
Multi-Stride NFA-Split Architecture for Regular

Expression Matching Using FPGA

Vlastimil Košař and Jan Kořenek

IT4Innovations Centre of Excellence
Faculty of Information Technology
Brno University of Technology

Božetěchova 2, Brno, Czech Republic
{ikosar, korenek}@fit.vutbr.cz

Abstract. Regular expression matching is a time critical operation for
any network security system. The NFA-Split is an efficient hardware ar-
chitecture to match a large set of regular expressions at multigigabit
speed with efficient FPGA logic utilization. Unfortunately, the match-
ing speed is limited by processing only single byte in one clock cycle.
Therefore, we propose new multi-stride NFA-Split architecture, which
increases achievable throughput by processing multiple bytes per clock
cycle. Moreover, we investigate efficiency of mapping DU to the FPGA
logic and propose new optimizations of mapping NFA-Split architecture
to the FPGA. These optimizations are able to reduce up to 71.85% of
FPGA LUTs and up to 94.18% of BlockRAMs.

1 Introduction

Intrusion Detection Systems (IDS) [1–3] use Regular Expressions (RE) to de-
scribe worms, viruses and network attacks. Usually, thousands of REs have to
be matched in the network traffic. Current processors don’t provide enough pro-
cessing power for wire-speed RE matching at multigigabit speed [4]. Therefore,
many hardware architectures have been designed to accelerate this time critical
operation [5–7]. Usually, hardware architectures are able to achieve high speed
only for small sets of REs due to the limited FPGA resources or capacity of
available memory. Hardware architectures based on Deterministic Finite Au-
tomata (DFA) [4, 8, 5] are limited by the size and speed of the memory, because
the determinisation of automaton significantly increases the number of states
and size of the transition table. Architectures based on Nondeterministic Finite
Automata (NFA) [9, 6, 10] are limited by the size and capacity of FPGA chips
since the transition table is mapped directly into the FPGA logic.

With the growing amount of attacks, worms and viruses, security systems
have to match more and more REs. It means that the amount of required FPGA
logic increases not only due to the increasing speed of network links, but also
due to the growth of RE sets. Therefore, it is important to reduce the amount of
consumed FPGA resources to support more REs. A lot of work has been done
in this direction. FPGA resources have been decreased by a shared character



decoder [6], infix and suffix sharing [7], by better representation of the counting
constraint [10] and by the NFA reduction techniques [11, 12]. High reduction has
been achieved by NFA-Split architecture [13, 14], which splits NFA to determin-
istic and nondeterministic parts in order to optimize mapping to the FPGA.
The NFA-Split architecture reduces FPGA logic at the cost of on-chip memory
(BlockRAMs). As some kinds of REs can increase the size of transition table and
require a lot of on-chip memory, we have recently introduced optimization [15],
which uses a k-inner alphabet to reduce on-chip memory requirements.

NFA-Split is designed to process only one byte of input stream in every
clock cycle. The matching speed can be increased by increasing the operating
frequency, but for the FPGA the frequency is limited to hundreds of megahertz.
Consequently, the NFA-Split architecture cannot scale the throughput to tens
of gigabits. To achieve higher matching speed, it is necessary to improve the
architecture to support multi-stride automaton and to accept multiple bytes per
clock cycle. Therefore, we propose an NFA-Split architecture for multi-stride
automata, which requires significantly less FPGA resources in comparison to
other multi-stride architectures. For the largest Snort backdoor module, the
proposed architecture was able to reduce the amount of FPGA lookup tables
(LUTs) by 58%. Moreover, we investigate the efficiency of mapping the DU to
the FPGA logic and propose new optimizations of mapping deterministic and
nondeterministic parts of a NFA to FPGA. Both optimizations are able to reduce
up to 71.85% of FPGA LUTs and up to 94.18% of FPGA BlockRAMs.

The paper consists of six sections. Brief summary of the related work is
described after the introduction. Then NFA-Split architecture for multi-stride
automata is introduced in the third section. Optimizations of the NFA-Split
architecture are described in the section four, experimental results are presented
in the section five and conclusions in section six.

