
Evolutionary Computing in Approximate Circuit
Design and Optimization

Lukas Sekanina and Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Bozetechova 2, 61266 Brno, Czech Republic
Email: sekanina@fit.vutbr.cz, vasicek@fit.vutbr.cz

Abstract—In this paper, we survey the methods that have
been proposed to functional approximation of digital circuits.
The main focus is on evolutionary computing, particularly
Cartesian genetic programming (CGP), which can provide, in an
automated manner, very good compromises between key circuit
parameters. This is demonstrated in a case study – evolutionary
approximation of an 8-bit multiplier.

I. INTRODUCTION

Approximate computing is a modern paradigm which could
bring new ideas to the design of low-power and high-
performance computer-based systems [1], [2]. By means of
smart approximations that can be introduced at various levels
of the computer system (circuit, component, architecture, soft-
ware, operating system, compiler) one can obtain significant
benefits in terms of performance or power consumption for an
acceptable error in data processing. Approximate computing
exploits the fact that many applications are error resilient
and the errors in computing are thus either invisible or
acceptable. Approximate computing is also very relevant to
underdesigned and opportunistic computing which attempts
to explore the possibility of constructing machines naturally
exploiting various imperfections of hardware [3]. This concept
reflects the fact that after several decades of continual scala-
bility of the manufacturing process, material properties of the
newest chips started to negatively and significantly influence
chips’ properties in terms of intra-die and die-to-die variations,
fluctuations in power consumption and maximum frequency,
susceptibility to errors, and yield. In order to mitigate these un-
desired behaviors, redundant components and other reliability-
strengthening mechanisms have to be introduced to circuit
design and fabrication flows in various ways. On the other
hand, approximate computing paradigm could naturally exploit
these properties in order to build efficient low power and high-
performance systems. As current CAD tools do not count in
this situation, a new family of CAD tools is anticipated which
will inherently support design, simulation, optimization and
verification of underdesigned and approximate systems.

This paper deals with approximate circuits which can be
defined as circuits relaxing the requirement on functional
equivalence between the specification and implementation in
order to reduce the area on a chip, delay, energy consumption
or other measures that are important for users. Current CAD
tools typically contain various heuristic algorithms attempting
to quickly solve hard computational problems (Boolean satisfi-

ability, partitioning, routing etc.) in which the circuit synthesis
and optimization problems are often transformed to.

The last two decades witnessed a development of bio-
inspired circuit design methods such as evolutionary design
and evolvable hardware [4]. Utilizing the evolutionary design
techniques has led to novel circuit implementations that are
quite beyond the scope of designs reachable by conventional
CAD tools [5], [6]. For example, an evolutionary logic opti-
mization method enabled a 25% gate reduction (on average) in
comparison with commercial and academia CAD tools [7]. In
the case of evolution of approximate circuits, several studies
showed that the computational effort is not as high as for
conventional circuits, mainly because the specification can be
violated and hence it is then much easier to find a suitable
approximate solution [8]. It seems that the design of approxi-
mate circuits is in principle more suitable for the evolutionary
approach than the design of conventional circuits and it would
be very useful to introduce systematic design methods for
approximate circuits based on the principles of evolutionary
design. Moreover, extracting new (generally applicable) princi-
ples of approximate circuit design from evolved circuits could
deepen our understanding to approximate computing.

The approximate circuit design problem can be formulated
as a multi-objective optimization problem in which the accu-
racy, area, delay (or performance) and power consumption are
conflicting design objectives. Designers expect obtaining a set
of solutions which exhibit various trade-offs among key circuit
parameters. The optimal set of such solutions is the so-called
Pareto optimal front [9]. Current tools (such as [10], [11],
[12]) typically approximate Pareto front by multiple executions
of approximation engines which are initialized using different
parameters.

The goal of this paper is to introduce several methods based
on evolutionary computing (particularly, Cartesian genetic
programming – CGP) that can be utilized to approximate
circuit designs. It is expected that by means of these methods
one can obtain significantly better designs in one run of the
optimization algorithm than currently used single-objective
optimization methods can achieve.

