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Abstract. In this paper, the approximate circuit design problem is for-
mulated as a multi-objective optimization problem in which the accu-
racy and power consumption are conflicting design objectives. We com-
pare multi-objective and single-objective Cartesian genetic programming
in the task of parallel adder and multiplier approximation. It is ana-
lyzed how the setting of the methods, formulating the problem as multi-
objective or single-objective, and constraining the execution time can
influence the quality of results. One of the conclusions is that the multi-
objective approach is useful if the number of allowed evaluations is low.
When more time is available, the single-objective approach becomes more
efficient.

1 Introduction

Approximate computing is a promising approach for the design of energy effi-
cient computer-based systems (see detailed motivation and survey in [1, 2]). It
exploits the fact that many applications are error resilient which means that
their users are willing to accept less than perfect solutions, simply because the
inaccuracies in the output are not recognizable, or they are well justified under
some circumstances. Multimedia applications, search, classification, prediction
and recognition tasks are typical domains for approximate computing. Approx-
imations can be introduced at the circuit, component, architecture, software,
operating system or system’s level. In some cases, the degree of approximation
of the accurate solution can be adapted during system’s deployment [1, 2]. Be-
cause of the nature of evolutionary design and optimization, in which target
systems are evolved by introducing small changes into existing structures, it
seems that evolutionary computing could be an efficient method to approximate
(i.e. purposely modify) existing circuit designs [3, 4].

From the designer’s perspective, a reasonable trade-off is sought between the
accuracy and power consumption. (Alternatively, the accuracy can be traded
for the speed of operation in some applications.) The approximate circuit de-
sign problem can be formulated as a multi-objective design problem in which
the accuracy and power consumption are conflicting design objectives. A good
approximate circuit design tool should provide a set of solutions which exhibit



various trade-offs among key circuit parameters, in particular, the accuracy and
power consumption. These solutions should, in an idealized case, perfectly match
the so-called Pareto optimal front [5]. Current tools (such as [6–8]) typically solve
this problem by multiple executions of approximation engines in order to obtain
a set of various solutions. With respect to given constraints and specification,
the designer finally selects one of the compromises to be implemented on a chip.

The approximate circuit design is a computationally demanding process
which involves generating and comparing many circuit designs. In order to justify
this computation time, the resulting circuit should really represent a good com-
promise between the target objectives. The maximum number of circuits that
are allowed to be generated and evaluated thus becomes the main constraint for
approximation engines.

The goal of this paper is to compare multi-objective and single-objective
versions of Cartesian genetic programming (CGP) [9] in the task of combina-
tional circuit approximation. The reasons for using an advanced evolutionary
approach (contrasted to a greedy search used in the state of the art tools [8]) are
that the population-based approach suits well in finding multiple solutions and
its niche-preservation methods can be exploited to discover diverse solutions [5].

The methodology presented in this paper uses the following principles: (1)
the single- and multi-objective search methods are compared under various con-
straints on the execution time because design time is one of the key factors
determining applicability of a design method; (2) the key circuit parameters
(area and delay) are estimated during the optimization process while the re-
sulting approximate circuits are implemented using a standard design flow and
compared with their accurate counterparts. It has to be noted that performing
a fair comparison of various approximation algorithms is not trivial in practice
because different teams have the access to different test circuits (some of them
are proprietary) and fabrication technologies (correct power estimation depends
on a particular fabrication process).

Section 2.1 surveys relevant methods developed to approximate circuit de-
signs. Section 2.2 is devoted to the principles of multi-objective optimization.
The proposed single-objective and multi-objective approximate circuit design
methods are introduced in Section 3. Experimental results are presented in Sec-
tion 4. Conclusions are given in Section 5.

2 Related Work

2.1 Approximate Computing

In approximate computing systems, the accuracy (or quality) of the output is
traded for improvements in power consumption or performance. This is possible
because many applications are intrinsically error resilient and users are willing in
many cases to accept less than perfect performance or quality. Approximations
are currently applied at all system’s levels [2]. We will solely focus on approximate
circuits in this paper.



