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Abstract. This paper deals with design of an application protocol clas-
sifier intended for high speed networks operating at 100 Gbps. Because
a very low latency is the main design constraint, the classifier is con-
structed as a combinational circuit in a field programmable gate array.
The classification is performed using the first packet carrying the ap-
plication payload. In order to further reduce the latency, the circuit is
optimized by Cartesian genetic programming. Using a real network data,
we demonstrated viability of our approach in task of a very fast classifi-
cation of three application protocols (HTTP, SMTP, SSH).

1 Introduction

An abstract yet detailed network traffic visibility is a key prerequisite to network
management including tasks such as traffic engineering, application performance
monitoring and network security monitoring. In the recent years the diversity and
complexity of network applications and network threats have grown significantly.
This trend has rendered monitoring of network and transport layer insufficient
and it has become important to extend the visibility into application layer,
primarily to identify the application (or the application protocol) the traffic
belongs to. The port numbers are no longer reliable application differentiator
due to various applications evading the firewalls by hiding behind well-known
port numbers or utilizing unallocated port range [1].

The research in the area of application identification has come up with dis-
tinct approaches to identify applications carried in the traffic. These approaches
differ in the level of detail that is utilized in the identification method. The most
abstract one is behavioral analysis [2, 3]. Its idea is to observe just port number
and destination of the connections per each host and then to deduce the appli-
cation running on the host by its typical connection signature. If more details
per connection are available, statistical fingerprinting [4] comes into play. In this
case, a feature set is collected per each flow and the assumption is that the val-
ues of the feature set vary across applications and hence they leave a unique



fingerprint. Behavioral and statistical fingerprinting generally classifies traffic
to application classes rather than to the particular applications. The reason is
that different applications performing the same task exhibit similar behavior.
For instance, application protocols such as Oscar (ICQ), MSN, XMPP (Jabber)
transport interactive chat communications and hence have a similar behavior,
which makes it very hard to differentiate between them. The inability to distin-
guish applications within the same class might be seen as a drawback in some
situations when, for example, it is necessary to block a particular application
while allowing others in the same class. The approach utilizing the greatest level
of detail is a deep packet inspection. It identifies applications based on the packet
payload. The payload is matched with known patterns (e.g. regular expressions)
derived for each application [5].

The application identification poses several on-going challenges. The identi-
fication process is bound to keep pace with ever increasing link speeds. E.g. the
time to process each packet is less than 7 ns in case of 100 Gbps link. Another
challenge is represented by the growing number of protocols, i.e., the application
identification must address the trends such as new emerging mobile applications
or applications moving into network cloud [6]. Some deployments also require
prompt (near real-time) identification to enable implementation of traffic engi-
neering or application blocking [7].

Hardware acceleration (e.g. utilizing a field programmable gate array (FPGA))
is often employed to speed up network processing [8, 9] including the application
identification directly on the network card. FPGA renders it possible to utilize
various pattern matching algorithms to identify applications. However, pattern
matching may exhibit several constraints, that is, the high cost to process wide
data inputs (which is the case for high throughput buses in FPGA) and the
high complexity and overhead of pattern matching algorithm which consumes
valuable hardware resources or constraints the achievable frequency.

These drawbacks are addressed by alternative methods which look for con-
stants and fixed-length strings (for brevity we call them signatures) rather than
regular expressions, e.g. [10]. We build upon this approach and we envision
hardware-software codesign approach in which a simple circuit labels the traffic
belonging to applications of interest with some probability of false positives while
software can subsequently handle and check the labeled traffic with more com-
plex algorithm effectively. This approach is supported by the software defined
monitoring concept (SDM, [11]). Software defined monitoring employs sophisti-
cated processes running in software to subsequently install rules in the hardware
(network card). While it is not possible (or at the very high cost) to process all
the traffic in software we offload the application identification into the hardware.
The offload not only reduces the host memory and cpu load but it also increases
the expressive strength of the SDM rules.

