
Parallelisation of the 3D Fast Fourier Transform
Using the Hybrid OpenMP/MPI Decomposition

Vojtech Nikl(B) and Jiri Jaros

Faculty of Information Technology, Brno University of Technology,
Bozetechova 2, 612 66 Brno, Czech Republic

{inikl,jarosjir}@fit.vutbr.cz

Abstract. The 3D fast Fourier transform (FFT) is the heart of many
simulation methods. Although the efficient parallelisation of the FFT has
been deeply studied over last few decades, many researchers only focused
on either pure message passing (MPI) or shared memory (OpenMP)
implementations. Unfortunately, pure MPI approaches cannot exploit
the shared memory within the cluster node and the OpenMP cannot
scale over multiple nodes.

This paper proposes a 2D hybrid decomposition of the 3D FFT where
the domain is decomposed over the first axis by means of MPI while
over the second axis by means of OpenMP. The performance of the pro-
posed method is thoroughly compared with the state of the art libraries
(FFTW, PFFT, P3DFFT) on three supercomputer systems with up to
16k cores. The experimental results show that the hybrid implementa-
tion offers 10-20% higher performance and better scaling especially for
high core counts.

1 Introduction

The fast Fourier transform (FFT)[1] is the heart of many spectral simulation
methods where it is used to calculate spatial gradients of various physical quan-
tities. This approach eliminates the numerical dispersion that arises from the
discretisation of the spatial derivative operators, and significantly reduces the
grid density required for accurate simulations [2].

A recent application of spectral methods, we have been working on, is the
k-Wave toolbox [3] oriented on the full-wave simulation of the ultrasound waves
propagation in biological materials (both soft and hard tissues) intended for
ultrasound treatment planning such as cancer treatment, neurostimulation, diag-
nostics, and many other. In many realistic simulations with domain sizes ranging
from 5123 to 40963, as much as 60% of the total computational time is attributed
to the 3D FFTs. Reducing the 3D FFT compute time thus remains a challenge
even in the petascale era [4].

Many libraries have been developed to compute the FFT in the massively par-
allel distributed memory environment, such as FFTW (Fastest Fourier
Transform from West)[5], PFFT (Parallel FFT)[6] and P3DFFT (Parallel
Three-Dimensional Fast Fourier Transforms)[7]. All of these libraries use the
c© Springer International Publishing Switzerland 2014
P. Hliněný et al. (Eds.): MEMICS 2014, LNCS 8934, pp. 100–112, 2014.
DOI: 10.1007/978-3-319-14896-0 9



Parallelisation of the 3D Fast Fourier Transform 101

pure-MPI message passing approach to calculate the FFT in parallel. However,
modern high-performance computer architectures usually consist of a hybrid of
the shared and distributed paradigms: distributed networks of multicore proces-
sors. The hybrid paradigm marries the high bandwidth low-latency interprocess
communication featured by shared memory systems with the massive scalability
afforded by distributed computing.

In this work, we describe recent efforts to exploit modern hybrid architec-
tures, using the popular MPI interface to communicate among distributed nodes
and the OpenMP multi-threading paradigm to communicate among the indi-
vidual cores of each processor to speed up the calculation of 3D Fast Fourier
Transform. Moreover, we introduce a novel hybrid 2D pencil decomposition that
allows us to employ more compute cores than the standard 1D slab decom-
position implemented in the FFTW while keeping the communication burden
significantly lower compared to PFFT and P3DFFT also based on pencil decom-
positions.

2 Parallel Implementations of the 3D Fast Fourier
Transform

There are two main approaches for parallelising multidimensional FFTs; the first
is binary exchange algorithms, and the second is transpose algorithms. An intro-
duction and theoretical comparison can be found in [8]. In this paper, we restrict
ourselves to transpose algorithms that need much less data to be exchanged [9]
and have direct support in many software libraries, e.g. FFTW [5].