Initial approaches to the functional approximation have been based on a
manual identification of subcircuits that should be approximated, for example,
in adders and multipliers [10]. However, the manual approach is not efficient
and scalable. Later, several systematic automated methodologies have been pro-
posed [6–8, 3].

For example, ABACUS creates an abstract synthesis tree (AST) from the in-
put behavioral description and then applies various operators to the AST using
an iterative stochastic greedy approach [8]. Candidate designs are evaluated in
terms of accuracy, power consumption and area using a single objective optimiza-
tion algorithm. The objectives are combined together using a weight function.
The Pareto front is obtained from multiple runs of the search algorithm (only
about 50 candidate circuits are generated in each run [8]).

The aforementioned methods try to approximate the Pareto optimal front by
either combining more design objectives in a single objective search (ABACUS)
or executing the approximation algorithm with one fixed criterion (e.g. the error
is constant) and optimizing for another one (minimizing power consumption).
However, in many cases, the resulting solutions do not cover the whole Pareto
front and the design alternatives are centered around a few dominant design
alternatives. These methods use the standard design flow to construct and eval-
uate every candidate circuit, which is very time consuming. On the other hand,
the circuit parameters obtained are very close to real ones.

Systematic methods based on the evolutionary design paradigm consider the
approximate circuit design problem as a search problem. It was exploited in [3,
4] that power consumption is often highly correlated with occupied resources
and the evolutionary design is capable of constructing partly working solutions
even if sufficient resources (required for finding a fully functional solution) are
not available. The user then obtains, in multiple runs of CGP, a set of approxi-
mate combinational circuits, each of which typically exhibits different trade-off
between the accuracy and the number of gates. Delay was not addressed in [3].

2.2 Multi-objective Optimization

In general, the multi-objective optimization problem can be defined in the fol-
lowing form:

optimize: fm(x), m = 1, 2, ...,M

subject to: gj(x) ≥ 0 j = 1, 2, ..., J (1)

hk(x) = 0 k = 1, 2, ...,K

where x = (x1, x2, . . . , xn) is a vector representing the solution consisting of n
decision variables. The objective functions are denoted f1, . . . , fM . Some of these
functions have to be minimized, others have to be maximized. Functions gj(x)
and hk(x) define the optimization constrains and thus determine the space of
feasible solutions.

In order to compare two solutions, Pareto-dominance relations are employed [5]:
Solution x(1) dominates another solution x(2) if the following conditions are sat-



isfied: (i.) The solution x(1) is no worse than x(2) in all objectives. (ii.) The
solution x(1) is strictly better than x(2) in at least one objective.

The result of the multi-objective optimization is no longer a single solution,
but a set of solutions. In a set of solutions P , a non-dominated subset of solu-
tions P ′ contains those solutions that are not dominated by any member of P .
The non-dominated subset of all possible solutions is called Pareto-optimal set
(front). The members of this subset are optimal solutions to the multi-objective
optimization problem. The ultimate goal of any multi-objective optimization
algorithm is to find all solutions which belong to the Pareto-optimal front. In
practice, the goal is to find a set of solutions as close as possible and as diverse
as possible with respect to the Pareto-optimal front.

A straightforward approach to the multi-objective optimization is converting
the multi-objective problem to a single objective one using a weight function∑
wifi, where wi is the weight of the i-th objective. Because a single run of the

optimizer which uses the sum yields only one solution, multiple runs are needed
for obtaining various trade-offs. The proper setting of weights wi is not an easy
task and is usually based on the user intuition. Another limitation of the weight
function lies in the fact that certain Pareto-optimal solutions are not reachable
in the case of nonconvex objective space [5]. Since it is difficult to detect whether
the resulting objective space is nonconvex, the weight function has to be applied
with caution.