Within this scope, our work focuses on a design of a proprietary circuit,
operating as an application protocol classifier, which is synthesizable into FPGA.
The goal of our work is to identify application protocols as fast as possible
over the whole traffic but at the same time with low resource utilization. We



demonstrate viability of our approach on three protocols (HTTP, SMTP, SSH)
we deem most crucial from perspective of network security. The proposed circuit,
in fact, implements a deterministic parallel combinational signature matching
algorithm.

The main contribution of this paper is showing that this circuit classifier can
be optimized by means of Cartesian Genetic Programming (CGP) in order to
significantly reduce its latency and resources requirements. CGP, which is a form
of genetic programming suitable for evolutionary circuit design and optimization,
is employed to minimize the number of gates in selected components of the
whole classifier [12]. The improvements in latency and area obtained by CGP
are validated using a professional FPGA design tool. The quality of classification
is evaluated by means of real network data.

The rest of the paper is organized as follows. Section 2 introduces the pro-
posed classifier, network data used for its evaluation and the principles of circuit
optimization by means of CGP. Section 3 describes the implementation steps
and the results in terms of area and delay in the FPGA. Section 3.2 deals with
the experiments conducted using CGP. Finally, the quality of classification is
assessed in terms of precision and recall. Conclusions are given in Section 4.

2 FPGA-based Application Protocol Classifier

In order to design, implement and evaluate the FPGA-based application protocol
classifier, we have considered the following issues. As this is the first version of the
classifier, only 3 application protocols (HTTP, SMTP, SSH) will be supported;
remaining protocols will be classified as unknown. Only the key component of
the classifier (9 coders with a comparator) will be synthesized and optimized for
FPGA. This will provide us with a sufficiently precise estimate of the latency
and area of the whole classifier. Because the primary goal is achieving a very low
latency, only the signatures of the first packet carrying the application payload
are utilized. The classifier is intended for SDM system which transfers the data
via a 512 bit bus. The application payload may start at nearly arbitrary offset
on the bus and the application must be identified each clock cycle to keep pace
even with the shortest incoming packets of 64 Bytes. The following subsections
describe the whole design process and methods utilized.

2.1 Network Data

The data which has to be classified are common network data (available in the
pcap format). In order to design a good solution, it is important to understand
the data and to prepare relevant training and test sets. In our case, we utilized
two complete network data sets with anonymized IP addresses, collected on
CESACO link (connecting CESNET and ACONET networks) and CESPIO link
(connecting CESNET and PIONIER networks), see Table 1. For example, the
available record from CESPIO contains 43 M packets, where percentages are
78.72% for TCP, 20.58% for UDP, 0.18% for ICMP and 0.53% others. One can



observe that only TCP and UDP are relevant for our purposes; ICMP is used for
network monitoring and error reporting which is irrelevant. The packet traces
were analyzed using Scapy. Because HTTP, SMTP and SSH operate over TCP,
we consider the first packet containing the application payload, usually the third
or the fourth packet of the TCP connection. The L7 filter [13] was utilized as
a reference classifier to anotate each connection in the data set. Unfortunately,
implementing the L7 filter, based on regular expressions, in hardware would lead
to a high latency as well as resource utilization which is not acceptable in our
case. Other packets were labeled as unknown.

Table 1. Network data sets

Line
Speed Record Size Date
[Gb/s] duration [Gb]

CESACO 10 9 s 1 26.9.2013 10:52:02
CESPIO 10 8 min 35 26.2.2014 11:38:56

The resulting data set, which can be used for evaluation purposes, is available
in the JSON format. Each record contains the source IP and port, the destination
IP and port, the transport protocol number, and the whole packet encoded using
base64 (see Fig. 1). Table 2 gives the mix of considered protocols in our data
set.