Regardless of decomposition, a Fourier transform in three dimensions is com-
prised of three 1D FFTs in the three dimensions (X, Y , and Z) in turn. When all
of the data in a given dimension of the grid resides entirely in a processors memory
(i.e., it is local) the transform consists of a 1D FFT done over multiple grid lines
by every processor, which can be accomplished by a serial algorithm provided by
many well-known FFT libraries and is usually a fairly fast operation. The trans-
forms proceed independently on each processor with regard to its own assigned
portion of the array. When the data are divided across processor boundaries (i.e.,
nonlocal), the array is reorganized by a single step of global transposition so that
the dimension to be transformed becomes local, and then serial 1D FFT can be
applied again. These global transpositions are known to be the main bottleneck of
the 3D FFT since arithmetic intensity (computational work divided by commu-
nication work) grows only as a factor of logN [5], [6], [7].

A general algorithm to calculate a distributed 3D FFT of size Z × Y × X
stored in C-like row major order follows this procedure:

1. Perform Z × Y one-dimensional FFTs along the X axis.
2. Perform X ↔ Y data transposition.
3. Perform Z × X one-dimensional FFTs along the Y axis.
4. Perform Z ↔ X data transposition.
5. Perform Y × X one-dimensional FFTs along the Z axis.
6. Transpose data back into the original order (optional).



102 V. Nikl and J. Jaros

2.1 Decomposition of the 3D Fast Fourier Transform

Solving the 3D FFT in parallel requires the compute grid to be partitioned
and distrusted over processing cores. In the case of 3D FFT, there are three
possible ways how to partition the grid; one-dimensional slab decomposition,
two-dimensional pencil decomposition, and three-dimensional cube decomposi-
tion (see Fig. 1).

Fig. 1. Domain decompositions for three-dimensional grid over P processing cores.
(a) slab decomposition, (b) pencil decomposition, (c) cube decomposition [10]. Data
associated with a single processing core is shaded.

Most of the parallel 3D FFT libraries to date use the slab domain decom-
position over the first dimension (Z in our case) [5], [11]. This decomposition is
faster on a limited number of cores because it only needs one global transpose,
minimizing communication. The main disadvantage of this approach is that the
maximum parallelisation is limited by the largest size along an axis of the 3D
data array used. At the age of petascale platforms more and more systems typ-
ically have numbers of processing cores far exceeding this limit. For example,
cutting edge ultrasound simulations performed by the k-Wave toolbox [3] use
20483 grids and so with the slab decomposition would scale only to 2048 cores
at most leading to the calculation time exceeding clinically acceptable time of
24 hours (here between 50 and 100 hours).

The second approach is the 2D pencil decomposition that further partitions
the slabs into a set of pencils, see Fig. 1(b). This approach has recently been
implemented in two novel FFT libraries PFFT[6] and P3DFFT[7]. Although
this approach increases the maximum number of processor cores from N to
N2, it also requires another global communication. Nevertheless, these global
transposition steps require communication only among subgroups of all compute
cores. However according to Pekurovsky [7], attention must be paid to the pencil
placement over the computing cores to keep good locality and efficacy.

The cube decomposition studied in [10] brings the highest scalability, however
it requires one-dimensional FFTs to be calculated non-locally and thus fine-tuned
FFT cores provided by FFTW cannot be used.



Parallelisation of the 3D Fast Fourier Transform 103

The parallel 3D FFT is usually implemented using a pure-MPI approach and
one of the described decomposition techniques. However, many current super-
computers comprise of shared memory nodes typically integrating 16 cores. The
use of shared memory significantly reduces the amount of inter-process commu-
nication and helps in exploiting local caches. The most sensible implementation
of the hybrid decomposition bases on the pencil decomposition where a slab
is assigned per compute node, and the cores within node take each their por-
tion of pencils. One of the obvious advantages of exploiting hybrid parallelism
is the reduction in communication since messages no longer have to be passed
between threads sharing a common memory pool. Another advantage is that
some algorithms can be formulated, through a combination of memory striding
and vectorization, so that local transposition is not required within a single MPI
node (while this is even possible for multi-dimensional FFTs, the recent avail-
ability of serial cache-oblivious in-place transposition algorithms appears to have
tipped the balance in favour of doing a local transpose). The hybrid approach
also allows smaller problems to be distributed over a large number of cores. This
is particularly advantageous for 3D FFTs: the reduced number of MPI processes
allows for a more slab-like than pencil.