2 Related Work

One of the first methods of mapping the NFA to the FPGA was published by
Sidhu and Prasanna [9]. A dedicated character decoder was assigned to each
transition. Clark and Schimmel improved the architecture by shared decoders of
input characters and sharing of prefixes [16]. Lin et al. created an architecture
for sharing infixes and suffixes, but did not specify a particular algorithm to
find them [7]. Sourdis et al. published [10] an architecture that allows sharing
of character classes, static subpatterns and introduced components for efficient
mapping of constrained repetitions to the FPGA.

Current efficient solutions for regular expression matching on common pro-
cessors (CPUs), graphics processing units (GPUs) and application-specific in-
tegrated circuits (ASICs) are based on NFAs. An NFA based architecture for
ASICs was recently introduced in [17]. It is capable processing input data at
1 Gbps. A solution for GPUs capable of processing rule-sets of arbitrary complex-
ity and size is based on NFA. [18]. However, this architecture has unpredictable
performance (950 Mbps - 3.5 Gbps for 8-stride NFA). A NFA based solution for



CPUs was introduced in [19]. It provides considerable best-case performance on
high-end CPUs (2 - 9.3 Gbps on two Intel Xeon X5680 CPUs with total of 12
cores running on 3.33 GHz).

Algorithms based on DFA seek various ways to limit the impact of state
explosion of the memory needed to store the transition table. Delay DFA in-
troduced in [20] extended the DFA by default transitions. The default transi-
tions limited a redundancy caused by similarity of output transitions of different
states. Content Addressed Delayed Input DFA [5] improved the throughput of
the previous methodology by content addressing. The concept of Delay DFA is
further refined in [8]. Extended Finite Automaton [21] extends the DFA by a
finite set of variables and instructions for their manipulations.

Hybrid methods combine DFA and NFA parts to use the best of their re-
spective properties. Becchi introduced hybrid architecture [22] that splits the
automaton to a head-DFA and tail-NFAs. The head-DFA contains frequently
used states, while the tail-NFA contains the others. NFA-Split architecture [13,
14] is designed for FPGA technology. It utilizes properties of REs in IDS systems
and significantly reduces FPGA resources in comparison to other NFA based ar-
chitectures. As the NFA created from REs has usually only a small subset of
states that can be active at the same time, the architecture splits the NFA into
several DFA parts and one NFA part. The DFA parts contain only states that
cannot be active at once. Therefore, these parts can be efficiently implemented as
a standard DFA in a Deterministic Unit (DU) with binary encoded states. States
in the NFA part are mapped to Nondeterministic Unit (NU), where every state
is represented by a dedicated logic (register and next state logic). Therefore, new
state value can be computed in parallel in every clock cycle.

We have improved the NFA-Split architecture by k-inner alphabet in [15],
which decreases the on-chip memory requirements for matching RE with charac-
ter classes. Character classes can be specified in REs to define set of characters.
In the automaton, the transition on character class has to be represented by
a set of transitions on individual characters. This can significantly increase the
number of transitions and thus the size of a memory to store the automaton.
The k-inner alphabet allows representing a character class by only one inter-
nal symbol and only one transition. Thus, less memory is needed to store the
automaton.

3 NFA-Split Architecture for Multi-Stride Automata

Even while the NFA-Split architecture is highly optimized, requires only rea-
sonable memory and provides high matching speed, it still doesn’t support
multi-stride automata to match multiple characters in a single clock cycle. Con-
sequently, it cannot scale its matching speed well. Therefore, we propose an
extension of the NFA-Split architecture to support multi-stride automata. More-
over, we provide optimizations of mapping the DFA and NFA parts to further
reduce the FPGA logic in order to map larger set of RE to the FPGA.



We propose the necessary modifications of the NFA-Split architecture to
support multi-stride automata (SNFA-Split) and to make the matching speed
scalable to tens of gigabits. The method of creating the multi-stride automaton
is based on performing all consecutive transitions from one state to all states
reachable in the number of steps equal to the desired stride. Symbols along these
consecutive transitions are merged into one multi-stride symbol. Multi-stride
automata have usually more transitions due to the larger number of symbols [23,
11].

Algorithm 1: Compute all pairs of simultaneously active states. The al-
gorithm uses intersection operation ∩k.

