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Abstract: This paper deals with the biometric recognition of 3D faces with the empha-
sis on the low-cost depth sensors; such are Microsoft Kinect and SoftKinetic DS325.
The presented approach is based on the score-level fusion of individual recognition
units. Each unit processes the input face mesh and produces a curvature, depth, or tex-
ture representation. This image representation is further processed by specific Gabor
or Gauss-Laguerre complex filter. The absolute response is then projected to lower-
dimension representations and the feature vector is thus extracted. Comparison scores
of individual recognition units are combined using transformation-based, classifier-
based, or density-based score-level fusion. The results suggest that even poor quality
low-resolution scans containing holes and noise might be successfully used for recog-
nition in relatively small databases.

1 Introduction

The face is one of the most used biometric modalities. Although there has been a rapid
development in recent years [ZCP03, PKP10, ANRS07] and the facial biometric is also
accepted in the industry, there are still some challenges that should be considered when one
is designing a face recognition system. The classical approach utilizing 2D photographs
has to deal with illumination and pose variation. This can be solved when the 3D face
recognition is used, however, the biggest disadvantage of this approach are much higher
acquisition costs.
The expansion of personal depth sensors related with the new ways of the human-computer
interaction in recent years markedly lowered the price of 3D acquiring devices for personal
use. This paper describes the face recognition pipeline utilizing such low-cost devices, i.e.,
Microsoft Kinect 3601 and SoftKinetic DS3252 sensors.
The biggest challenge of the face recognition based on the low-cost depth sensors is the

1http://www.xbox.com/kinect/
2http://www.softkinetic.com/products/depthsensecameras.aspx



quality of acquired scans. While, for example, the Minolta Vivid or Artec 3D M scanners
provide a highly precise geometry with outstanding resolution and level of detail, the scans
retrieved from the Kinect or DS325 sensors are noisy, have low resolution and sometimes
contain holes (see Figure 1).

Figure 1: Example scans from SoftKinetic (left), Kinect (middle), and Minolta Vivid (right) sensors.

1.1 Related Work

The 3D face recognition algorithms can be divided into three categories – holistic, feature
based, and hybrid [ZCP03]. The holistic recognition methods utilize global information
from faces in order to perform face recognition. The global information is directly derived
from the face representations. The feature based face recognition, conversely, uses a priori
information or local features of faces to select a number of features to uniquely identify
individuals. Local features may include the eyes, nose, mouth, chin and head outline.
Our approach represents a combination of holistic and feature-based methods. We are
using the holistic feature extraction method - Principal Component Analysis (PCA) [TP91]
performed on the image representation of the face surface. However, we process the image
with the bank of filters first. E.g. the Gabor filter offers localization of specific properties
of the image in spatial as well as frequency domain. Thus our approach may be also
considered as the feature based recognition.
The similar approach, where the holistic and local features are combined, is presented
in [Ard12]. Their method is based on a set of facial depth maps extracted by multiscale ex-
tended Local Binary Patterns (eLBP). The following SIFT-based matching strategy com-
bines local and holistic analysis. In [KED12] a block based face analysis approach is pro-
posed which provides the advantage of robustness to nose plastic surgery alterations. The
method utilizes local description. PCA, Linear Discriminant Analysis (LDA) [DGG05]
and Circular Local Binary Pattern (CLBP) [OPM02] are applied over image blocks to
extract block features.
The utilization of Kinect sensor for face recognition was proposed in [LMLK13] where
Sparse Representation Classifier (SRC) [WYG+09] is applied on the range images as well
as on the texture. Moreover, the RGB channels of the texure are transformed using Tensor
Discriminant Color Space (TDCS) [WYZZ11].
The application of the Gabor and Gauss-Laguerre filters for thermal face recognition has
been previously proposed in our work [VMD+12]. We have shown that the score-level
fusion of individual face recognition classifiers based on PCA and ICA applied on images
processed by Gabor and Gauss-Laguerre filter banks significantly outperforms individual



face classifiers.
We have been also investigating the utilization of image filters and score-level fusion in
our previous work that deals with 3D face recognition [MVL+14]. In this paper, the
recognition pipeline is generalized in order to deal with poor-quality scans.