Some authors object that this approach does not push the scaling significantly
far [7]. However, for the grid of practical interest (10243 - 40963), the number
of cores that can be employed lies between 16384 and 65536. These numbers of
cores can only offer largest supercomputers in Europe accessible via the PRACE
Tier-0 allocation scheme1. As the trend of integrating more cores within a node
is going to continue, we consider the scaling to be good enough from the practical
point of view. Although pure-MPI implementation may allow us to distribute
the work over much more compute cores, the efficiency is then still very low
anyway (less than 6% for 100k and more cores as presented in [6]).

2.2 Libraries for Distributed FFT

This section provides an overview of the most popular libraries for calculating
the 3D FFT using both the slab and pencil decomposition and serves as a firm
background for experimental comparison.

The Fastest Fourier Transform in the West (FFTW)[5] is probably the most
popular library for calculating n-dimensional FFT over an arbitrary input size
grid and still reaching the NlogN time complexity. FFTW uses the so called plan
and execute approach to select the most suitable implementation of FFT for the
underlying hardware. This allows FFTW to be easily portable and still extremely
fast. The FFTW supports both multi-threaded and memory distributed architec-
tures. In case of distributed memory environment, the grid is decomposed using
the slab decomposition. This feature is considered to be a significant drawback
nowadays. Fortunately, FFTW allows to combine multi-threaded FFT kernels
with custom grid decomposition and data exchange and is thus often used as
1 PRACE: Partnership for Advanced Computing in Europe, http://www.prace-ri.eu

http://www.prace-ri.eu


104 V. Nikl and J. Jaros

basis for advanced implementations (some of them are discussed later in this
section).

The Parallel FFT library (PFFT) proposed by Michael Pippig [6] is one of a
few FFT implementation using the pencil decomposition, unfortunately it is still
in an alpha version. It builds on serial FFTW kernels applied on one-dimensional
FFT and custom data exchange around the pure-MPI approach. PFFT has been
tested on a BlueGene/P machine employing up to 256k PowerPC cores. However,
the scaling with increasing number of cores becomes flat reaching only 6% for
256k cores.

The last library we took into account is the Parallel three-dimensional FFT
(P3DFFT) by Dimitry Pekurovsky [7]. This library is specialised on calculating
the 3D FFT using the pencil decomposition and the pure-MPI approach. The
library employs one-dimensional kernels provided by FFTW or IBM ESSL2.
This implementation allows to collapse the pencil decomposition into the slab
one for low core counts preserving good efficacy. The implementation shows good
performance for moderate core counts up to 65k. One of the main obstacles for
us is the implementation language being Fortran and the support for only real-
to-complex and complex-to-real transforms.

3 Proposed Method

The proposed implementation of the distributed hybrid OpenMP/MPI 3D FFT
is called HyFFT. It is based on the modified pencil decomposition built on the
top of the FFTW library. The 3D grid is first decomposed by MPI processes
into slabs. The slabs are further partitioned into pencils assigned to threads to
demand. This ensures the entire slab being always stored within the shared mem-
ory leading to the first transposition being local. In the corner case of small grids
where the number of slabs is smaller than the number of cores, the decomposition
naturally collapses into the original 1D slab decomposition and the pure-MPI
implementation.

Exploiting full potential of modern clusters with multicore/multisocket nodes
introduces some restrictions on the process/threads placement on nodes, sockets
and cores. In the case of dual-socket x86 clusters, the best is usually to run a
separate process per socket and spawn as many threads as cores per socket. This
yields the advantage of the slab being stored in the socket’s local memory with
the fastest access. If a higher number of threads (higher scaling) is required, a
single process per node can be run, instead. However, this implies the slab to
be split over two memory islands leading in the non uniform memory access
(NUMA) slowing down the local transposition. The situation is similar in the
case of IBM PowerPC architectures, though the best is to spawn two threads
per core to fully exploit all its HW resources.