Input: NFA M = (Q,Σ, δ, s, F )
Output: Set of pairs of simultaneously active states

concurrent = {(p, q)|p, q ∈ Q,p 6= q)}

normalize(q1, q2) = (q1 < q2) ? ((q1, q2) : ((q2, q1);1

concurrent = {(s, s)};2

workplace = {(s, s)};3

while ∃(q1, q2) ∈ workplace do4

workplace = workplace\{(q1, q2)};5

foreach q3 ∈ δ(q1, a) do6

foreach q4 ∈ δ(q2, b) do7

if a ∩k b 6= (∅, ∅, ..., ∅) then8

if ((q5, q6) = normalize(q3, q4)) 6∈ concurrent then9

concurrent = concurrent ∪ {(q5, q6)};10

workplace = workplace ∪ {(q5, q6)};11

return concurrent\{(p, p)|p ∈ Q}12

To accept multiple characters at once, we have to change the construction of
the NFA-Split architecture. First, it is necessary to modify algorithm [15], which
is able to identify the simultaneously active states in the NFA. The algorithm
tests whether two symbols are equal. To perform this operation, character classes
have to be expanded to individual characters. Then the number of transitions
can be increased up to 2n times, where n is data width of input characters
(usually n = 8). The situation is even worse for the multi-stride automaton. The
amount of transitions can be increased up to 2kn times, where n is data width
of one input character and k is the number of input characters accepted at once.

To avoid this transition growth, we can preserve character classes in symbols
and replace the exact comparison by intersection operation ∩k. The inputs of the
operation ∩k are two multi-stride symbols defined as k-tuples (A1, A2, ..., Ak) and
(B1, B2, ..., Bk), where items Ai, Bi are subsets of input alphabet Ai, Bi ⊆ Σ.
The subsets Ai, Bi can represent individual character or a character class. The
result of the operation is k-tuple C = (C1, C2, ..., Ck), which is defined by the
Eq. 1.



(C1, C2, ..., Ck) = (A1 ∩B1, A2 ∩B2, ..., Ak ∩Bk) (1)

The k-tuple (C1, C2, ..., Ck) contains set of input symbols that are included
in both input k-tuples. If any item Ci is equal to ∅ (empty set), then both input
symbols A and B cannot be expanded to the same k-tuple of characters. This
means that any pair of expanded symbols from k-tuples A and B is not equal. We
denote this situation as ∩k = (∅, ∅, ..., ∅) in the Algorithm 1, which is a modified
algorithm to detect the simultaneously active states in multi-stride automaton.
Then identification of deterministic and nondeterministic parts in NFA can be
the same as in the original NFA-Split architecture.

The DU architecture must be modified to support multi-stride automaton.
In this paper, we consider the architecture of the DU introduced in [15] which
utilizes k-inner alphabets in order to reduce memory requirements. This archi-
tecture can be easily extended to support multi-stride automata. As can be seen
in Fig. 1, the architecture remains the same except for the first component, which
transforms input symbols to k inner alphabets. The component is marked by dot-
ted line and is able to join input symbols. For the automaton A = (Q,Σ, δ, q0, F ),
two symbols a, b ∈ Q can be joined only if ∀q ∈ Q : δ(q, a) = δ(q, b). The pro-
posed architecture uses BlockRAMs [23] as tables that provide efficient trans-
formation of input symbols to k-inner alphabet.

Fig. 1. Overview of DU architecture for SNFA-Split with k-inner alphabets and n input
symbols accepted at once. Dotted line is used to mark the new component to support
multi-stride automata.

The nondeterministic part of the NFA-Split architecture for multi-stride au-
tomata is based on shared decoder architecture for multi-stride NFA as has been
introduced in [6].



4 Optimizations of the NFA-Split Architecture

In the previous paper [15], we have presented reduction of memory and time
complexity of the NFA-Split architecture. In this section, we consider optimiza-
tions of DUs and NUs in terms of efficiency of FPGA resource utilization. First,
we analyze the efficiency of state representation in DU and NU. Then we pro-
pose an optimization of mapping the states to DU and several optimizations of
mapping NU to the FPGA.

4.1 Optimization of Deterministic Parts of NFA

In this paper, we investigate the efficiency of mapping the DU to FPGA logic.
The main factor influencing the resource utilization of the DU is the size of input
encoding and output decoding logic. The size of the logic depends on the number
of transitions to/from the DU. To analyze the number of transitions to/from the
DU, we define continuous parts of the automaton as sets of states if:

1. All states are represented by the DU.
2. All states are reachable from some input state of the DU.
3. All states together with input/output transitions form a continuous graph

of transitions.

