
Trade-offs and Progressive Adoption of FPGA
Acceleration in Network Traffic Monitoring
Luká̌s Kekely, Viktor Pǔs, Pavel Beńaček

CESNET a. l. e.
Zikova 4, 160 00 Prague, Czech Republic

Email: kekely,pus,benacek@cesnet.cz

Jan Kǒrenek
IT4Innovations Centre of Excellence
Faculty of Information Technology

Brno University of Technology
Božeťechova 2, 612 66 Brno, Czech Republic

Email: korenek@fit.vutbr.cz

Abstract—Current hardware acceleration cores for network
traffic processing are often well optimized for one particular task
and therefore provide high level of hardware acceleration. But
for many applications, such as network traffic monitoring and
security, it is also necessary to achieve rapid development cycle to
provide fast response to security threats. We propose and evaluate
a new concept of hardware acceleration for flexible flow-based
network traffic monitoring with support of application protocol
analysis. The concept is called Software Defined Monitoring
(SDM) and it relies on a configurable hardware accelerator
implemented in FPGA, coupled with smart monitoring tasks
running as software on general CPU. The monitoring tasks in
the software control the level of detail and type of information
retained during the hardware processing. This arrangement
allows rapid application prototyping in the software, followed
by further shifting of the timing critical parts of the processing
to the hardware accelerator. The concept is proposed with the
scalability in mind, therefore it is suitable for different FPGA
based platforms ranging from embedded single-chip solutions
(such as Zynq or Cyclone V) to high-speed backbone network
monitoring boxes. Our pilot high-speed implementation using
FPGA acceleration board in a commodity server performs a
100 Gb/s flow traffic measurement augmented by a selected
application protocol analysis.

I. I NTRODUCTION

The task of network traffic monitoring is one of the key
concepts in modern network engineering and security. A
golden standard in the area of network monitoring is a flow
measurement. A monitoring device collects basic statistics
about the network flows and reports them to a central storage
collector using a handover protocol such as NetFlow [1] or
IPFIX[2]. Flow measurement is a stateful process, because
for each packet the flow state record is updated in the device
(e.g. packet counters are incremented), and only the resulting
numbers are exported. The ongoing trend in this field is
towards creating richer flow records [3], [4], [5], carryingsome
extra information in addition to the basic flow size and timing
statistics. The added information often include values from the
application level protocol headers, such as HTTP, DNS etc.

Implementations of the application level flow monitoring
solely in software are certainly possible, yet their throughput is
limited mainly by the performance of commodity processors.
FPGAs offer much better possibilities in terms of throughput.
However, a fixed solely hardware implementation may face the
flexibility issues, since the evolving nature of network threats

implies the need for fast changes of the monitoring process,
quickly making fixed hardware devices obsolete.

The aim of this paper is to (1) strike a balance between the
system throughput and flexibility/programmability and to (2)
offer a configurable trade-off to the above, but mainly to (3)
endorse a progressive adoption of network monitoring subtasks
to the hardware accelerator, driven solely by the needs of the
networking community.

We employ a hardware accelerator to perform the reduction
of traffic for software applications by partial offloading ofthe
packet parsing and flow aggregation into hardware. Therefore,
the accelerator passes some of the packets (as requested) intact
to the software while performing the flow measurement (or
other aggregation) of the bulk traffic that is not interesting to
the application-layer processing software tasks.

The use of packet processing offload can be controlled on a
per flow basis by the monitoring software and adjusted on the
fly according to its actual needs. Offload control is realized
through unified interface by a dynamically specified set of
flow rules. These rules are installed into the accelerator to
determine the type of packet preprocessing acceleration used
for individual network flows. The preprocessing method that
best aids the performance and does not violate the precision
requirement of advanced software processing is selected.

The whole system is designed to be easily extensible at
two main levels. At the software side, monitoring plugins can
be added to the system. This brings the possibility of rapid
development and deployment of new monitoring applications,
for example as a reaction to a new network security threat.
Once the functionality of software task is verified and stable
enough, the second level of the system extensibility can
be employed to further speed-up the task. Various packet
processing and data aggregation routines can be relocated
directly into the hardware accelerator. Furthermore, the system
is designed to scale well from small embedded devices up to
the 100 Gbps backbone network monitoring boxes.

II. A NALYSIS

We start the paper with the analysis of the properties of
the network traffic in a real high-speed backbone network.
All of our measurements were conducted in the high-speed
CESNET2 backbone network. This research and educational



network has optical links operating at speeds up to 100 Gbps
and routes mainly IP traffic.