1.2 Text structure

The section 2 brings the overview of the pre-processing of the input scans prior to the
feature extraction. The scans are smoothed using feature-preserving mesh denoising first.
The pose invariation is ensured with the Iterative Closest Point (ICP) algorithm [BM92].
The section 3.1 describes the feature extraction from the processed input face mesh. The
mesh is converted to six different depth, texture, and curvature representations. The Ga-
bor and Gauss-Laguerre filters are applied and individual feature vector components are
extracted using z-score normalized PCA projections.
Although the individual PCA-based classifiers do not achieve the state-of-the art perfor-
mance, their score-level fusion significantly outperforms individual components. The
strategy of selection of PCA classifiers that implicitly solves the score correlation and
performance bias problems is presented in section 4.
Our experiment results are presented in section 5. We have evaluated our approach on the
FRGC v2.0 database [PFS+05] as well as our own databases acquired using Kinect and
SoftKinetic sensors.

2 Pre-processing

The pose invariation of our recognition algorithm is solved using the ICP algorithm. The
input face mesh is aligned to the reference face template, such that the sum of distances
between corresponding points of template and input mesh are minimal. Fast Library for
Approximate Nearest Neighbors (FLANN) is used [ML09] in order to achieve a fast cal-
culation of corresponding points.
The scans acquired using the SoftKinetic sensor suffer from high noise and peak presence.
Although one can use stronger Gaussian smooth filter, our experiments show that much
better, in terms of recognition performance, is the application of the feature-preserving
mesh denoising algorithm [SRML07]. The example of application of such filter is in
Figure 2.

Figure 2: Example of the application of feature preserving mesh denoising – before (left) and after
(middle). Basic Gaussian smoothing is on the right side of the figure.

We estimate the curvature from the range image representation of the aligned mesh. De-



launay triangulation [LS80] is used for the mesh generation from the input point cloud.
After that, individual mesh vertices are projected to the x-y plane and the z-coordinate is
transformed to a pixel brightness. The brightness of remaining points within triangles is
linearly interpolated. The resulting range image is smoothed with Gaussian kernel finally
in order to round edges between individual triangles.
Calculation of the principal curvatures is the next step. Curvature k at each point B on
the range image is calculated from the z-coordinate bz of the point B as well as from it’s
surrounding points A and C and their z-coordinates az and cz , respectively (see Figure 3).
The curvature is approximated as the signed angle α = π − |∠ABC|. Its sign is deduced
from the comparison of bz and dz = az+cz

2 . If the bz < dz then the sign is negative. The
principal curvatures k1 and k2 are estimated in x axis as well as in y axis direction and
swapped eventually such that k1 > k2.
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Figure 3: Principal curvatures estimation.

Several important surface image representations can be directly deduced from the principal
curvature values [Gra97]. The mean curvature HP at image point P:

HP =
1

2
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) , (1)

Gaussian curvature KP:
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, (2)

and the shape index SP:
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1

2
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π
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(3)

Another image curvature representation is the eigencurvature [Rus09] that is computed
from the image point P = (px, py, pz) and its 8 surroundings (P1,P2, . . . ,P8). It is
based on the PCA of the matrix M :

M =
(
P P1 · · · P8

)
=

px p1x · · · p8x

py p1y · · · p8y

pz p1z · · · p8z

 (4)

The PCA reveals 3 eigenvectors and their corresponding eigenvalues l0, l1, and l2 (l0 >
l1 > l2). The eigencurvature EP is then:



EP =
l2

l0 + l1 + l2
(5)

The examples of various texture, depth, and curvature representations are in Figure 4.

Figure 4: From left to right: texture, range image, mean curvature, Gaussian curvature, shape index,
and eigencurvature.