As NFA-Split doesn’t use continuous parts to derive mapping of states to DU
and NU, we have to define a procedure how to identify continuous parts. First,
we have to select an input state of the DU and then traverse along the transitions
until a final state or a transition to NU is reached. If some state has more than
one input transition, we have to traverse backwards until input transition to
the DU is reached. Similarly, if some state has more than one output transition,
then we have to traverse forward through all output transition until final state
or transition to NU is reached. This procedure is finished if no new state can be
added. The input states in already recognized continuous parts are not used for
detection of next continuous parts.

We have analyzed the size of continuous parts for Snort backdoor rule set.
The result is a histogram in Fig. 2. The x-axis represents the size of continuous
parts and the y-axis represents the number of parts of that size. It can be seen
that many continuous parts are very small (usually 1 to 3 states). Resource
utilization for input encoders and output decoders associated with those very
small continuous parts can be larger than the amount of logic resources needed
for implementation of those parts in NU. This holds also for continuous part
of any size with large number of inputs and outputs. Therefore, we define the
Eq. 2 to have a simple condition when it is better to include continuous part pi
in the DU.

costinputs(pi) + costoutputs(pi) < costNU (pi) (2)

This means that the cost of input/output encoding has to be lower than the
cost of implementation in the NU. The cost function costinputs(pi) computes



0 10 20 30 40 50 600

10

20

30

40

50

Co
un

t

Original

0 10 20 30 40 50 600

5

10

15

20

25
Optimized

0 10 20 30 40 50 60
Size of continuous part

0

10

20

30

40

50
Eliminated

Fig. 2. Histogram of continuous parts in DU for Snort backdoor rule set. Distribution
according to the size is provided for all parts in DU (Original), parts in DU after opti-
mization (Optimized) and parts removed from DU because of inefficiency (Eliminated).

number of LUTs necessary to implement one-hot to binary encoding for input
transitions. The cost function costoutputs(pi) computes number of LUTs neces-
sary to implement binary to one-hot encoding for output transitions and the cost
function costNU (pi) computes number of LUTs needed to map the continuous
part pi into NU.

Application of the Eq. 2 on the DU has direct impact to efficiency of the
DU. Therefore, continuous parts violating Eq. 2 are better to be kept in NFA
and represented by NU. Sizes of eliminated and optimized continuous parts are
shown on histograms in Fig. 2. Eliminated parts are removed from the DU to
the NU. Optimized continuous parts remain in the DU.

Characteristics of continuous parts of DU for various sets of RE before and
after the DU optimization as well as characteristics of eliminated parts are shown
in Table 1. Column Original contains characteristics before the optimization, col-
umn Optimized contains characteristics after the optimization and column Elim-
inated contains characteristics of continuous parts removed by the optimization.
Three characteristics were measured: Number of continuous parts (Parts), Aver-
age size of continuous part (AS) and Average ratio between inputs/outputs and
size of continuous part (AIOS). The sets of REs come from the Snort IDS [1]
modules and from the L7 decoder [24]. Optimized DU has larger average size of
continuous part and smaller average ratio between inputs/outputs and size of
continuous part.



Table 1. Characteristics of continuous parts of DU for various sets of REs before and
after the DU optimization.

RE set Original Optimized Eliminated

Parts AS AIOS Parts AS AIOS Parts AS AIOS

[-] [-] [-] [-] [-] [-] [-] [-] [-]

L7 selected 53 10.66 0.28 37 14.51 0.21 16 1.75 1.57
L7 all 369 9.09 0.85 192 13.05 0.11 177 4.79 3.04
backdoor 284 9.96 0.32 208 12.37 0.13 76 3.39 2.30
web-php 21 10.67 0.30 19 11.68 0.14 2 1.00 18.00
ftp 42 3.55 1.26 19 4.89 0.39 23 2.43 2.70
netbios 40 7.72 0.28 13 20.46 0.08 27 1.59 1.53
voip 61 14.23 0.29 37 21.68 0.11 24 2.75 2.53
web-cgi 16 35.25 0.09 9 61.67 0.03 7 1.29 3.89

4.2 Efficient Encoding of the Nondeterministic Part

The encoding of the nondeterministic part into the NU utilizes the shared de-
coder architecture [25]. As we have shown in the previous chapter, some specific
continuous parts of the DU can be moved into the NU to improve efficiency of
mapping. Therefore, it is possible to utilize the properties of eliminated contin-
uous parts and use more efficient encoding of the NU. We propose to use the
At-most two-hot encoding (AMTH) introduced in [26], because it implements
small 3 states parts efficiently with two LUTs and two flip-flops (FFs).