The proposed HyFFT follows the diagram shown in Fig. 2. We can clearly
see three series of 1D FFTs interleaved with local and global transpositions.
2 http://www-03.ibm.com/systems/power/software/essl/

http://www-03.ibm.com/systems/power/software/essl/


Parallelisation of the 3D Fast Fourier Transform 105

Fig. 2. The steps of HyFFT to be carried out to perform a forward 3D FFT

The first local transpositions rearranges data within a slab before the second FFT
transform. The global transposition is wrapped by data packing and unpacking
steps carried out as local transpositions. The last FFT transform is followed by
a local transposition to get the output data compatible with the FFTW library
under FFTW MPI TRANSPOSED OUT flag omitting the second global transposition
for the sake of performance. However, if the same shape of the grid is required
after the 3D FFT, the global transpose has to be performed.

The calculation itself comprises of three main kernels as outlined in Section
2: series of 1D FFTs, local transpositions and a global distributed transposition:

1. FFT kernels: There are two different ways how to calculate FFTs over the
slab in the shared memory. The one primarily used in this work distributes
the pencils over the threads using OpenMP pragmas, calculates 1D FFTs in
parallel using 1D FFTW kernels, performs the local transposition and con-
tinues over the second axis. If there are more pencils in the slab than threads,
every thread is responsible for a bunch of pencils. These can be calculated



106 V. Nikl and J. Jaros

Fig. 3. The block based local transposition using the Intel AVX vector intrinsics

one by one (our approach) or simultaneously. Calculating a bunch of pencils
sequentially is preferred for larger grid sizes due to a better utilisation of L1
cache (e.g. a complex single precision pencil of 1024 grid points occupies 8KB
- one half of L1 cache) and because of only having a single implementation
of the FFT kernel for all three calculation phases.
The second approach to calculate the FFT over the slab is a use a multi-
threaded 2D FFT provided by FFTW instead of the doing the sequence
of 1D FFTs, local transposition and 1D FFTs. This can increase the per-
formance by a few percent in specific cases although it does not support
multi-threaded transposition. That is why it is always considered by HyFFT
as an alternative to the previous approach.

2. Local transposition: The local transposition is based on a multi-threaded,
cache-friendly algorithm further accelerated by vector units (see in Fig. 3).
The slab is first chopped into square blocks that can fit nicely into L1 or
L2 cache. Threads then take pairs of blocks sitting symmetrically over the
main diagonal, transpose the data inside and finally swap each other. In the
case of square slabs, this can be done in-place. However, rectangular slabs
enforce an out-of-place algorithm.
The block being transposed is further divided into tiles of size 2x2 or 4x4
complex numbers depending on whether the SSE or AVX vector instruction
set is available. A fast, vector register based, kernel is used to permute the
grid elements within the tile yielding the transposed order. Since we work
with single precision floating point numbers only, complex single precision
values can be treated as double precision real ones leading in fewer instruc-
tion needed. In the case the size of the slab is not divisible by the size of the
vector registers (2 or 4 for SSE and AVX, respectively), the reminders are
treated separately using scalar kernels.

3. Global transposition: The distributed transposition getting the grid points
over the last axis (Z) contiguous is done by a composition of two local trans-
positions and a global one. The FFTW library offers a fine-tuned routine to
exchange data amongst the processes that is supposed to be faster than sim-
ple MPI Alltoall. Let us note that this operation is performed only by the
master thread (a single core per socket or node).