The reasons for using an advanced evolutionary approach
(contrasted to a simple greedy search employed, for example,
in [12]) are that the population-based approach suits well in
finding multiple solutions and its niche-preservation methods
can be exploited to discover diverse solutions. It is a well-

known fact that multiple applications of classic methods do
not constitute an efficient parallel search [9].

In order to obtain a good approximate circuit, many candi-
date approximate circuits have to be generated and evaluated
in the process of approximation. Hence the whole task requires
a considerable computational time and the number of circuits
that can be evaluated is the main constraint for the approx-
imation engine. As the evolutionary algorithm generates and
evaluates many candidate circuits, it is impossible to precisely
measure parameters of all of them in the course of evolution.
Hence the methods presented in this paper have to quickly
estimate key circuit parameters (area and delay) during the
optimization process. At the end of evolution, the resulting
approximate circuits are implemented using a standard circuit
design flow and compared with their accurate counterparts.

The rest of the paper is organized as follows. Section II
deals with existing methods for approximate circuit design.
The principles of evolutionary circuit design are surveyed in
Section III. Section IV introduces three different approaches to
circuit approximation based on CGP. A case study is presented
in Section V. Conclusions are given in Section VI.

II. APPROXIMATE CIRCUITS

In approximate circuits, the accuracy (or quality) of the
output is traded for improvements in power consumption or
performance. Approximate circuits are constructed by either
modifying accurate (original) circuits or developing required
circuits from scratch. There are two types of methods that
can be utilized to approximate circuit designs. The first group
exploits technology-oriented techniques such as voltage over
scaling and over clocking. In the second group of techniques,
referred to as functional approximation, the aim is to modify
the original logic function of the circuit in order to reduce
power consumption or increase performance (operation fre-
quency). Functional approximation is often combined with
voltage over scaling or over clocking.

However, there is not still a well-established methodol-
ogy for automated construction of approximate systems and
circuits which could provide a good trade-off among key
parameters. A recent comprehensive survey [3] clearly states
in its “Implications for Circuits and Architectures” section that

Much research needs to be done to functionally or
parametrically underdesign large general class of cir-
cuits automatically. Mechanisms to pass application
intent to physical implementation flow (especially
to logic synthesis in case of functional underdesign)
need to be developed.

We will only focus on the principles of functional approx-
imation in this paper. Manual redesign was the first approach
to circuit approximations; see, for example, the approximate
adders [13] and multipliers [14]. However, the manual redesign
suffers from scalability and efficiency. Recently developed
systematic methods have used problem-specific heuristics for
automated selecting of subcircuits suitable for approximation,
other heuristics for performing actual approximations, and var-
ious verification engines to prove that the chosen approxima-

tion satisfies the predefined quality constraints. These methods
are error-oriented in the sense that a target error is specified
(fixed) and remaining circuit parameters are optimized.

The Systematic methodology for Automatic Logic Synthesis
of Approximate circuits (SALSA) starts with a description of
the accurate circuit and an error constraint that specifies the
type of error that can be accepted [10]. SALSA introduces the
quality function which takes the outputs from both the original
circuit and approximate circuit and decides if the quality
constraints are satisfied. The quality function outputs a single
Boolean value. The SALSA algorithm attempts to modify the
approximate circuit with the goal of keeping the output of the
quality unchanged. The concept of approximation by means
of the quality function has been extended to sequential circuits
in [15].

Another method, SASIMI, tries to identify signal pairs in the
circuit that exhibit the same value with a high probability, and
substitutes one for the other [11]. These substitutions introduce
functional approximations. Unused logic can be eliminated
from the circuit which results in area and power savings.

ABACUS creates an abstract synthesis tree (AST) from
the input behavioral description and then applies various
operators to the AST using an iterative stochastic greedy
approach [12]. Candidate designs are evaluated in terms of
accuracy, power consumption and area in a single objective
optimization scenario. The objectives are combined together
using a linear weigh function. The Pareto front is obtained
from multiple runs of the search algorithm (about 50 candidate
circuits are generated in each run).

The aforementioned methods try to approximate the Pareto
optimal front by solutions obtained from multiple runs of
single-objective approximation engines. However, in many
cases, the resulting solutions do not cover the whole Pareto
front and the design alternatives are centered around a few
dominant design alternatives. These methods utilize the stan-
dard design flow to construct and evaluate every candidate
solution, which is very time consuming. On the other hand,
the circuit parameters obtained are very close to real ones.