The mapping of constrained repetitions in the FPGA architecture also re-
quires optimization. In the current NFA-Split architecture the constrained rep-
etitions can be encoded either in the DUs or in the NU, depending on the type
of the repetition and the NFA structure. The encoding of the Perl compatible
RE (PCRE) into the DU is inefficient, because the counting constraint is rep-
resented by many states and transitions and size of the automaton is increased
significantly. For example, PCRE /^[abc]{100}/ in DU needs about 300 rows
of the transition table. The NU architecture with a shared decoder is also not
efficient. It consumes 100 FFs and 100 LUTs for the same example. The usage
of the AMTH improves the efficiency (67 FFs and 67 LUTs). However, special
subcomponents for constrained repetitions introduced in [10] are more efficient
in logic utilization. Therefore, we propose to represent constrained repetition by
this dedicated component in NU.

5 Evaluation

We performed the evaluation of proposed SNFA-Split architecture and opti-
mizations on a selected set of Snort IDS [1] modules and set of REs from L7
decoder [24]. All used sets of REs come from Netbench framework [27]. The
Netbench framework has been used to implement the proposed architecture to-



gether with optimizations and to make a comparison with other FPGA based
multi-stride architectures.

Table 2. FPGA logic utilization of SNFA-Split and Clark multi-stride architectures.
The results are for multi-stride automata with two and four input characters accepted
at once.

Statistics Stride Clark SNFA-Split

Inner
REs Symbols LUT FF LUT FF BRAM Alphabets

Rules [-] [-] [-] [-] [-] [-] [-] [-]

L7 selected 29 2 2744 673 1884 182 8 4
backdoor 154 2 7178 4383 3004 815 20 6
web-cgi 10 2 3456 1332 2688 738 9 2
misc 17 2 3200 1294 2551 944 10 4
ftp 35 2 3774 1944 3104 1595 10 4

L7 selected 29 4 4776 678 3631 192 24 8
backdoor 154 4 13509 4881 6137 1007 44 11
web-cgi 10 4 5608 1360 4598 738 12 4
misc 17 4 5322 1331 4219 951 20 6
ftp 35 4 6060 2081 4166 1601 20 6

First, we have evaluated FPGA logic utilization of SNFA-Split architecture.
The results for two and four input characters accepted at once are compared in
Table 2 to the multi-stride architecture with shared decoder of input characters.
The amount of utilized LUTs, FFs and 18Kb BlockRAMs was estimated for the
Xilinx Virtex-5 architecture. However, the SNFA-Split architecture is suitable
for any FPGA. Column Statistics presents the number of REs in particular set
of REs. Column Clark shows the estimated utilization for the multi-stride archi-
tecture with shared decoder of input characters. Column SNFA-Split indicates
the estimated utilization for the SNFA-Split architecture. It can be seen that
the SNFA-Split architecture is able to reduce the amount of utilized LUTs by
58% for the largest backdoor module. The table also indicates how many inner
alphabets were used, because the utilization of FPGA resources depends on the
number of inner alphabets.

We have also evaluated both proposed optimizations of NFA-Split architec-
ture. Table 3 shows results of DU and NU optimizations. The amount of utilized
FPGA resources is estimated. Column Statistics presents the number of REs in
particular set of REs. Column Original shows the estimated utilization for the
original NFA-Split architecture. Column Reduction indicates the reduction of
FPGA resources by the proposed optimizations. It can be seen that the opti-
mizations were able to achieve significant reduction of BlockRAMs and FPGA
logic: 71.85% LUTs for the nntp module and 94.18% BlockRAMs for the voip
module. This reduction is caused primarily by relocation of constrained repe-



titions from the DU into the optimized NU. The dedicated subcomponents for
the constrained repetitions are more efficient. It can be seen in the results that
the reduction mainly depends on the presence of counting constraints (e.g., L7
does not contain any, while voip does and the big ones were placed in the DU)
and structure of the automaton. The last row of the Table 3 presents average
reduction of utilized resources for 22 sets of REs from both Snort IDS and L7
project.