3 Feature extraction

3.1 Filter Banks

The image filter banks are set of m 2D kernels that are convolved with the input image.
This convolution provides m new images that are further used for the feature extraction
and comparison. We utilize the Gabor filter bank and Gauss-Laguerre filter bank.
The complex Gabor filter [Lee96] is defined as the product of a Gaussian kernel and a
complex sinusoid:

g(x, y, ω, θ, σ) =
1

2πσ2
e−

x′2+y′2

2σ2

(
eiωx

′
− e−ω

2σ2

2

)
(6)

where x and y are coordinates within the Gabor kernel, x′ = x cos θ + y sin θ and y′ =
−x sin θ+ y cos θ. The parameter ω controls wavelength, θ represents the orientation and
σ corresponds to the size of the Gaussian kernel.
The Gabor filters are commonly used in the area of biometrics, e.g. feature extraction
in iris recognition or ridges enhancement in fingerprint recognition. They can be used in
order to find specific frequency and orientation in the picture.
Our Gabor filter bank consists of 56 filters with the orientation o ∈ (0, 1, . . . , 7) and
frequency f ∈ (1, 2, . . . , 7). The other parameters have been set to: ω ← π

2

√
2
−f

,
σ ← π

ω , and θ ← oπ
8 .

The Gauss-Laguerre filter [AP07] gl(x, y) with parameters n, k, j is defined as:
gl(x, y, r, θ, n, k, j) = h(r, θ, n, k, j)einθ (7)

h(r, θ, n, k, j) = −1k2
n+1
2 π

n
2

√
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n
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(
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k−l
)
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(10)

The Gauss-Laguerre wavelets are polar-separable functions with harmonic angular shape.
They are steerable in any desired direction by simple multiplication with a complex steer-
ing factor and as such they are referred to self-steerable wavelets [AP07]. Our Gauss-
Laguerre filter bank consists of 35 filters that were created with parameters n ∈ (1, 2, 3, 4, 5),



k = 0, j = 0 with sizes 16× 16, 24× 24, 32× 32, 48× 48, 64× 64, 72× 72, and 96× 96
pixels. The θ has been set to θ ← atan2(x, y) and r ←

√
x2 + y2.

The example of the application of Gabor and Gauss-Laguerre filters are in Figures 5(a)
and 5(b) respectively.

(a) Gabor filter applied on the shape index image.

(b) Gauss-Laguerre filter applied on the texture image.

Figure 5: Example of application of Gabor and Gauss-Laguerre image filters. From left in each sub-
figure: input image, real part of the kernel, imaginary part of the kernel, real response, imaginary
response, and absolute response (modulus).

3.2 Modified PCA

Probably the most crucial part of every biometric system is the selection of the feature
extraction algorithm and the subsequent comparison metric. In the area of face recognition,
a well established feature methods are PCA, LDA, and ICA [DGG05]. However, they do
not provide the state-of-the-art performance and they are rather used as the baseline for
new recognition methods [PSO+10]. We have compared PCA, LDA as well as ICA in our
experiments and selected modified PCA as the feature extraction method that best suits
our needs.
In plain PCA, the components of the projected vector are proportional to the variability
that is expressed as the corresponding eigenvalue. This unbalance of individual feature
vector components leads to neglect of those feature vector components that may have
positive impact on the recognition performance, however their associated eigenvalue is
too small. In order to avoid that, individual feature vector components are normalized
after PCA projection using z-score normalization. That is, an arbitrary feature vector
X = (x1, x2, . . . , xm) is modified such xi ← xi−x̄i

σi
, where x̄i is the mean value of the

component i and σi is corresponding standard deviation.
Usually, the basic Euclidean distance is used in order to compare two feature vectors. We
have tried other metric functions as well - namely sum of absolute differences (city-block,
Manhattan metric), cosine metric, Mahalanobis metric, and correlation metric. The last
named metric achieved the best results in our experiments.



4 Score-level Fusion

According to [NCDJ08], score fusion techniques can be divided into the following three
categories:

• Transformation-based fusion – The scores are first normalized (transformed) to a
common domain and then combined.

• Classifier-based fusion – Scores from multiple matchers are treated as a feature
vector and a classifier is constructed to discriminate genuine and impostor scores.