Parallelisation of the 3D Fast Fourier Transform 107

4 Experimental Results

Experiments were performed on 3 different clusters - Zapat3, Anselm4 and
Fermi5. The performance and scaling were investigated on grid sizes ranging
from 2563 to 10243 and the core count from 128 to 16384. For the sake of brevity
and similarity of plots, we only present the performance for the grid size of 10243.
Each test consists of running 100 complex-to-complex forward single precision
3D FFTs in a loop to make sure everything settles down properly (branch pre-
dictors, etc.). The presented times are normalised per transform. Since P3DFFT
does not support complex-to-complex transforms, they were simulated by calcu-
lating real-to-complex transforms on both real and imaginary parts of the input.
Our code (HyFFT) runs one MPI process per socket and one OpenMP thread
per core. Other libraries run one MPI process per core. In case of PFFT and
P3DFF, the MPI processes are to be placed in a virtual 2D mesh by MPI routine
MPI Cart Create. We used as squared process meshes as possible to minimise
communication overhead since they reached the best performance. Execution
times were measured by the MPI Wtime routine. When possible, more accurate
FFTW EXHAUSTIVE planning flag was used (Zapat, Anselm). Since the exhaustive
planning consumes a significant amount of time for high core counts, we had to
roll back to less accurate FFTW MEASURE on Fermi.

4.1 Experimental Supercomputing Clusters

The performance investigation was carried out on machines listed bellow. The
first two are based on Intel x86 CPUs connected by a fat tree infiniband while
the last machine is based on IBM BlueGene/Q architecture with a 5D torus
topology.

1. Zapat Cluster
Hardware configuration: 112 nodes (1792 cores), each node integrates 2 × 8-
core Intel E5-2670 at 2.6GHz and 128GB RAM (14.3TB total), 2 × 600GB
15k hard drives, Infiniband 40 Gbit/s interconnection.
Software configuration: GNU gcc 4.8.1 compiler (-std=c99 -O3), Open MPI
1.6.5, FFTW 3.3.4 (FFTW EXHAUSTIVE only), PFFT 1.0.7 alpha,
P3DFFT 2.6.1.

2. Anselm Cluster
Hardware configuration: 209 nodes (3344 cores), each node integrates 2 × 8-
core Intel E5-2665 at 2.4GHz, 64GB RAM (15.1TB total), Infiniband 40
Gbit/s QDR, fully non-blocking fat-tree interconnection.
Software configuration: GNU gcc 4.8.1 compiler (-std=c99 -O3), Open MPI
1.6.5, FFTW 3.3.4 (FFTW EXHAUSTIVE only), PFFT 1.0.7 alpha,
P3DFFT 2.6.1.

3 CERIT scientific cloud, CZ, https://www.cerit-sc.cz/en/Hardware/
4 IT4Innovation Centre of Excellence, CZ,

https://docs.it4i.cz/anselm-cluster-documentation
5 CINECA consortium, IT, http://www.hpc.cineca.it/content/ibm-fermi-user-guide

https://www.cerit-sc.cz/en/Hardware/
https://docs.it4i.cz/anselm-cluster-documentation
http://www.hpc.cineca.it/content/ibm-fermi-user-guide


108 V. Nikl and J. Jaros

3. Fermi Cluster
Hardware configuration: IBM-BlueGene/Q, 10,240 nodes (163,840 cores),
each node integrates a 16-core IBM PowerA2 at 1.6 GHz, 16GB RAM
(163.8TB), 5D torus interconnection.
Software configuration: GCC 4.4.6 compiler (-std=c99 -O3), FFTW 3.3.2
(FFTW MEASURE only), PFFT 1.0.7 alpha.

4.2 Strong Scaling Investigation

The most important comparison of the HyFFT and other libraries involves the
strong scaling, where the amount of work is fixed and the number of cores pro-
gressively increased by a factor of two. In an ideal case, any time the number of
cores is doubled the execution time is be halved.

Fig. 4 shows the strong scaling for HyFFT, PFFT and the original FFTW
library on the Fermi cluster. The results for P3DFFT has not been obtained
yet due to difficulties while compiling the library on the BlueGene machine yet
is expected to be very similar to PFFT. The most exciting observation is that
both HyFFT and PFFT libraries scales very well even for very high core counts
(the maximum number was limited by our allocation). Taking into consideration
that each of 16k thread only processes 256KB of data, this is an extremely good
result. The second favourable fact is that the curves remains steep without any
flattening making us optimistic about further scaling. The average scaling factor
is 1.87 while 2.0 would be optimal, with some superlinear drops attributed to
cache effects (the slab/pencil is small enough to fit in cache).