Table 3. Reduction of FPGA logic utilization by optimized DU and NU for in the
NFA-Split Architecture.

Statistics Original Reduction

REs LUT FF BlockRAM LUT FF BlockRAM

Rules [-] [-] [-] [-] [%] [%] [%]

L7 selected 29 1003 182 4 1.10 -2.74 50
L7 all 143 8035 2945 8 15.08 2.11 25
backdoor 154 1696 727 10 7.05 1.15 20
dos 3 803 119 2 -4.36 12.61 0
ftp 35 2284 1590 2 51.16 89.62 0
misc 17 1651 941 2 37.72 88.42 0
nntp 12 3133 2483 2 71.85 96.69 0
web-cgi 10 1651 736 4 39.83 88.59 50
voip 38 1936 834 34 35.18 77.46 94.18

22 RE Sets 548 33421 12726 94 21.93 56.67 42.55

Four-stride SNFA-Split architecture running at 150 MHz has worst-case (Ma-
licious network traffic) throughput of 4.8 Gbps. It outperforms GPU based
solution presented in [18]. Even single stride architecture with throughput of
1.2 Gbps outperforms the GPU solution for rule-set L7 all. The efficient CPU
solution [19] outperforms four-stride SNFA-Split architecture when running on
high-end CPUs. However, the results in [19] are measured for best-case situation
(Regular network traffic).

6 Conclusion

The paper has introduced the NFA-Split architecture optimization for
multi-stride automata. The proposed architecture is able to process multiple
bytes in one clock cycle. Therefore, RE matching speed can be increased de-
spite frequency limits of current FPGAs. As can be seen in the Results sec-
tion, the proposed multi-stride architecture utilizes up to 58% less LUTs than
multi-stride FPGA architectures with shared decoder. Consequently, additional
REs can be supported.

Moreover, we have proposed several optimizations of the NFA-Split architec-
ture in order to further reduce FPGA resources. First optimization is focused on



the overhead of encoding logic in DU. The optimization moves states from DU
to NU, if the cost of encoding logic is higher than the cost of logic in the NU.
The second proposed optimization is focused on NU mapping to the FPGA.
At-most two-hot encoding and specific subcomponents for constrained repeti-
tions are used to represent states and transitions relocated from DU to NU.
Both optimizations are able to reduce up to 71.85% of LUTs and up to 94.18%
of BlockRAMs.

As future work, we want to investigate efficient pattern matching on
100-Gigabit Ethernet.

Acknowledgment

This work was supported by the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070 and the BUT project FIT-S-14-2297.

References

1. Snort: Project WWW Page. http://www.snort.org/ (2014)
2. The Bro Network Security Monitor: Project WWW Page. http://www.bro.org/

(2014)
3. Koziol, J.: Intrusion Detection with Snort. Sams, Indianapolis, IN, USA (2003)
4. Becchi, M., Crowley, P.: Efficient Regular Expression Evaluation: Theory to Prac-

tice. In: ANCS ’08: Proceedings of the 4th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems, ACM (2008) 50–59

5. Kumar, S., Turner, J., Williams, J.: Advanced Algorithms for Fast and Scal-
able Deep Packet Inspection. In: ANCS ’06: Proceedings of the 2006 ACM/IEEE
Symposium on Architecture for Networking and Communications Systems, ACM
(2006) 81–92

6. Clark, C.R., Schimmel, D.E.: Scalable Pattern Matching for High Speed Net-
works. In: FCCM ’04: Proceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, IEEE Computer Society (2004) 249–
257

7. Lin, C.H., Huang, C.T., Jiang, C.P., Chang, S.C.: Optimization of Pattern Match-
ing Circuits for Regular Expression on FPGA. IEEE Trans. Very Large Scale
Integr. Syst. 15(12) (2007) 1303–1310

8. Becchi, M., Crowley, P.: A-DFA: A Time- and Space-Efficient DFA Compression
Algorithm for Fast Regular Expression Evaluation. ACM Transactions on Archi-
tecture and Code Optimization 10(1) (2013) 4:1–4:26