An integrated approach to approximate computing has been
developed in [16]. It consists in automatic resilience charac-
terization of the target application in order to identify those
parts of the application that are suitable for approximation. The
application is then implemented using a specialized hardware
(processor) whose components can be tuned in accordance
with the desired output quality to adapt their energy consump-
tion. In addition to the off-line tuning of the application, an
automated on-line regulation of the degree of approximation
is supported by the hardware.

III. EVOLUTIONARY METHODS IN CIRCUIT DESIGN

There are many studies demonstrating that evolutionary cir-
cuit design can produce efficient implementations of electronic
circuits, for example, in domains of analog circuits [6], logic
optimization [7], image filters [17], and classifiers [18]. We
will briefly introduce Cartesian genetic programming and the
reasons for its utilization in the circuit design and optimization.

Fig. 1. A candidate circuit represented by CGP with parameters: ni = 4, no =
3, nc = 5, nr = 1, l = 4, Γ = {0AND, 1OR, 2XOR}. Chromosome: 1, 3,
2; 0, 2, 2; 1, 2, 1; 0, 1, 0; 7, 4, 2; 5, 8, 4.

A. Circuit Evolution Using Cartesian Genetic Programming

CGP enables to design electronic circuits from scratch or
optimize structures and parameters of existing circuits [19].
In order to utilize CGP, one has to deal with the problem
representation, genetic operators and fitness function.

A candidate circuit is modeled by means of a directed
acyclic graph whose nodes (gates) are organized in nc columns
and nr rows. Depending on a particular application, the nodes
can be elementary logic functions, transistors or high-level
components such as adders or multipliers.The connections are
defined over b bits. The circuit utilizes ni primary inputs and
no primary outputs. Each node input can be connected either to
the output of a node placed in previous l columns or to one of
the primary circuit inputs, where l is one of CGP parameters.

The primary inputs and the outputs of the nodes are labeled
0, 1 . . . nc · nr + ni − 1 and considered as addresses which
links can be connected to. A candidate solution consisting of
two-input nodes is represented in the chromosome by nr · nc
triplets (x1, x2, ψ) determining for each processing node its
function ψ (ψ ∈ Γ), and addresses of nodes x1 and x2 which
its inputs are connected to. The last part of the chromosome
contains no integers specifying either the nodes where the
primary outputs are connected to or logic constants (’0’ and
’1’) which can directly be connected to the primary output.
While the chromosome size is constant for a given product
nr · nc, the phenotype size is variable and measured as the
number of used nodes (gates). See an example in Fig. 1.

CGP employs a (1 + λ) evolution strategy whose pseudo-
code is given in Algorithm 1. The initial population Q of CGP
is created either randomly or by means of existing circuits. The
next step consists in the evaluation of candidate circuits using
the fitness function. In the simplest case, circuits responses are
calculated for a set of test vectors. The goal is to minimize the
difference between the obtained vectors and desired vectors.
Each member of Q then receives one fitness value and the
highest-scored individual becomes a new parent of the next
population. CGP solely employs a mutation operator, which
randomly modifies up to h integers of the chromosome. The
termination criterion depends on a particular application.

B. Multi-objective Search Algorithms

If a multi-objective optimization is conducted, there are
several fitness functions formulated, each of them reflecting
to what extent a given circuit parameter (accuracy, area, delay
etc.) satisfies the specification. A straightforward approach
to the multi-objective optimization is to convert the multi-

Algorithm 1: CGP
Input: CGP parameters, fitness function
Output: The highest scored individual p and its fitness

Q← randomly generate parent p and its λ offspring;1

EvaluatePopulation(Q);2

while 〈terminating condition not satisfied〉 do3

α← highest-scored-individual(Q);4

if fitness(α) ≥ fitness(p) then5

p← α;6

Q← create λ offspring of p using mutation;7

EvaluatePopulation(Q);8

return p, fitness(p);9

objective problem to a single objective one using a weight
function

∑
wifi, where wi is the weight of the i-th objective.