• Density-based score fusion – This approach is based on the likelihood ratio test and
it requires explicit estimation of genuine and impostor comparison score densities.

We use a weighted sum as a representative of transformation-based fusion. The classifier-
based fusion is provided by the SVM classifier with linear kernel. The density-based
fusion is represented by the Gaussian Mixture Model (GMM) [NCDJ08].
When the fusion of scores from individual classifiers is involved, the emphasis should
be put on the selection of classifiers in order to avoid degradation of recognition perfor-
mance caused by score correlation and performance bias [PB05,KWSD00]. Our face pre-
processing produces 6 representations of the face texture, shape, and curvature. Moreover,
each representation is optionally convoluted with one of 56 Gabor filters or 35 Gauss-
Laguerre filters. That yields to 6 · (1 + 56 + 35) = 552 possible score-level fusion inputs
(units). The exhaustive search of all potential combinations of input classifiers (2552 − 1)
is therefore impossible.
We employ a greedy hill-climbing wrapper selection mechanism [Koh97]. The optimiza-
tion criterion is the achieved EER of the fusion on the training set. The selection wrapper
selects the best units in the first iteration. In subsequent iterations, the unit that best im-
proves the fusion is added to the selected units set. The selection is ended when there is
no further unit to add or if there is no improvement.

5 Evaluation

5.1 Database Description

Our databases were acquired using Microsoft Kinect and SoftKinetic DS325 depth sen-
sors. We developed a simple enrollment application, where users had to position their
head to the specific distance from the sensor. The process of capturing was fully automat-
ical – once the face was detected, users were notified not to move and their 3D face model
was acquired.
The SoftKinetic database consists of 320 scans divided to 3 portions – training set (13
subjects, 94 scans), validation set (12 subjects, 60 scans), and evaluation set (26 subjects,
166 scans).
The Kinect database consists of 110 scans divided to 2 equally sized portions – training
and evaluation sets, both with 55 scans and 9 subjects.



5.2 Selection of Units with Wrapper

Table 1 brings the detailed overview of the unit selection process using the wrapper. The
individual units as well as the SVM-based fusion were trained on the training portion of
the SoftKinetic database. Values in the table show that even if the particular unit has EER
26% it can contribute to the overall recognition performance.
The Gabor(f, o) in Table 1 stands for the application of Gabor filter with frequency f and
orientation o. The G-L(s, n) stands for the application of Gauss-Laguerre filter with size s
and appropriate parameter n.

Table 1: Wrapper unit selection training - SVM fusion on the SoftKinetic database.

Iteration Selected unit Unit EER Fusion EERImage data Applied Filter
1 Depth Gabor(7,2) 0.0867 0.0867
2 Eigen Gabor(4,5) 0.1404 0.0657
3 Gauss G-L(96,3) 0.1742 0.0509
4 Depth Gabor(6,1) 0.1490 0.0472
5 Depth Gabor(6,5) 0.1844 0.0421
6 Index Gabor(1,2) 0.2641 0.0403
7 Eigen Gabor(6,4) 0.1920 0.0385
8 Depth G-L(72,3) 0.1477 0.0363
9 Eigen Gabor(4,3) 0.2267 0.0333
10 Gauss Gabor(1,0) 0.1863 0.0311
11 Depth Gabor(2,7) 0.2480 0.0286
12 Mean Gabor(7,7) 0.2344 0.0270
13 Mean Gabor(4,7) 0.2655 0.0263
14 Gauss G-L(16,1) 0.2580 0.0262

The over-fitting is one of the problems that comes up when the wrapper selection is in-
volved. Selected units might be too specific for particular training set. In order to avoid
over-fitting, we made the training portion of the database more challenging than the vali-
dation and evaluation portions. This was achieved in the pre-processing part of the recog-
nition pipeline. While we were using only 20 ICP iterations for proper alignment of the
face in the training set, the faces in the validation and evaluation sets were processed with
100 ICP iterations. This difference ensures that only the units that are able to generalize
and deal with difficult inputs are selected for the fusion. This is illustrated in Table 2.
Again, the results are from the SoftKinetic database and the SVM score-level fusion was
used.