The FFTW shows its superiority as long as there are enough slabs to employ
all cores (slab decomposition has naturally lower overhead than the pencil one).
The HyFFT is about 30% slower and the PFFT about 75% slower than the
FFTW for low core counts. The advantages of the hybrid decomposition is clearly
visible in this measurement (roughly 20-30% time reduction). The true poten-
tial of HyFFT and PFFT emerges when scaling beyond the number of slabs.
Spreading the work over 16k cores can accelerate the calculation of 3D FFT
over a 10243 grid by a factor of 7.8.

The strong scaling obtained on Anselm and Zapat shows the same tendency,
thus only the plot for Anselm is presented, see Fig. 5. The first interesting obser-
vation is that the performance for all libraries almost matches for low and moder-
ate core counts (up to 1024). Indeed, there is only about 10% difference between
the fastest and slowest library. The difference becomes significant when running
on 2048 cores where FFTW is not able to scale, the performance of PFFT and
P3DFFT is almost identical and the HyFFT outperforms both by a factor of
1.27. The advantage of shared memory is again clearly visible. The average scal-
ing factor reached by HyFFT is 1.9. Unfortunately, it was not possible to run
the test on more cores as Anselm does only integrate 3.3k cores.

4.3 Comparison of Different Cluster Architectures

This section mutually compares the performance of the investigated libraries
reached across different cluster architecture. Fig. 6 compares the performance



Parallelisation of the 3D Fast Fourier Transform 109

Fig. 4. Strong scaling for the grid size of 10243 on the Fermi cluster

Fig. 5. Strong scaling for the grid size of 10243 on the Anselm cluster



110 V. Nikl and J. Jaros

Fig. 6. The execution time of the 3D FFT over a 10243 grid distributed over 512 cores

Fig. 7. Time distribution over the main components of HyFFT for a 10243 grid

provided by 512 cores because we did not have more cores at our disposal on
Zapat.

It can be seen that the x86 based clusters (Anselm, Zapat) provide signifi-
cantly higher performance than the BlueGene one (Fermi). It is caused by the
joined factor of the lower raw performance per core as well as the different inter-
connection network. Fermi gives about 50% of FLOP/s per core compared to
Anselm. The lower performance could also be caused by the less explorative
FFTW planning flag. Interestingly, Zapat is approx. 1.4× faster than Anselm.
Looking at the specification it is not obvious why there is such a big difference
considering the interconnection is the same and the clock speed difference is less
than 10%.

4.4 Time Distribution over HyFFT’s Components

This section investigates the time distribution over the main components of
HyFFT. Fig. 7 shows the time spent on calculating FFTs, local and global



Parallelisation of the 3D Fast Fourier Transform 111

transposition for a 10243 grid on different clusters with different core counts.
The picture demonstrates that the global transposition remains the most time
consuming part of the 3D FFT. It’s overhead is highest for Zapat, closely fol-
lowed by Anselm reaching up to 80%. The picture is a bit different for Fermi.
For moderate core count, the compute time dominates, however with increasing
number of cores, the compute part becomes smaller at the expense of commu-
nication. Finally, the time per local transpose seems reasonable.

5 Conclusions

The results have shown that the hybrid OpenMPI/MPI decomposition performs
very well on current supercomputers. On Intel x86 clusters, HyFFT provides
comparable performance to FFTW on low numbers of cores and outperforms
the pure-MPI state-of-the-art libraries PFFT and P3DFFT by 10 to 20% for
high core counts. Running HyFFT on a BlueGene machine reveals the true
potential of the hybrid decomposition. Although being beaten by FFTW in
situation where the 1D decomposition is enough to employ available cores, it
further extends FFTW’s scalability, reaching 8× higher performance on 16384
cores compared to the maximum number of employable cores (1024) of FFTW
using a 10243 grid size. HyFFT also helps reduce communication overhead for
high core counts leading in better execution times than other pure-MPI libraries.

