the
need of the model complexity option and the relation to probability model overspecification. The second one is
the time complexity of the probability model design.

The copula theory was utilizated so far in the financial and statistical areas [5, 1]. Only in few recent
years the copula theory has been imported into the probabilty model of EDAs. Simply expressed copulas
join the multivariate distribution functions to their univariate distribution functions that are uniform on the
interval [0; 1]. Copula EDA algorithm therefore has the capability to reduce the execution time and the variable
dependency can be modeled more exact.

The paper is organized as follows. In Section 2 basics of the copula theory is presented. The structure of
Gaussian copula EDA is described in section 3. The eperimental results are shown in Section 4. The conclusions
are provided in Section 5.



2 Copula theory

The copula concept was introduced 55 years ago by Sklar [9] to separate the effect of dependence from the effect
of marginal distributions in a joint distribution. Copula is a function which joins the univariate distribution
function and creates multivariate distribution functions. This approach allows to transform multivariate statistic
problems on the univariate problems with the relation represented just by copula.

Definition. A copula C is a multivariate probability distribution function for which the marginal probability
distribution of each variable is uniform in [0; 1].

A copula is a function C : [0; 1]d → [0; 1] with the following properties [10]:

1. C(u1, u2, . . . , ud) = 0 for at least one ui = 0

2. C(1, 1, . . . , 1, ui, 1, . . . , 1) = ui for all i = 1, 2, . . . , d

3. ∀(u1, . . . , ud), (v1, . . . , vd) ∈ 〈0; 1〉d, ui ≤ vi :
∑

(w1,...,wd)∈×di=1{ui,vi}
(−1)|{i:wi=ui}|C(w1, . . . , wd) ≥ 0

Theorem. Sklar’s theorem [9]: Let F be a d-dimensional distribution function with margins F1, . . . , Fd. Then
there exists a d-dimensional copula C such that for all (x1, . . . , xd) ∈ Rd it holds that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) (1)

If F1, . . . , Fd are continuous, then C is unique. Conversely, if C is a d-dimensional copula and F1, . . . , Fd are
univariate distribution functions, then the function F defined via (1) is a d-dimensional distribution function.

Examples of bivariate copula functions can be seen in Fig. 2. M copula has form M(u, v) = min(u, v), W
copula has form W (u, v) = max(u + v − 1, 0). These copulas are called Fréchet-Hoeffding bounds, for every
copula C(u, v) holds W (u, v) ≤ C(u, v) ≤M(u, v) [4].

Figure 2: Examples of copula functions: M copula (left), W copula (right)

2.1 Gaussian copula

One type of copula is the Gaussian copula function, it is the member of elliptical copula family. Gaussian copula
is the copula associated to the joint standard Gaussian distribution. We will deal with two-dimensional copula
more in detail.

Definition. Bivariate Gaussian copula has the following functional form:

Cρ(u, v) = Φρ
(
Φ−1(u),Φ−1(v)

)
(2)

where Φρ(x, y) = P (X < x, Y < y) =
∫ x
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distribution function of the standard normal distribution, Φ−1(x) is it’s quantile function.



3 Gaussian copula EDA

We used two-dimensional Gaussian copula for modeling dependencies and normal distribution as marginal
distribution functions.

Similarly as EDA algorithm in Fig. 1 the core of Gaussian EDA includes the selection of promising in-
dividuals, identification of the probability model on the level of parameters and a mechanism of the model
sampling.

3.1 Selection of promising solutions

For a set of promising solutions, we select K best solutions according to their fitness value. The cardinality
K of Ds(t) influences the level of selection pressure and the capability of the model. We used also elitism
phenomenon in the phase of the new population creation.

3.2 Identification of copula probability model

Probability model is specified by two parts, parameters of marginal distribution functions and parameters of
copula. These parameters are derived from the set Ds(t) of selected promising solutions.

For parametrization of marginal distributions in each dimension i, we used mean value µi and standard
deviation σi. The marginal univariate distribution function is expressed by

Fi(xi) =

∫ xi

−∞

1

σ
√

2π
e
− (t−µi)

2

2σ2
i dt = Φ

(
xi − µi
σi

)
(3)

The Gaussian copula function is parametrized by correlation matrix R, for two-dimensional copula the

matrix has form R =

(
1 R1,2

R2,1 1

)
. Because the matrix is symmetric, holds R1,2 = R2,1 = ρS , so the copula

has one parameter ρS , which express correlation between two dimensions. For this correlation coeficient we
used Spearman’s correlation coefficient ρS .