Because a single run of an optimizer which utilizes the
sum yields only one solution, multiple runs are needed for
obtaining various trade-offs. The proper setting of weights wi

is not an easy task and is usually based on the user intuition.
Another limitation of the weight function lies in the fact that
certain Pareto-optimal solutions are not reachable in the case
of nonconvex objective space [9]. Since it is difficult to detect
whether the resulting objective space is nonconvex, the weight
function has to be applied with caution.

Truly multiobjective optimization algorithms operate in a
different way. The key task is to compare two candidate
solutions. In order to do so, Pareto-dominance relations are
employed [9]: We say that solution ~x(1) dominates another
solution ~x(2) if the following conditions are satisfied: (i.) The
solution ~x(1) is no worse than ~x(2) in all objectives. (ii.) The
solution ~x(1) is strictly better than ~x(2) in at least one objective.

The result of the multi-objective optimization is no longer
a single solution, but a set of solutions. The non-dominated
subset of all possible solutions is called Pareto-optimal set
(front). In practice, the goal is to find a set of solutions as
close as possible and as diverse as possible with respect to the
Pareto-optimal front. Examples of truly multi-objective evo-
lutionary algorithms are Vector Evaluated Genetic Algorithm
(VEGA), Strength Pareto Evolutionary Algorithm (SPEA), and
non-dominated sorting genetic algorithm (NSGA-II).

C. Why Evolutionary Approximation?

We consider the following properties of the evolutionary
design method as essential in the context of circuit approxi-
mation:

• Employing evolutionary computation is natural with re-
spect to its goal in the approximation task. Small mod-
ifications introduced in the progress of evolution to a
population of circuits and the principle of the survival
of the fittest naturally lead to discovering such circuits
which show very good compromises between the error
and area (power).

• The evolutionary design can produce and optimize par-
tially working solutions even if sufficient resources are
not available, which is not the case of conventional
methods.

• Evolutionary algorithms can naturally handle multiple
conflicting design objectives.

• In the fitness function, arbitrary error measures can be
introduces, whereas existing methods typically utilize the
worst error only.

• As many candidate circuits are evaluated, very efficient
circuit designs, practically unreachable by means of
conventional methods, which generate and analyze only
several circuits, can be discovered.

The main disadvantage of the evolutionary design method
is its enormous computational effort. Many candidate circuits
have to be generated and evaluated. In the case of small
circuits, responses are calculated for all possible assignments
to the inputs and compared with desired values. As this
approach is not scalable, functionality of complex circuits has
to be evaluated using advanced techniques (e.g. [7]). It is not
tractable to precisely evaluate circuit parameters (in particular,
power consumption) using professional design tools in the
course of evolution. Hence basic circuits characteristic are
estimated in the fitness function and only resulting circuits
are implemented using the standard design flow at the end of
evolution. For example, it is expected that power consumption
is highly correlated with the area and hence only the area is
estimated in the fitness function.

Another objection against evolutionary design is that the
method is not deterministic and it is difficult (or impossible)
to understand the evolved solutions. However, these issues are
almost irrelevant in the scope of approximate circuits because
other automated methods are typically stochastic and it is,
in principle, extremely difficult to understand the resulting
approximations.

IV. CGP IN CIRCUIT APPROXIMATION

In the following paragraphs, we will present tree approaches
to circuit approximation based on CGP.

A. Resources-oriented Method

This method exploits the fact that CGP can produce a
partially working solution even if sufficient resources for
constructing an exact circuit are not available. The idea is to
evolve a circuit showing a minimum error using ki components
(gates) providing that ki < K and K is the number of
components (gates) required to implement a correct circuit.
CGP is considered as a single-objective method which is
executed several times with different ki as the parameter.
It provides a set of approximate circuits, each of which
typically exhibits different trade-off between the functionality
and the number of gates. The main advantage is that the user
can control the used area (and so power consumption) more
comfortably than by means of the error-oriented methods.

The method was employed to approximate single-output
benchmark combinational circuits [20], small adders (up to

4 bits) [20], small multipliers (up to 4 bits) [21], and 9-input
and 25-input median circuits operating over 8 bits [21]. Larger
multipliers were constructed from evolved smaller ones using
the approach presented in [14].