In order to precisely approximate the whole Pareto-optimal front and ob-
tain various diverse non-dominate solutions in a single run of an optimizer,
truly multi-objective evolutionary algorithms have been introduced, for example,
non-dominated sorting genetic algorithm (NSGA-II). Contrasted to the single-
objective optimization algorithms, they internally sort individuals according to
the dominance relation, build archives of non-dominating solutions, and ensure
population diversity to avoid converging to a single solution. In the context of
evolutionary design of (exact) circuits, multi-objective CGP has been applied
in [11, 9].

3 The Proposed Search Methods

The proposed approach is based on Cartesian genetic programming [9] and its
multi-objective extension utilizing the NSGA-II [12].

3.1 Circuit Representation

A candidate circuit is modeled by means of a directed acyclic graph whose nodes
(gates) are organized in nc columns and nr rows. The circuit has ni primary
inputs and no primary outputs. Each node input can be connected either to the
output of a node placed in previous l columns or to one of the primary circuit
inputs, where l is one of CGP parameters.

A candidate solution consisting of two-input nodes is represented in the chro-
mosome by nr · nc triplets (x1, x2, ψ) determining for each processing node its



function ψ (ψ ∈ Γ ), and addresses of nodes x1 and x2 which its inputs are
connected to. The last part of the chromosome contains no integers specifying
either the nodes where the primary outputs are connected to or logic constants
(’0’ and ’1’) which can directly be connected to the primary output. While the
chromosome size is constant for a given product nr · nc, the phenotype size is
variable and measured as the number of used nodes (gates).

3.2 Single-objective Search

The initial population of CGP is created either randomly or by means of ex-
isting circuits. Candidate circuits are evaluated using the fitness function. If
a multi-objective optimization is conducted, there are several fitness functions
formulated, each of them reflecting to what extent a given circuit parameter
(accuracy, area, delay etc.) satisfies the specification.

When multiple-objectives are aggregated to a single fitness value (e.g. us-
ing the weight function), we speak about a single-objective optimization. Each
member of the population then receives one fitness value and the highest-scored
idividual becomes a new parent of the next population.

New circuits are created from the parent using mutation, which is the only
operator used in CGP. The mutation modifies h randomly selected genes (inte-
gers) of the parent circuit. CGP usually employs a 1 + λ search strategy. The
evolution is terminated when a predefined number of generations is exhausted
or a suitable solution is discovered.

3.3 Multi-objective Search

In the multi-objective algorithm, the 1 + λ search strategy is replaced by pro-
cedures of NSGA-II which implement non-dominated sorting of the population
(non-dominated solutions are emphasized) and diversity preservation mecha-
nisms (less crowded points of the search space are promoted) – details can
be found in [12]. Here, the population consists of λMO individuals. The non-
dominated sorting algorithm of NSGA-II was modified in such a way that when
all components of the fitness score of a parent and its offspring remain unchanged,
the offspring is classed as dominating the parent, and is therefore ranked higher
than the parent. Moreover, the maximum allowed error Emax (which the de-
signer is going to observe and accept in the resulting Pareto fronts) is defined as
a constraint in our algorithm. In order to optimize the error (inaccuracy), area
and delay, three fitness functions (all to be minimized) will be constructed. If
fitness ferror > Emax, the solution is considered as unacceptable.

3.4 Methodology

As many candidate circuits will be generated and evaluated in the course of
evolution, it is intractable to precisely calculate power consumption and other
circuit parameters for each of them. Hence we will only calculate the error and



estimate the area and delay. As power consumption is highly correlated with
the area (which can be assumed for certain technology nodes), it is particularly
important to find good compromises between the area and error. At the end of
the evolutionary optimization, selected approximate circuits will be implemented
using a standard design flow and compared with their fully functional versions.

In order to estimate parameters of a given circuit, the area and delay are
calculated using the parameters defined in the liberty timing file available for
a given semiconductor technology. This file gives the area, timing and power-
relevant parameters of each cell (gate).

Delay td of a cell ci is modeled as a function of its input transition time ts
and capacitive load cl on the output of the cell, i.e. td(ci) = f(tcis , c

ci
l ). Delay of

circuit C is determined as delay of the longest path:

Delay(C) = max
∀p∈path

∑
ci∈p

td(ci).