Table 2. The flows corresponding to the application protocols in data sets CESACO
and CESPIO

Data set CESACO CESPIO

Protocol Count flows Count flows [%] Count flows Count flows [%]

HTTP 1914 38.12 15060 52.29
SMTP 4 0.08 34 0.12
SSH 1 0.02 0 0.00
Others 3102 61.78 13705 47.59
All 5021 100.00 28799 100.00

2.2 Deterministic Classifier

Because the classification utilizes only the start of the payload, we decided to
analyze several initial bytes of various commonly used application protocols and
find the characters which are unique for particular protocols. Table 3 shows
the unique character signatures that were identified for considered protocols
(the longest sequence is 9 bytes). The classifier can then be constructed as a
combinational circuit by means of a decoder. However, it has to correctly manage
the cases in which the signatures appear at various offsets within the frame due



{
”dIP”: ”192.168.0.2”,
”dPort”: 80,
”data”: ”R0VUIC9zaXRlcy9kZWZhdWx0L3RoZW1lcy9mcmFtZWR5bmFtaWMv...
”id”: ”(’ 192.168.0.1’, ’192.168.0.2’, 52217, 80)”,
”trProto”: 6,
”protocol”: ”HTTP”,
”sIP”: ” 192.168.0.1”,
”sPort”: 52217
},

Fig. 1. Example record in data set.

to preceding protocol headers, which is a natural situation in real network traffic
data.

Table 3. Unique signatures in considered application protocols.

Protocol Unique pattern

HTTP

“GET /”
“PUT /”
“POST /”
“HEAD /”
“TRACE /”
“DELETE /”
“OPTIONS /”

SSH “SSH-”

SMTP
“220 ”
“220-”

2.3 Classifier in Hardware

The SDM system transfers frames over 512 bit bus. Each frame starts with the
headers of low-level protocols such as Ethernet, IPv4 or IPv6, TCP or UDP. As a
result, the start of the application payload may appear with certain offsets on the
bus, namely 2 bytes from the position 0 or with 2 + 4k bytes, where k = 1 . . . 16.
Fig. 2 shows that the proposed circuit implementation of the classifier consists
of three levels of combinational logic.

In the first level, one coder is connected to each byte of the word (64 coders,
in total). There are four types of the coders (c1, c2, c3, c4) because of the
4-byte offsets. Each coder implements a mapping from the set of characters
allowed for the given position to a set of 8-bit values in which just 2 bits are not
zeros. The mapping functions of the coders are given in Table 4. This remapping
implemented by coders allows for a fast signature detection in the subsequent



Fig. 2. Proposed classifier as a combinational circuit

level of comparators. All possible occurrences of the application data within the
buffer are thus processed in parallel.

The second level consists of comparators. Each of them compares the outputs
of nine coders (note that the longest signature contains 9 characters) with the
unique patterns identified for the considered application protocols. If a particular
application protocol is detected then its 3-bit code is visible at the output of the
comparator (001 - HTTP, 010 - SMTP, 100 - SSH, 000 - unknown).

Finally, at the third level, all 3-bit codes are fed to an OR gate which indicates
a presence of one of the expected application protocols or unknown protocol
(000).

2.4 Circuit Optimization Using CGP

Based on our previous experience, we assumed that parameters of the circuit
optimized by a professional FPGA design software can be improved if an evolu-
tionary optimization is employed. As the whole classifier is a relatively complex
circuit to be optimized, we propose to optimize its components - the 64 (com-
binational) coders. Each of the coder types c1, c2, c3 and c4 will be optimized
by CGP. We will utilize a standard CGP as defined in [12]. Advanced tech-
niques, such as circuit decomposition [14] or functional level evolution [15] are
not needed in this case.

In CGP, a candidate circuit is modeled as a directed acyclic graph and rep-
resented in a 2D array of nc × nr processing nodes. Each node is capable of
performing one of the functions specified in Γ set. The setting of nc, nr and Γ
significantly influences the performance of CGP. Current FPGAs utilize 6-input
LUTs as building blocks of all circuits. However, employing CGP with 6-input
nodes (each of them encoded using 64 bits in the chromosome) would lead to



Table 4. Mapping functions in the coders. The * symbol means: “not utilized in a
particular coder”

coder 1 coder 2 coder 3 coder 4 output

space space space space 00000011
/ / / / 00000101
T E S T 00000110
E N T D 00001001
O O A E 00001010
G U L C 00001100
P R 0 I 00010001
H P H - 00010010
D 2 G R 00010100
2 S V * 00011000
R Y E * 00100001
S A N * 00100010
B C R * 00100100
C T K * 00101000
A L * * 00110000
I * * * 01000001

otherwise otherwise otherwise otherwise 00000000

long chromosomes, complex search spaces and so inefficient search procedures.
We propose to optimize the coders at the level of 2-input nodes (encoded using
up to 4 bits) and let the professional circuit synthesis software implement the
resulting optimized circuits using 6-input LUTs in the FPGA.