The key question for the analysis to answer is how big
reduction of data can we achieve by a system based on
the following basic concepts: (1) the core of network traffic
processing is realized entirely in the software, (2) acceleration
is achieved by a software controlled offload of the flow
processing to the hardware, based on the few leading packets,
(3) target family of applications (monitoring and security) usu-
ally does not require most of the network traffic – aggregated
information or only a specific fractions of traffic are sufficient.

Very important characteristic of network traffic is the flow
size distribution. According to graph derived from the mea-
sured values, shown in Fig. 1, the flow size distribution has
heavy-tailed character. The graph shows the portions of all
packets carried by the specified percentage of the heaviest
flows (i.e. flows with the most packets) in the network. It
can be seen that generally (black thicker line) 0.1 % of the
heaviest flows carry around 60 % of all packets and 1 %
carries even around 85 %. A consequence of this observation
for the proposed system concept is that even by offloading
a small portion of the heaviest flows, we can accelerate the
preprocessing of the majority of packets.

0,01 0,1 1 10 100
0

20

40

60

80

100

The heaviest flows [%]

P
ac

ke
ts

 [%
]

 

 

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 1. Portions of packets carried by the percentage of the heaviest flows

The problem then lies in the capability to predict the
heaviest flows only from the observed properties of their first
few packets. From a wide variety of heavy flow detection
methods we choose one that is very simple: For a selected
thresholdk, a flow is considered heavy after the arrival of
its first k packets. The main advantage of this method is its
straightforward implementation – no deep packet analysis nor
advanced stateful information for the flows is needed.

The measured accuracy of the heaviest flow selection by
this method is shown in Fig. 2. The graph shows the relation
between the value of thresholdk and the portion of heavy
marked flows (dashed line) and packets (solid line) covered
by them. By a combination of values we can see that with the
rising decision threshold the portion of heavy marked flows
dramatically decreases, but the percentage of covered packets
decreases rather slowly.

III. A RCHITECTURE

The basic idea behind the acceleration by the proposed
SDM system is based on a finely controlled load reduction

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Decision threshold [packets]

P
ac

ke
ts

/F
lo

w
s 

[%
]

 

 

Flows
Packets

Fig. 2. Heavy flow detection using the simple method – portions of offloaded
flows and packets

and distribution achieved by the accelerated preprocessing of
the network traffic. Although the preprocessing is done by
the firmware in FPGA, it is fully controlled by the software
applications. Therefore, the earliest few packets of each new
flow are sent to the software, which selects a type of hardware
preprocessing used for the subsequent packets of the said flow.

The suitable types of hardware preprocessing for the area
of network monitoring can be divided into three basic groups:

• Extraction of the interesting data from packets and
sending only those data to the software in a fixed format,
which we call Unified Header (UH).

• Aggregation of packets into flow records directly in the
hardware. This aggregation does not need to be only basic
flow statistics, but different forms of aggregation can be
specified according to the needs of particular applications.

• Filtration of unnecessary packets and forwarding only
the interesting ones into the software. This can aid
advanced monitoring applications, which perform various
analyses and detections oriented only to some specific
subgroup of network traffic.

The top-level conceptual scheme of the proposed SDM
system is shown in Fig. 3. The processing of an incoming
packet in the FPGA firmware starts with the header parsing
and extraction of packet metadata (Parser). Extracted metadata
is then used to classify the packet based on a software defined
set of rules (Rule Lookup). Each rule identifies one concrete
flow and specifies the type of packet preprocessing and the
target software channel for packets of that flow. Packets can
be processed in a firmware flow cache (i.e. aggregated to
selected type of flow record), dropped or sent to the software
unchanged or in the form of Unified Header.

The data from the firmware is sent over the bus to the
software using multiple independent channels. Data for each
channel is stored in a software buffer in the form of whole
packets, Unified Headers or flow records.

This data is processed by the set of user specific software
applications such as the flow exporter [1] which analyzes the
received data and exports the flow records to the collector.
User applications read the data from the selected channels.
They also specify which types of traffic they want to inspect
and which flows can be preprocessed in hardware. Definitions



Parser

Rule Lookup

Flow Cache

Packets

UHs

Actions

App 1

App N

...