The capacitive load on the circuit outputs is chosen to be equal to the input
capacitance of an inverter cell. The transition time on circuit inputs corresponds
to the transition time on the output of an inverter cell.

The area of circuit C is calculated as the sum of areas of all cells ci involved
in the circuit:

Area(C) =
∑
ci∈C

area(ci).

Various error criteria can be utilized to evaluate the quality of an approximate
arithmetic circuit. The average error magnitude Eavg(C) is employed in our case.
This metric is defined as the sum of absolute differences in magnitude between
the original and approximate circuits averaged over all inputs:

Eavg(C) =

∑
∀i |Y (Corig, i)− Y (C, i)|

22w
(2)

where Y (Corig, i) denotes the output value of the fully functional circuit for the
input vector i, Y (C, i) denotes the output value of approximate circuit C and w
specifies the bit-width.

Multi- as well as single-objective algorithm is seeded with a fully functional
version of an arithmetic circuit. In both cases the user is supposed to define Emax.
However, the interpretation of Emax is different. In the case of multi-objective
optimization, solutions with the error greater than Emax are unacceptable; the
remaining solutions are considered during the Pareto front construction. In the
case of single-objective optimization, the evolutionary algorithm is used to find
a solution showing the error as close as possible to Ei. In order to construct
Pareto front, the single-objective algorithm has to be executed multiple times
with Ei increasing from a small error to Emax in several steps.

In order to obtain a solution with the required error level, the single-objective
algoritm works in two stages. The goal of the first stage is to produce a circuit
with error as close as possible to the required level Ei regardless the other op-
timization criteria. To achieve this objective, the fitness value fitnessL1 is cal-
culated as the relative absolute difference from the required error level and the



goal is to minimize this difference, i.e.

fitnessL1(C) =
|Eavg(C)− Ei|

Ei

If the required error is obtained (fitnessL1 < 0.01), the algorithm contin-
ues by the second stage. In this stage, additional optimization objectives are
considered and the error serves as a constraint which guarantees that the error
value is kept as close as possible to the required error level. Each objective is
normalized to the interval < 0, 1 > and weighted with a weight we, wa or wd

(we + wa + wd = 1). Then,

fitnessL2(C) =


weE

′
avg(C)+

waArea
′(C)+

wdDelay
′(C), if fitnessL1 < 0.01

∞, otherwise,

where the apostrophe denotes a normalized value with respect to the original,
fully functional circuit.

4 Results

4.1 Experimental Setup

The single-objective (SO) and multiple-objective (MO) algorithms based on
CGP are evaluated in the task of 4-bit and 8-bit adder and multiplier ap-
proximation. Emax is chosen to be 2.5% of the maximum average error, where
the maximum average error is (2w − 1)2 for the multiplier and 2(2w − 1) for
the adder. While the multi-objective algorithm is executed with Emax, the
single-objective algorithm is executed SOrun times; one run for one error level
from 0% to 2.5%. In both cases, CGP was initialized by fully functional cir-
cuits. We compared three sets of weights for the single-optimization algorithm
we/wa/wd = {(0.8, 0.12, 0.08), (0.5, 0.38, 0.12), (0.12, 0.5, 0.38)} (inspired in [8]).

In both approaches we used the following CGP parameters: h = 5, l = nc =
Ng, nr = 1, ni = 2w, no = 2w for w-bit multiplier and no = w + 1 for w-bit
adder, where Ng is the number of gates of the original fully functional circuit.
In both cases, 5 · 103 evaluations (fitness calls) were allowed, corresponding to
100 generations of the multi-objective algorithm (λMO = 50). In the case of
the single-objective algorithm, 50 generations are produced for each of 20 error
levels (λSO = 5, SOrun = 20). This number of evaluations is very low from the
perspective of evolutionary circuit design; however, this number is still much
higher than in conventional methods [8].

The experiments were conducted for I3T25 technology (0.35 µm digital pro-
cess). The following cells (and thus functions in Γ ) are considered: and, or, xor,
nand, nor, xnor, buf, inv, with corresponding relative areas 1.333, 1.333, 2, 1, 1,
2, 1.333, and 0.667.