The remaining parameters of CGP are the number of primary inputs (ni),
the number of primary outputs (no), and the level-back parameter (L) specifying
which nodes can be used as the inputs for a given gate. The primary inputs and
the outputs of the nodes are labeled 0 . . . nc · nr + ni − 1 and considered as
addresses which links can be connected to. In the chromosome, each node is
then encoded using three integers (an address for the first input; an address
for the second input; a node function). Finally, for each primary output, the
chromosome contains one integer specifying the connection address. Figure 3
shows an example and a corresponding chromosome.

CGP utilizes a search method known as 1 + λ, where λ is the population
size [12]. The initial population is randomly generated. New population consist-
ing of λ individuals is generated by applying the mutation operator on the best
individual of the previous population. The mutation operator randomly modi-
fies h integers of the chromosome. The evolution is terminated after producing
a given number of generations.

The fitness function consists of two steps. First, the fitness value is determined
as the number of bits correctly calculated for all possible assignments to the
inputs. If a fully functional circuit is discovered (in the case of 8-input/8-output
coders, this fitness value is 8 · 28) then, in the second step, the fitness function is
modified because the goal is to minimize the number of gates. The fitness is then



Fig. 3. Example of a 3-input circuit. CGP parameters are as follows: ni = 3, no = 2,
l = 3, nc = 3, nr = 2, Γ = {AND (0), OR (1)}. Gates 5 and 7 are not utilized.
Chromosome: 1,2,1; 0,0,1; 2,3,0; 3,4,0; 1,6,0; 0,6,1; 6, 8. The last two integers indicate
the outputs of the circuit.

reflecting the functionality and the number of used gates. Delay is not explicitly
optimized; however, its maximum value is implicitly determined by nc.

3 Results

The experimental evaluation consists of the following steps: (1) conventional im-
plementation of the proposed classifier; (2) CGP-based optimization of selected
subcomponents of the circuit; (3) resynthesis of the classifier with optimized
subcompoenents; (4) verification of the quality of classification. As mentioned
earlier, we will implement and optimize in the FPGA only the key component
of the classifier – the 9 coders with a comparator (9CC circuit, in short).

3.1 Circuit Design and Implementation

The 9CC circuit was behaviorally described in VHDL and synthesized into the
Xilinx Virtex-7 XC7VH580T FPGA using Xilinx ISE Project navigator 14.4
tool. The target FPGA contains 6-input LUTs whose latency is 0.043 ns. We
set the circuit delay as the main optimization target for the synthesis tool. The
resulting circuit contains 188 LUTs and exhibits a delay of 4.621 ns.

3.2 Optimization by CGP

There are 4 types of coders in the classifier circuit; each of them with 8 inputs
and 8 outputs (Fig. 2). These coders are optimized by CGP operating at the
gate level. CGP is used with the following parameters: ni = 8, no = 8, nc = 50,
nr = 12, L = nc, λ = 4, h = 5. In order to obtain basic statistics, each run
consisting of 5 million generations was repeated 10 times. This setting of the
parameters was recognized as useful after some experimenting with CGP in this
task. Because of the limited space, experimental results are given, as an example
of our methodology, only for one parameter – the function set. We compared
CGP utilizing all logic functions over two inputs (except logic constants) in



the function set (Γ ) against and a reduced set (Γr which includes in1, and, or,
xor, not in1, not in2, in1 and not in2, nand, nor) in the case of coder 1 and 2.
Table 5 gives the minimum, maximum and mean number of gates obtained for
each coder. One can observe that while the mean values are lower for Γ , the
minimum values are lower for Γr. Hence Γr was used in further experiments.