B. Error-oriented Method

In paper [8], we proposed a complementary design ap-
proach. The user is supposed to define a required error level
emax (e.g. the average error magnitude). In the first step,
CGP, which is seeded by a conventional fully functional
implementation, is utilized to modify the seed in order to
obtain a circuit with predefined emax. After obtaining that
circuit, in the second step, CGP can minimize the mean error,
the number of gates or other criteria providing that emax is left
unchanged. Again, the method is single objective and multiple
runs are required to construct the Pareto front. The method was
evaluated in the task of 4-, 5-, 6-, 7- and 8 bit approximate
multiplier design. The error-oriented approach tends to be
less computationally demanding than the resources oriented
method.

C. Multi-objective CGP

In the multi-objective method (MO), good compromises
among three conflicting design objectives – error, area and
delay – are together sought in a single run of CGP. The
1 + λ search strategy is replaced by procedures of NSGA-
II which implement non-dominated sorting of the popula-
tion (non-dominated solutions are emphasized) and diversity
preservation mechanisms (less crowded points of the search
space are promoted) – details can be found in [22]. The
maximum allowed error Emax (which the designer is going
to observe and accept in the resulting Pareto fronts) is defined
as a constraint in the algorithm. If the fitness ferror > Emax,
the solution is considered as unacceptable.

V. CASE STUDY: APPROXIMATE 8-BIT MULTIPLIER

In the case study, we will compare a single-objective (SO)
CGP (which utilizes weigh function for the objectives) and
MO CGP in the task of 8-bit multiplier approximation. Both
algorithms are seeded with a fully functional version of
parallel carry save adder-based multiplier.

A. Estimation of Circuit Parameters

In order to estimate electrical parameters of a given circuit,
the area and delay are calculated using the parameters defined
in the liberty timing file available for a given semiconductor
technology.

Delay td of a cell ci is modeled as a function of its input
transition time ts and capacitive load cl on the output of the
cell, i.e. td(ci) = f(tcis , c

ci
l). Delay of a circuit C is determined

as delay of the longest path:

Delay(C) = max
∀p∈path

∑
ci∈p

td(ci).

The capacitive load on the circuit outputs is chosen to be equal
to the input capacitance of an inverter cell. The transition

time on circuit inputs corresponds to the transition time on
the output of an inverter cell.

The area of a circuit C is calculated as the sum of areas of
all the cells ci involved in the circuit:

Area(C) =
∑
ci∈C

area(ci).

B. Handling the Accuracy

Various error criteria can be utilized to evaluate the quality
of an approximate arithmetic circuit. The average error magni-
tude Eavg(C) is employed in this paper. This metric is defined
as the sum of absolute differences in magnitude between the
original and approximate circuits averaged over all inputs:

Eavg(C) =

∑
∀i |O(Corig, i)−O(C, i)|

22w
, (1)

where O(Corig, i) denotes the output value of the fully func-
tional circuit for the input vector i, O(C, i) denotes the output
value of approximate circuit C and w specifies the bit-width.

Let Emax be the maximum acceptable average error. In
the case of MO, solutions with the error greater than Emax

are infeasible. In order to construct the Pareto front in the
case of SO, CGP is executed with different target errors Ei,
Ei ≤ Emax. The fitness value fitnessL1 is calculated as the
relative absolute difference from required error level and the
goal is to minimize this difference, i.e.

fitnessL1(C) =
|Eavg(C)− Ei|

Ei
.

Once a circuit showing the target error (fitnessL1 < 0.01)
is obtained, a weight fitness function is employed. Each
objective is normalized to the interval < 0, 1 > and weighted
with weights we, wa and wd (we + wa + wd = 1). Then,

fitnessL2(C) =

weE

′
avg(C)+

waArea
′(C)+

wdDelay
′(C), if fitnessL1 < 0.01

∞, otherwise,

where the apostrophes denote normalized values with respect
to the original, fully functional circuit.

C. Experimental Setup

In both approaches we utilized the following CGP param-
eters: k = 5, l = nc = 320 (it is the number of gates in the
original fully functional multiplier), nr = 1, b = 1, ni = 16,
no = 16, and Emax = 2.5%. While MO is executed with
Emax, SO is executed SOrun times; one run for one error
level from 0% do 2.5%. The weights for SO are we = 0.12,
wa = 0.5, wd = 0.38 (it is the most efficient setting that we
found).