The Spearman ρS is defined as the Pearson correlation coefficient between the ranked variables. For a sample
of size n, the n original values xi, yi are converted to ranks pi, qi, and ρS is computed from these:

ρS = 1−
6
∑
i(pi − qi)2

n(n2 − 1)
(4)

3.3 Sampling offspring from copula

The main task is to obtain the copula sample (u, v) ∼ C, then due to virtue of Sklar’s theorem the new values
of variables x1, x2 can be determined using inverse of marginal distribution

x1 = F−1
1 (u) x2 = F−1

2 (v) (5)

In [4] is published general copula sampling methodology in low dimension based on conditional distribution.
In this metodology, one variable is sampled independently, u ∼ U [0; 1]. It is computed conditional distribution
FV |U=u(v) = ∂

∂uC(u, v), the inverse of this distribution is F−1
V |U=u(ω). Then is simulated independent value

ω ∼ U [0; 1] and variable v is calculated using v = F−1
V |U=u(ω).

Let’s start with bivariate Gaussian copula distribution

Cρ(u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
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2π
√

1− ρ2
e
− s

2+t2−2ρst

2(1−ρ2) dtds (6)

Utilizing the known formula of fundamental theorem of calculus d
dx

(∫ g(x)

c
f(t) dt

)
= f(g(x))g′(x) leads to

ω =
∂

∂u
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After some proper transformations:
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The next step is calculating derivative
(
Φ−1

)′
(u). For derivative of inverse function stands

(
Φ−1

)′
(u) =

1
Φ′(Φ−1(u)) . Derivative Φ′ can be done using fundamental theorem of calculus

Φ′(x) =
d
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∫ x

−∞

1√
2π

e−
t2

2 dt =
1√
2π

e−
x2
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after substitution into equation for derivative of inverse

(
Φ−1

)′
(u) =

1

1√
2π

e−
Φ−1(u)2

2

=

√
2π

e−
1
2 Φ−1(u)2

(11)

The last step is substitution
(
Φ−1

)′
(u) into equation (9)
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Now the equation (12) is similar to cumulative distribution function of the normal distribution∫ x
−∞

1
σ
√

2π
e−

(t−µ)2

2σ2 dt = Φ
(
x−µ
σ

)
with coeficients σ =

√
1− ρ2 and µ = ρΦ−1(u), let’s rewrite the equa-

tion into the form

ω = Φ

(
Φ−1(v)− ρΦ−1(u)√

1− ρ2

)
(13)

Using inverse operation we get v as

v = Φ
(√

1− ρ2Φ−1 (ω) + ρΦ−1(u)
)

(14)

Couple (u, v) obtained by this computation is the required copula sample. So generating the new offspring
from copula probability model has these three steps:

1. Randomly generate variables u ∼ U [0; 1] and ω ∼ U [0; 1].

2. Calculate variable v = Φ
(√

1− ρ2Φ−1 (ω) + ρΦ−1(u)
)

.

3. Determine x1 = F−1
1 (u) and x2 = F−1

2 (v). In our case, as we use univariate marginal normal distribution,
the previous equations have form x1 = σ1Φ−1(u) + µ1, x2 = σ2Φ−1(v) + µ2.

4 Experimental results

Five well known benchmarks for optimization (finding of minimum extreme) according to [11] are used:

1. Shifted Elliptic Function:

f(z) =

D∑
i=1

(106)
i−1
D−1 z2

i , xi ∈ [−100; 100] (15)

2. Shifted Rastrigin’s Function:

f(z) =

D∑
i=1

(
z2
i − 10 cos(2πzi) + 10

)
, xi ∈ [−5; 5] (16)

3. Shifted Ackley’s Function:

f(z) = −20 e−0.2
√

1
D

∑D
i=1 z

2
i − e

1
D

∑D
i=1 cos(2πzi) + 20 + e, xi ∈ [−32; 32] (17)

4. Shifted Schwefel’s Problem 1.2:

f(z) =

D∑
i=1

 i∑
j=1

zi

2

, xi ∈ [−100; 100] (18)



5. Shifted Rosenbrock’s Function:

f(z) =

D−1∑
i=1

(
100(z2

i − zi+1)2 + (zi − 1)2
)
, xi ∈ [−100; 100] (19)

where D is number of dimensions and z is shifted candidate solution z = x− oshift.
The minimum for all problems in global optimum x∗ is f(x∗) = 0. The reported results were obtained from

20 independent runs, with the following parameters:

• Population size: 500.