This has a huge practical impact on many spectral simulations. Speaking
about the k-Wave project, deploying the hybrid decomposition has the poten-
tial to decrease the simulation time by a factor of 8, bringing the simulation
time within the clinically meaningful timespan of 24 hours and allowing patient
specific treatment plans to be created.

In the future, we would like to add support for AVX-512 and ALTIVEC
extensions to be able to vectorize the code on as many different machines as
possible. We also plan to use non-blocking MPI communication to overlap some
of the communication with computation. Finally, as the communication step is
often dominant, we would like to focus our attention on low-power clusters.

Acknowledgments. The work was financed from the SoMoPro II programme. The
research leading to this invention has acquired a financial grant from the People Pro-
gramme (Marie Curie action) of the Seventh Framework Programme of EU according
to the REA Grant Agreement No. 291782. The research is further co-financed by the
South-Moravian Region. This work reflects only the authors view and the European
Union is not liable for any use that may be made of the information contained therein.
This work was also supported by the research project ”Architecture of parallel and
embedded computer systems”, Brno University of Technology, FIT-S-14-2297, 2014-
2016.

This work was further supported by the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070), funded by the European Regional Development Fund and
the national budget of the Czech Republic via the Research and Development for
Innovations Operational Programme, as well as Czech Ministry of Education, Youth
and Sports via the project Large Research, Development and Innovations Infrastruc-
tures (LM2011033). Computational resources were also provided by the MetaCentrum



112 V. Nikl and J. Jaros

under the program LM2010005 and the CERIT-SC under the program Centre CERIT
Scientific Cloud, part of the Operational Program Research and Development for
Innovations, Reg. no. CZ.1.05/3.2.00/08.0144. We acknowledge CINECA and PRACE
Summer of HPC project for the availability of high performance computing resources.

References

1. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation, 297–301 (1965)

2. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent
Problems. Cambridge University Press (2007)

3. Treeby, B.E., Jaros, J., Rendell, A.P., Cox, B.T.: Modeling nonlinear ultra-
sound propagation in heterogeneous media with power law absorption using a
k-space pseudospectral method. The Journal of the Acoustical Society of America
2012(131), 4324–4336 (2012)

4. Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation on
distributed clusters with applications in high-intensity focused ultrasound. ArXiv
e-prints (2014)

5. Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE 93(2), 216–231 (2005)

6. Michael, P.: PFFT-An extension of FFTW to massively parallel architectures.
Society for Industrial and Applied Mathematics 35(3), 213–236 (2013)

7. Pekurovsky, D.: P3DFFT: A Framework for Parallel Computations of Fourier
Transforms in Three Dimensions. SIAM Journal on Scientific Computing 34(4),
C192–C209 (2012)

8. Gupta, A., Kumar, V.: The scalability of FFT on parallel computers. IEEE Trans-
actions on Parallel and Distributed Systems 4(8), 922–932 (1993)

9. Foster, I.T., Worley, P.H.: Parallel algorithms for the spectral transform method.
SIAM J. Sci. Comput. 18(3), 806–837 (1997)

10. Sakai, T., Sedukhin, S., Tsuruga, I.: 3D Discrete Transforms with Cubical Data
Decomposition on the IBM Blue Gene/Q. The University of AIZU, Fukushima,
Japan, Technical report (2013)

11. Rahman, R.: The intel math kernel library and its fast fourier transform routines.
Intel Corporation, Technical report (2012)


	Parallelisation of the 3D Fast Fourier Transform Using the Hybrid OpenMP/MPI Decomposition
	1 Introduction
	2 Parallel Implementations of the 3D Fast Fourier Transform
	2.1 Decomposition of the 3D Fast Fourier Transform
	2.2 Libraries for Distributed FFT

	3 Proposed Method
	4 Experimental Results
	4.1 Experimental Supercomputing Clusters
	4.2 Strong Scaling Investigation
	4.3 Comparison of Different Cluster Architectures
	4.4 Time Distribution over HyFFT's Components

	5 Conclusions
	References