In order to fairly compare SO and MO, both methods will
generate and evaluate the same number of candidate circuits.
We performed 5, 25, 50, 250 and 500 thousand evaluations
(fitness calls). For example, 5000 evaluations correspond with
100 generations of MO (λMO = 50). In the case of SO, 50
generations are produced for each of 20 error levels (λSO = 5,

SOrun = 20). This number of evaluations is very low from
the perspective of evolutionary circuit design; however, this
number is still much higher than in conventional methods [12].

The experiments were conducted for I3T25 technology
(0.35 µm digital process). The following cells are considered:
and, or, xor, nand, nor, xnor, buf, inv, with corresponding
relative areas 1.333, 1.333, 2, 1, 1, 2, 1.333, and 0.667.

D. Properties of Evolved Multipliers

The best-obtained Pareto fronts (projected to two 2D graphs)
are given for each particular number of evaluations in Fig. 2
(25 independent runs performed). When 5000 evaluations are
allowed, MO performs better than SO. However, SO becomes
more efficient if more evaluations can be used. The improve-
ment of the SO approach is probably due the fact that the error
is fixed and the overall effort can be put into minimizing the
area and delay. On the other hand, MO has to cover the whole
Pareto front and the available time seems to be insufficient
to compete with SO. In terms of performance, while 240
evaluations/s can be done using MO, the SO approach enabled
284 evaluations/s on a common PC.

Some of evolved circuits were implemented using a standard
design flow by Cadence Encounter RTL Compiler. Table I
shows that our estimated values are almost perfectly matched
with the results of the professional design tool (compare the
percentages in the parentheses which are related to original
circuits showing a 0% error).

A direct and fair comparison with the literature is not pos-
sible because the authors have used different implementations
of accurate multipliers and circuit fabrication technology. The
following results were taken from the literature for the 8-bit
multiplier: SASIMI [11] reports 45% power reduction with
0.5% average error, Kulkarni et al. [14] reports 33% power
reduction with 3.25% average error and Gupta et al. [13]
reports 35% power reduction with 2.5% average error. The
proposed method led to 71% power reduction with 0.6%
average error, which seems to be a very good result.

TABLE I
PARAMETERS OF THE APPROXIMATE 8-BIT MULTIPLIERS. PERCENTAGES

IN THE PARENTHESES ARE RELATED TO THE ORIGINAL CIRCUITS
SHOWING A 0% ERROR.

estimated professional tool
error delay [ns] rel. area delay [ns] area [µm2] pwr [µW]

0.0% 13.1 (100%) 495 (100%) 12.1 (100%) 24245 (100%) 1367 (100%)

0.6% 8.7 (66%) 175 (35%) 8.0 (65%) 8480 (34%) 409 (29%)

1.3% 6.3 (48%) 118 (23%) 5.6 (46%) 5424 (22%) 233 (17%)

1.9% 5.4 (41%) 92 (18%) 5.1 (42%) 4513 (18%) 164 (12%)

2.5% 4.5 (34%) 64 (13%) 4.3 (35%) 3118 (12%) 106 (7%)

VI. CONCLUSIONS

In this paper, we surveyed methods that have been proposed
to approximate circuit designs. In particular, we have dealt
with an evolutionary approach to functional approximation
based on CGP. Three different techniques were presented
(error-oriented, resources-oriented and truly multi-objective).

Fig. 2. Resulting Pareto fronts with respect to the number of evaluations

In all cases, parameters of candidate circuits were estimated
in the fitness function. Resulting circuits were synthesized
by means of a professional design tool and their parameters
compared with estimated values. Although the multi-objective
approach is intuitively the most useful one, we demonstrated
in the case study that a single-objective approach can provide
better results when a sufficient number of evaluations is
enabled.

It seems that the evolutionary approach can generate, in
an automated manner, very good compromises between key
circuit parameters. The main drawback is its limited scalability
for arithmetic circuits. Components of multimedia and other
circuits (such as median circuits), in which training data sets
are processed, can be approximated by CGP even if they are
relatively complex [21].

Our future research in the evolutionary circuit approxima-
tion will primarily be devoted to eliminating the scalability
issues. The principles of evolutionary approximation should
also be introduced to other layers of the system stack. Finally,
benchmark circuits are needed to allow a fair comparison of
circuit approximation methods and tools.