Table 2: Impact of the number of ICP iterations.
Training ICP Validation ICP EER on

iterations iterations validation set
20 100 0.0024

100 100 0.0146



5.3 Fusion Techniques

We have evaluated all three major score-level fusion techniques on the SoftKinetic database.
The individual weights of the weighted sum fusion are proportional to the achieved EERs
on the training portion of the database. The weight wi of unit i is:

wi =
0.5− eeri∑n

i=j(0.5− eerj)
(11)

where eeri is the achieved EER for unit i and n is the number of units. The transformation-
based fusion requires a normalization of the input scores prior to the fusion itself. We are
using a simple normalization of input score s:

s← s− geni
impi − geni

(12)

where geni is the mean genuine score for unit i and impi is correponding mean impostor
score.
The SVM classifier is using a simple linear kernel. Although there should be no need for
prior score normalization, we are using the same normalization technique as in weighted
sum fusion. Our experiments shown that this has positive impact on the recognition per-
formance.
The GMM-based fusion is trained using the expectation-maximization algorithm. Both
genuine and impostor distributions are modeled using 5 Gaussian mixtures with diagonal
covariance matrices.
The results are shown in Table 3. It has emerged that there is not a significant difference
between individual fusion techniques. For example, the lowest FNMR for a given FMR =
0.001 is achieved with SVM-based fusion, but the best at FMR = 0.0001 is the weighted
sum. Figure 6 shows DET curves of evaluated techniques.

Table 3: Fusion techniques on the SoftKinetic database.
Fusion type EER on the evaluation set FNMR at FMR = 0.001

Weighted sum 0.0321 0.1097
SVM 0.0259 0.1172
GMM 0.0350 0.1556

5.4 Kinect

In this subsection, we present performance of our face recognition algorithm on the Kinect
database with SVM fusion. As it was shown in previous subsection, the results with
weighted sum or GMM-based fusion are similar. The only difference between SoftKi-
netic and Kinect input face mesh pre-processing is the absence of the feature-preserving
denoising. Scans acquired with Kinect are less noisy and thus they need no special denois-
ing treatment. On the other hand, they have lower resolution. This is because the Kinect
is able to capture depth data from greater distance than SoftKinetic sensor.
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Figure 6: Comparison of fusion techniques on the SoftKinetic database.

The DET curve of our recognition algorithm evaluated on the Kinect database is in Fig-
ure 7.
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Figure 7: Evaluation of SVM fusion on the Kinect database.

5.5 FRGC

In order to allow a direct comparison of our recognition algorithm with others, we also
made evaluations on the FRGC v2.0 database. We used the ,,spring2004“ part of the
database divided into 5 isolated non-overlapping portions. First portion (416 scans) was
used for training of individual PCA projections, the second portion (451 scans) was used
for the selection of suitable fusion units and training of the SVM classifier. The last three
portions (414, 417, and 308 scans) were reserved for evaluation. Each subject was present
just in one portion. The achieved EERs as well as FNMR values at specific FMRs are
summarized in Table 4. Corresponding DET curves are in Figure 8.

6 Conclusion

The presented 3D face recognition algorithm is robust enough in order to deal with poor
quality scans acquired with the Kinect or SoftKinectic DS325 sensors. We have also
made evaluations on the FRGC v2.0 database. Our experiments show that the real-world



Table 4: Evaluation on the FRGC database.

Set EER FNMR at FNMR at
FMR = 0.001 FMR = 0.0001

Training set 0.0053 0.0314 0.0837
Evaluation #1 0.0117 0.0659 0.1176
Evaluation #2 0.0116 0.0466 0.1087
Evaluation #3 0.0214 0.0688 0.1381
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Figure 8: Evaluation on the FRGC v2.0 database.

application of the face recognition employing a low-cost device may be limited by desired
security and the expected size of the database. The verification or identification within
the database consisting of 26 persons employing SoftKinectic DS325 sensor is convenient
for users even when the desired security of the system is set to FMR = 0.001. Further
robustness of the recognition may be achieved using more than one reference template.
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