9. Sidhu, R., Prasanna, V.K.: Fast Regular Expression Matching Using FPGAs.
In: FCCM ’01: Proceedings of the 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, IEEE Computer Society (2001) 227–
238

10. Sourdis, I., Bispo, J., Cardoso, J.M.P., Vassiliadis, S.: Regular Expression Matching
in Reconfigurable Hardware. Journal of Signal Processing Systems 51(1) (2008)
99–121

11. Becchi, M., Crowley, P.: Efficient Regular Expression Evaluation: Theory to Prac-
tice. In: Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. ANCS ’08, New York, NY, USA, ACM
(2008) 50–59



12. Košař, V., Žádńık, M., Kořenek, J.: NFA Reduction for Regular Expressions
Matching Using FPGA. In: Proceedings of the 2013 International Conference on
Field Programmable Technology, IEEE Computer Society (2013) 338–341

13. Kořenek, J., Košař, V.: Efficient Mapping of Nondeterministic Automata to FPGA
for Fast Regular Expression Matching. In: Proceedings of the 13th IEEE Interna-
tional Symposium on Design and Diagnostics of Electronic Circuits and Systems
DDECS 2010, IEEE Computer Society (2010) 6

14. Kořenek, J., Košař, V.: NFA Split Architecture for Fast Regular Expression Match-
ing. In: Proceedings of the 6th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, Association for Computing Machinery
(2010) 2

15. Košař, V., Kořenek, J.: On NFA-Split Architecture Optimizations. In: 2014 IEEE
17th International Symposium on Design and Diagnostics of Electronic Circuits
and Systems (DDECS), IEEE Computer Society (2014) 274–277

16. Clark, C., Schimmel, D.: Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns. In: Field Programmable Logic
and Application, 13th International Conference, Lisbon, Portugal (2003) 956–959

17. Dlugosch, P., Brown, D., Glendenning, P., Leventhal, M., Noyes, H.: An Efficient
and Scalable Semiconductor Architecture for Parallel Automata Processing. IEEE
Transactions on Parallel and Distributed Systems PP(99) (2014)

18. Cascarano, N., Rolando, P., Risso, F., Sisto, R.: iNFAnt: NFA Pattern Matching
on GPGPU Devices. SIGCOMM Comput. Commun. Rev. 40(5) (2010) 20–26

19. Valgenti, V.C., Chhugani, J., Sun, Y., Satish, N., Kim, M.S., Kim, C., Dubey, P.:
GPP-Grep: High-speed Regular Expression Processing Engine on General Purpose
Processors. In: Proceedings of the 15th International Conference on Research in
Attacks, Intrusions, and Defenses. RAID’12, Berlin, Heidelberg, Springer-Verlag
(2012) 334–353

20. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
Accelerate Multiple Regular Expressions Matching for Deep Packet Inspection. In:
SIGCOMM ’06: Proceedings of the 2006 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, ACM (2006) 339–350

21. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the Big Bang: Fast and Scalable
Deep Packet Inspection With Extended Finite Automata. SIGCOMM Comput.
Commun. Rev. 38(4) (2008) 207–218

22. Becchi, M., Crowley, P.: A Hybrid Finite Automaton for Practical Deep Packet
Inspection. In: Proceedings of the 2007 ACM CoNEXT Conference. CoNEXT ’07,
New York, NY, USA, ACM (2007)

23. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A Scalable Architecture For High-
Throughput Regular Expression Pattern Matching. SIGARCH Computer Archi-
tecture News 34(2) (2006) 191–202

24. L7 Filter: Project WWW Page. http://l7-filter.sourceforge.net/ (2014)
25. Kořenek, J.: Fast Regular Expression Matching Using FPGA. Information Sciences

and Technologies Bulletin of the ACM Slovakia 2(2) (2010) 103–111
26. Yun, S., Lee, K.: Optimization of Regular Expression Pattern Matching Circuit

Using At-Most Two-Hot Encoding on FPGA. International Conference on Field
Programmable Logic and Applications 0 (2010) 40–43

27. Pus, V., Tobola, J., Kosar, V., Kastil, J., Korenek, J.: Netbench: Framework for
Evaluation of Packet Processing Algorithms. Symposium On Architecture For
Networking And Communications Systems (2011) 95–96