VII. ACKNOWLEDGMENTS

This work was supported by the Czech science foundation
project 14-04197S and the IT4Innovations Centre of Excel-
lence CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] S. T. Chakradhar and A. Raghunathan, “Best-effort computing: Re-
thinking parallel software and hardware,” in Proceedings of the 47th
Design Automation Conference – DAC. ACM, 2010, pp. 865–870.

[2] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. of the 18th IEEE Eu-
ropean Test Symposium. IEEE, 2013, pp. 1–6.

[3] P. Gupta, Y. Agarwal, L. Dolecek, N. Dutt, R. K. Gupta, R. Kumar,
S. Mitra, A. Nicolau, T. S. Rosing, M. B. Srivastava, S. Swanson, and
D. Sylvester, “Underdesigned and opportunistic computing in presence
of hardware variability,” IEEE Trans. on CAD of Integrated Circuits and
Systems, vol. 32, no. 1, pp. 8–23, 2013.

[4] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware:
past, present and the path to a promising future,” Genetic Programming
and Evolvable Machines, vol. 12, no. 3, pp. 183–215, 2011.

[5] J. R. Koza, “Human-competitive results produced by genetic program-
ming,” Genetic Programming and Evolvable Machines, vol. 11, no. 3–4,
pp. 251–284, 2010.

[6] T. McConaghy, , P. Palmers, M., and G. Gielen, “Trustworthy ge-
netic programming-based synthesis of analog circuit topologies using
hierarchical domain-specific building blocks,” IEEE Transactions on
Evolutionary Computation, vol. 15, no. 4, pp. 557–570, 2011.

[7] Z. Vasicek and L. Sekanina, “A global postsynthesis optimization
method for combinational circuits,” in Proc. of the Design, Automation
and Test in Europe, DATE. EDA Consortium, 2011, pp. 1525–1528.

[8] ——, “Evolutionary design of approximate multipliers under different
error metrics,” in IEEE International Symposium on Design and Di-
agnostics of Electronic Circuits and Systems 2013. IEEE, 2014, pp.
135–140.

[9] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[10] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference 2012, DAC ’12. ACM,
2012, pp. 796–801.

[11] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: a unified design paradigm for approximate and quality config-
urable circuits,” in Design, Automation and Test in Europe, DATE’13.
EDA Consortium San Jose, CA, USA, 2013, pp. 1367–1372.

[12] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’14. EDA Consortium, 2014, pp. 1–6.

[13] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Trans. on
CAD of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124–137,
2013.

[14] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for power
in a multiplier architecture,” J. Low Power Electronics, vol. 7, no. 4, pp.
490–501, 2011.

[15] A. Ranjan, A. Raha, S. Venkataramani, K. Roy, and A. Raghunathan,
“Aslan: Synthesis of approximate sequential circuits,” in Proceedings of
the Conference on Design, Automation and Test in Europe, ser. DATE
’14. EDA Consortium, 2014, pp. 1–6.

[16] V. Chippa, S. Venkataramani, S. Chakradhar, K. Roy, and A. Raghu-
nathan, “Approximate computing: An integrated hardware approach,” in
2013 Asilomar Conference on Signals, Systems and Computers. IEEE,
2013, pp. 111–117.

[17] Z. Vasicek, M. Bidlo, and L. Sekanina, “Evolution of efficient real-time
non-linear image filters for fpgas,” Soft Computing, vol. 17, no. 11, pp.
2163–2180, 2013.

[18] P. Kaufmann, K. Glette, T. Gruber, M. Platzner, J. Torresen, and B. Sick,
“Classification of electromyographic signals: Comparing evolvable hard-
ware to conventional classifiers,” IEEE Tran. Evolutionary Computation,
vol. 17, no. 1, pp. 46–63, 2013.

[19] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[20] L. Sekanina and Z. Vasicek, “Approximate circuits by means of evolv-

able hardware,” in 2013 IEEE International Conference on Evolvable
Systems, ser. Proceedings of the 2013 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE CIS, 2013, pp. 21–28.

[21] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Tran. on Evolutionary Computation – to
appear, pp. 1–13, 2015.

[22] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions on Evo-
lutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