Table 5. The number of gates obtained by CGP using Γr and Γ (see ∗)

coder 1 coder 2 coder 3 coder 4 coder 1∗ coder 2∗

Min 58 60 59 39 60 61
Max 83 84 83 56 94 100
Mean 72.25 70.33 69.04 44.81 70.25 69.23

3.3 Classifier Resynthesis Using Optimized Coders

The most compact implementations of coders obtained from CGP were trans-
lated to VHDL and utilized in the VHDL code of the whole 9CC circuit of the
original components. The modified 9CC circuit was synthesized with the same
setting as reported in Section 3.1. The results of synthesis are given in Table 6.
One can observe that both crucial circuit parameters were improved. The area
was reduced from 188 to 160 LUTs. The original as well as optimized latency is
safely within the requested limit of 7 ns. However, the optimized implementation
allowed us to increase the spare latency (to 7.0 − 4.156 = 2.844 ns, see Table 6)
which can be used to connect the 9CC circuit with the OR logic and subsequent
components of the whole application.

Table 6. Results of synthesis of the 9CC circuit for the Xilinx Virtex-7 XC7VH580T
FPGA.

Parameter Optimized by CGP Original description

LUTs 160 188
Delay logic [ns] 0.344 0.430
Delay net [ns] 3.812 4.191
Delay [ns] 4.156 4.621
LUT levels 8 10

3.4 Quality of Classification

The quality of classification was evaluated offline, utilizing a software model that
we have developed for the proposed classifier. The evaluation was performed us-
ing both data sets, but we considered two scenarios for classification: (1) thinned



traces containing first payload packets only and (2) complete traces containing
all packets (i.e. the classifier’s objective was to analyze every incoming packet
in this case). The output of the proposed classifier was verified against the L7
filter which provides 100% correct results for considered protocols. We calculated
Precision and Recall metrics:

Precision =
TruePositve

TruePositve+ FalsePositive
(1)

Recall =
TruePositve

TruePositve+ FalseNegative
(2)

Precision informs us how many packets assigned to a given class are really
correctly assigned. Fig. 4 shows that HTTP, whose representation is rich in our
data sets, is classified perfectly. The reason for lower percentages of Precision in
the case of other protocols is the fact that their unique patterns are relatively
short and can easily appear inside of other protocol packets. As the subsequent
packet processing is done in software precisely the incorrectly classified protocols
will be recognized anyway. The software task is simpler than that of the original
one. Software must only verify the labelled traffic and dismiss false positives.

Considering the whole SDM, which the proposed classifier is targeted for,
the Recall is even a more important metrics. High Recall values indicate that
if a given application protocol is present in the traffic data, it is detected with
almost 100% probability and thus no information is lost.

Fig. 4 does not give any data for SSH in CESACO (first packet) data set.
The reason is that there is no record with SSH in this data set.

4 Conclusions

In this paper we presented a new application of the evolutionary design and
optimization – the optimization of circuit implementation of the application
protocol classifier intended for high speed networks. The proposed solution ex-
ploited the fact that results of conventional FPGA synthesis tools can further
be improved when selected circuit components are optimized by CGP and the
optimized versions replace the original ones in the target circuit. The whole
classifier is composed of 9CC circuits working in parallel. By optimizing just the
9CC circuit we obtained a very good estimate of the total area of the classifier
(16 instances of 9CC will be needed) and the total delay (which is the delay of
9CC plus a small delay of the OR network as seen in Fig 2).

The proposed solution is capable of fast detection of key application protocols
using a single packet only. It exhibits excellent Recall values (no monitored
application protocols are missed). It is planned that further and detailed packet
processing, which can improve the precision parameter of the hardware classifier,
will be handled in software by the SDM framework. Our future work will consist
in including other application protocols into the proposed hardware solution.
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Fig. 4. Precision and Recall percentages for three classified protocols. Test data consists
of first packets only (first) and complete network records (all).