• Maximum number of fitness evaluations: 50,000.

• Selection: We used K = 0.2N , i.e. 100 individuals.

• Problem size: 2 variables for all problems.

After evaluation of whole population, when the total number of fitness evaluations exceeded 1000, 2000,
etc., the fitness of best individuum was recorded. Average results are presented in Tables 1–5. The evolution
was stopped after the maximum number of fitness evaluations was reached or when the fitness value of best
individual reached the known optimum (with possible precision of used floating point number representation).

Table 1: Experiment results for Shifted Elliptic Function

fitness eval. 1000 2000 5000 10000 20000 after stopping
mean 3.14084E-04 6.20478E-06 3.70212E-13 — — 4.68629E-17
std. dev. 2.14157E-04 9.69165E-06 5.64220E-13 — — 3.44622E-17
min 9.67161E-06 1.97070E-07 7.42473E-15 — — 1.12245E-18
max 8.57832E-04 4.25024E-05 2.57162E-12 — — 1.25340E-16

Table 2: Experiment results for Shifted Rastrigin’s Function

fitness eval. 1000 2000 5000 10000 20000 after stopping
mean 9.65771E-01 3.71404E-01 5.45110E-02 1.32083E-04 — 0.00000E+00
std. dev. 5.51695E-01 4.04482E-01 4.99525E-02 3.40353E-04 — 0.00000E+00
min 4.31849E-02 2.43028E-03 2.43028E-03 4.49827E-10 — 0.00000E+00
max 1.73662E+00 1.29294E+00 2.10099E-01 1.49188E-03 — 0.00000E+00

Table 3: Experiment results for Shifted Ackley’s Function

fitness eval. 1000 2000 5000 10000 20000 after stopping
mean 1.17129E+00 8.89131E-02 1.24053E-05 4.83663E-10 9.99310E-11 7.25176E-11
std. dev. 6.80348E-01 4.49678E-02 8.68315E-06 5.08244E-10 2.75852E-10 2.79930E-10
min 2.12168E-01 5.92512E-03 6.02814E-07 9.26410E-11 8.49543E-13 7.18092E-13
max 2.54969E+00 1.82530E-01 3.40700E-05 1.91008E-09 1.29229E-09 1.29229E-09

Table 4: Experiment results for Shifted Schwefel’s Problem 1.2

fitness eval. 1000 2000 5000 10000 20000 after stopping
mean 2.29068E-05 3.24285E-08 — — — 7.00368E-17
std. dev. 4.00942E-05 1.08713E-07 — — — 6.16074E-17
min 7.29431E-08 5.96988E-11 — — — 4.84636E-22
max 1.44324E-04 5.04142E-07 — — — 1.72475E-16



Table 5: Experiment results for Shifted Rosenbrock’s Function

fitness eval. 1000 2000 5000 10000 20000 after stopping
mean 9.80988E+00 2.71917E+00 1.89456E-01 4.82955E-03 — 8.76696E-17
std. dev. 8.22324E+00 2.57893E+00 2.46643E-01 9.78643E-03 — 7.34051E-17
min 1.28253E-01 5.57618E-03 4.99794E-03 6.98564E-07 — 1.86577E-18
max 3.50877E+01 8.77529E+00 1.01694E+00 4.24769E-02 — 2.04121E-16

5 Conclusion

In this paper we have introduced the utilization of bivariate Gaussian copula as a variant of probability model
in Estimation of Distribution Algorithm. We have presented the main theoretical grounds and the approach
of constructing and sampling of the copula. Relatively much of effort was spent to derive the right approach
of application of conditional distribution function to sample Gaussian copula. To illustrate the performance of
Copula EDA algorithm a few known benchmarks of optimization were used. From the experimental results it is
clear that the proposed allgorithm is effective. The next target of our research is the parallelization of algorithm
and implementation of different univariate marginal distributions.
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