Flow Exporter

SDM Controller
Rules

D
a
t
a
 
B
u
s

IPFIX

Firmware Software

Preprocessing
Requests

DMA

Buffers

Fig. 3. Conceptual top-level scheme of SDM system

of (un)interesting traffic are passed from all applicationsto the
software SDM Controller. The SDM controller aggregates the
definitions (requests) into rules and configures the firmware
preprocessing in order to achieve the maximal possible re-
duction of the traffic while preserving the required level of
information. The network traffic preprocessing in the firmware
is entirely controlled from the software and the core of the
controlling software are the monitoring applications. Each
monitoring application has the form of an SDM plugin. The
main input to the plugin is the data path carrying the packets,
extracted UHs or aggregated flow records. The plugin output is
whichever data that the plugin has parsed/detected/measured.
This output data can be added to the exported IPFIX flow
record, so that it isenriched by the information from the
plugin. The third interface of the monitoring application
is the flow (dis)interest information interface to the SDM
Controller. SDM controller accepts the preprocessing requests
from multiple applications and aggregates them into rules for
the firmware. This mechanism realizes the feedback control
loop, which is an important concept in our work.

Packets

Parser
UHs

Actions

UHs

Export
Data

Path

Control

Path

Flow
Search

Rule
Table

Flow 
Record
Table

Rules

I1

In

...

Execution
Unit

SW
Access

FPGA

External

Memory

P1
...

Pn

Fig. 4. Detailed firmware scheme

Fig. 4 shows a top level implementation scheme of the
SDM accelerator firmware for FPGA. The main firmware
functionality is realized by the processing pipeline which
processes the incoming network traffic and creates an outgoing
data flow for the software. The SDM firmware is realized by
five main modules:

Parser extracts interesting information from headers of
packets, especially fields that clearly identify network flows.
To identify the flows, we use the 5-tuple: IP addresses,
TCP/UDP ports and protocol. Furthermore, our implemen-
tation is modular and enables easy extensions of default

packet parsing process by additional application-specificparser
modules (P1..Pn).

Flow Search assigns an action (processing instruction) to
every packet based on its flow identifier and a set software
defined rules. Management of the rule set is done through a
control interface capable of an atomic on the fly add, remove
or update of the rules.

Execution Unit manages the stateful flow records in Flow
Record Table. It mainly actualizes their values by execution
of instructions from flow associated actions. Every action
specifies an instruction to be executed and the address of the
flow record to work with. Furthermore, the instruction has
access to data extracted from packet (UH). The Execution
Unit supports multiple user-defined instruction sub-modules
(I1..In), more details about the execution and implementation
of instructions are in Sec. III-A.

Export pairs together corresponding UH transaction with
frame data from FIFO buffer. Then it chooses the required
channel and format for the data based on action assigned by
the Flow Search module.

SW Accessis the main access point into the SDM firmware
from the software side. Its primary function is to manage the
rules and to initiate the export of the flow records based on
controller commands.

A. Execution Unit functionality

Execution Unit realizes the main stateful behavior of the
hardware by execution of flow record updating instructions.To
improve the overall flexibility of the system, we use modular
architecture that allows to implement custom read-modify-
write aggregation operations (instructions). Thanks to these
custom instructions, the nature of the flow records maintained
by the hardware in Flow Record Table can be customized
according to the target application. We use high-level synthesis
(HLS) tools to generate custom hardware modules from the
description in C or C++. Thanks to that, SDM hardware can
be customized faster and even without the knowledge of HDL
programming (e.g. by network security experts).

We implement and evaluate five different Execution Unit
instructions to test the feasibility of the described concept:

• NetFlow instruction is used for standard NetFlow aggre-
gation. Its execution increases flow packet and byte coun-
ters, updates flow end timestamp and computes logical
OR of the observed TCP flags.

• NetFlow Extended instruction has the same basic func-
tionality as NetFlow. In addition, it stores the TCP flags
of the first five packets.

• TCP Flag Counters instruction performs increment of
counters of individual observed TCP flags. For example,
one can see the number of ACK flags transmitted during
the whole TCP connection.

• Timestamp Diff instruction maintains records of inter-
arrival times of the first eleven packets of the flow.

• CPD instruction represents the Change-Point Detection
algorithm [6], [7] designed to detect an anomaly in the
processed network flow.



IV. RESULTS

We implement and evaluate a high-speed version of SDM
system. We realize the hardware part by the PCI Express
accelerator board with the Virtex-7 H580T FPGA.

A. Achieved performance

As we describe earlier, the designed SDM system acceler-
ates the monitoring applications by the software defined hard-
ware acceleration of network traffic preprocessing. The pre-
processing control is realized by the monitoring applications
through on the fly defined dynamic rules for particular flows.
There is some delay between the flow start and rule application
in the FPGA firmware. The duration of this feedback loop
delay can influence the portion of packets affected by the rules
(i.e. offloaded by the hardware accelerator).