Fig. 1. Adders: Performance of single- and multi-objective methods with respect to
original fully functional circuits (0% error).

4.2 Comparison of Single- and Multi-objective Search

Fig. 1 and 2 show the resulting parameters of all circuits as dots in two 2D
plots (area vs. error and delay vs. error). These figures contain results from
25 independent runs of the algorithms for each scenario. The 3D Pareto front
(projected to two 2D graphs) is interpolated using solid lines for each investigated
scenario. Other Pareto fronts (dashed lines) are constructed in such a way that
one objective (either area or delay) is ignored. These (dashed) Pareto fronts
represent better compromises because the problem is simplified. One can observe
that MO performs better than SO and the weights’ setting in SO is negligible.

In another experiment, we investigated whether increasing the number eval-
uations to 500 · 103 can improve the quality of results. Fig. 3 shows that with
decreasing the acceptable error, the results produced by SO are better than
those from MO. The weight of the area in the fitness function (SO) becomes
more important and its unsuitable setting can influence the result by 20%. The
SO approach exploits the fact that the error is fixed and the overall effort can be
put into minimizing the area and delay. On the other hand, MO has to cover the



Fig. 2. Multipliers: Performance of single- and multi-objective methods with respect
to original fully functional circuits (0% error).

whole Pareto front and the available time seems to be insufficient to compete
with SO.

In order to further investigate the computation requirements, we analyzed the
quality of resulting solutions with respect to the number of allowed evaluations
(generations) in Fig. 4. In the case of MO, the progress of evolution is negligible
after 50 · 103 evaluations. SO is capable of improving the quality until 250 · 103

evaluations are spent on average, when solutions probably very close to the
Pareto optimal front are obtained.

The computational requirements of the multi-objective algorithm are slightly
higher than for the single-objective method (457 vs. 491 evaluations per second
for the 8-bit adder and 240 vs. 284 evaluations per second for the 8-bit multi-
plier).

4.3 Results of Synthesis

In order to validate the presented results, we implemented selected circuits using
a standard design flow. The original circuits and selected circuits obtained by



Fig. 3. Resulting Pareto fronts when 500 · 103 evaluations are allowed

CGP were converted into a netlist, and after synthesis, placement and routing
(Cadence Encounter RTL Compiler), we compared parameters of resulting cir-
cuits with the estimated values used during the evolution. Table 1 shows that our
estimated values are almost perfectly matched with the results of the professional
design tool (see Impr. columns). The area is correlated with power consumption
under the investigated scenario.

A direct and fair comparison with some results from the literature is not
possible for several reasons: implementations of methods such as SASIMI and
SALSA are not available; only some parameters of benchmark circuits reported
in the literature are known (i.e. their implementation is not available); and results
are given for different fabrication technology. The proposed method led to 71%
power reduction with 0.6% average error, which seems to be a good result for
8-bit multiplier in comparison with SASIMI [7] (45% power reduction with 0.5%
average error) and Gupta et al. [13] (35% power reduction with 2.5% average
error), despite the fact that different technology was used.

5 Conclusions

In this paper, we proposed and compared two evolutionary approximation cir-
cuit design methods based on single- and multiple-objective CGP. Contrasted to
current approaches, in which every candidate circuit is implemented and eval-
uated by means of a profession design tool, candidate circuits’ parameters are
only quickly estimated in the optimization process. It allowed us to generate
many more candidate designs than state-of-the art methods. It was shown that
the multi-objective method is useful if the number of allowed evaluations is low.
On the other hand, when more time is available, the single-objective method
outperforms the multi-objective one. We validated key circuit parameters of se-
lected approximate circuits by means of a commercial design flow. By employing



Fig. 4. Resulting Pareto fronts with respect to the number of evaluations

the advanced optimization algorithms and allowing more computation time, we
obtained very good approximations of the Pareto optimal fronts for adders and
multipliers.
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