Therefore, we measure the portion of packets that were
processed by the SDM firmware according to selected flow
rules. The results are shown in Fig. 5. The graph shows that,
the measured effectiveness of the system (red) is only slightly
worse than the analysis (black from Fig. 2) suggests. The gap
is only from 5 to 10 % of all packets for our implementation.
The width of the gap between the theoretical and practical
results can be further reduced by utilization of a platform with
shorter latency than that of PCI Express (e.g. CPU core(s) and
FPGA logic within the same chip).

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

Decision threshold [packets]

P
ac

ke
ts

/F
lo

w
s 

[%
]

 

 

Analysis
Measurement

Fig. 5. Portions of offloadable packets and flows using the simple heavy flow
detection method

B. FPGA implementation results

Our high-speed SDM FPGA firmware runs at 200 MHz and
includes not only the SDM core functionality, as described
in Sec. III, but also Ethernet, PCI-Express and QDR exter-
nal memory interface controllers. Closer look at the FPGA
resources of the firmware is shown in Tab. I. Using the same
SDM core with the data width of 512 bits and throughput of
100 Gbps, we create 3 different FPGA architectures for boards
with 3 different arrangements of Ethernet ports: one 100 GbE
port, two 40 GbE ports and eight 10 GbE ports.

Table II shows the resource utilization of the individual
instruction sub-modules for the Execution Unit. It can be seen
that the additional instruction sub-modules are relatively small,
compared to the whole firmware, and therefore adding new
instruction should not involve any major refinements of the
FPGA firmware.

TABLE I
RESOURCES OF THESDM FIRMWARE

Throughput Regs LUTs
1×100 Gbps 197 758 249 214
2×40 Gbps 134 172 178 984
8×10 Gbps 184 084 222 745

TABLE II
RESOURCES OF THE INSTRUCTION BLOCKS

Instruction Regs LUTs
NetFlow 1846 824
NetFlow Extended 2070 1113
TCP Flag Counters 0 1046
Timestamp Diff 5199 2556
Change-Point Detection 5296 3919

V. CONCLUSION

Our work shows the design and implementation of a flexible
100 Gb/s network flow monitoring system working at the
application layer using a commodity PC and a hardware
accelerator. The behavior of the system is fully controlledby
the software, which makes us use the term Software Defined
Monitoring. The concept is by design extensible by the soft-
ware plugins to adjust its functionality to actual needs andto
react to future network threats. Next level of extensibility is
provided by custom instructions of the hardware accelerator,
which can redefine the nature of the acceleration itself.

ACKNOWLEDGEMENT

This research has been partially supported by the “CES-
NET Large Infrastructure” project no. LM2010005 funded by
the Ministry of Education, Youth and Sports of the Czech
Republic, the project TA03010561, the research programme
MSM 0021630528, the grant BUT FIT-S-11-1 and the IT4-
Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, Internet Engineering Task Force, October 2004.

[2] B. Claise, B. Trammell, and P. Aitken, “Specification of theIP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information,”
RFC 7011, Internet Engineering Task Force, Sept. 2013.

[3] L. Deri, L. Trombacchi, M. Martinelli, and D. Vannozzi, “Adistributed
dns traffic monitoring system,” in8th International Wireless Communi-
cations and Mobile Computing Conference (IWCMC), 2012, pp. 30–35.

[4] M. Elich, P. Velan, T. Jirsik, and P. Celeda, “An investigation into teredo
and 6to4 transition mechanisms: Traffic analysis,” in38th Conference on
Local Computer Networks Workshops, 2013, pp. 1018–1024.

[5] P. Velan, T. Jirśık, and P. Čeleda, “Design and evaluation of http
protocol parsers for ipfix measurement,” inAdvances in Communication
Networking, ser. Lecture Notes in Computer Science, T. Bauschert, Ed.
Springer Berlin Heidelberg, 2013, vol. 8115, pp. 136–147.

[6] A. Tartakovsky, A. Polunchenko, and G. Sokolov, “Efficient computer
network anomaly detection by changepoint detection methods,” Selected
Topics in Signal Processing, vol. 7, no. 1, pp. 4–11, 2013.

[7] R. B. Blazek, H. Kim, B. Rozovskii, and A. Tartakovsky, “A novel ap-
proach to detection of “denial–of–service” attacks via adaptive sequential
and batch–sequential change–point detection methods,” inProc. 2nd IEEE
Workshop on Systems, Man, and Cybernetics, 2001.


