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Abstract—The aim of this paper is to introduce a new acceler-
ator developed to address the problem of evolutionary synthesis
of digital circuits at transistor level. The proposed accelerator,
based on recently introduced Xilinx Zynq platform, consists of
a discrete simulator implemented in programmable logic and an
evolutionary algorithm running on a tightly coupled embedded
ARM processor. The discrete simulator was introduced in order to
achieve a good trade-off between the precision and performance
of the simulation of transistor-level circuits. The simulator is
implemented using the concept of virtual reconfigurable circuit
and operates on multiple logic levels which enables to evaluate the
behavior of candidate transistor-level circuits at a reasonable level
of detail. In this work, the concept of virtual reconfigurable circuit
was extended to enable bidirectional data flow which represents
the basic feature of transistor level circuits. According to the
experimental evaluation, the proposed architecture speeds up the
evolution in one order of magnitude compared to an optimized
software implementation. The developed accelerator is utilized
in the evolution of basic logic circuits having up to 5 inputs. It
is shown that solutions competitive to the circuits obtained by
conventional design methods can be discovered.

I. INTRODUCTION

In recent years, many authors demonstrated the merits of
evolutionary design techniques in the field of digital circuit
design. For example, efficient implementations of various
combinational circuits unreachable by conventional design ap-
proaches were obtained using cartesian genetic programming
(CGP) representing probably the most efficient evolutionary
technique applied in this area [1], [2], [3], [4]. While the gate-
level evolutionary synthesis represents an intensively studied
research area, the synthesis of transistor-level digital circuits
remains, in contrast with design of transistor-level analog
circuits investigated for example in [5], [6], on a peripheral
concern of the researchers despite the fact that even some basic
logical expressions can be implemented much effectively at
transistor level. For example, the number of transistors that are
required to implement a 4-input circuit known as AND-OR-
INVERT can be reduced by 60% when the circuit is designed
directly at transistor-level.

Only a few papers were devoted to the evolutionary design
of digital circuits from scratch directly at transistor level.
The lack of interest is probably caused by an extremely time
consuming evaluation of candidate solutions. Usually, a third-
party SPICE-like analog circuit simulator is applied to evaluate
the behavior of candidate solutions. Though there are some ap-
proaches addressing the problem of acceleration of transistor-
level circuit simulation (e.g. [7]), they are hardly applicable

in the field of evolutionary design due to the overhead which
arises from the necessity to create a new instance of a hardware
accelerator for each candidate solution.

Since the evolutionary design is based on the generate-
and-test principle which typically requires to evaluate many
candidate solutions to discover a satisfactory solution, it is
obvious that the performance of the utilized circuit simulator
has a substantial impact on the scalability of the whole
evolutionary approach. In order to address this issue, Zaloudek
et al. proposed an approach that utilized a simple simula-
tor designed for rapid evaluation of candidate solutions [8].
A rough approximation of transistor behavior unfortunately
caused that this approach tended to produce incorrectly work-
ing circuits. Trefzer used another technique to evolve some
basic logic gates [9]. Instead of using a time consuming analog
circuit simulator, a reconfigurable analog transistor array was
employed. However, it was shown that the performance of
many solutions decreased in simulation; about 50% of the
discovered circuits failed in the simulation. These findings
indicate that the evolved solutions are highly dependent on
the utilized platform. Trefzer also noticed that even the basic
logic gates get harder to evolve as the complexity increases.
While the evolutionary design of the NAND and the NOR
circuits was successful for almost all runs, only 2 out of 50
runs produced a fully working solution for XOR and XNOR
circuits. Later, Walker et al. adopted another technique to
evolve variability tolerant transistor-level circuits [10]. The
time needed to calculate the fitness function was reduced
using a cluster of SPICE simulators. Despite the fact that it
was possible to evolve correct solutions, only relative small
problem instances were investigated. It is necessary to note,
however, that the design of variability tolerant circuits is a
more complex task compared to the aforementioned ones.

One of the goals of the early pioneers of evolvable hard-
ware was to evolve complex circuits. From the beginning,
however, the researchers struggle with various issues which
prevented them from achieving this goal. The scalability of
evaluation of candidate solutions probably represents the most
limiting factor. This phenomenon is even worse at transistor-
level where more complex behavior have to be evaluated. To
reduce its effect, various hardware accelerators were proposed
in literature. Authors of the first FPGA-based accelerators
used the programmable logic primarily as a coprocessor for
fast evaluation of candidate solutions [11]. The evolution-
ary algorithm was usually executed on a personal computer
that was connected with FPGA and provided configuration



bitstreams representing candidate circuits. With emerging of
more advanced FPGA technology, the authors started imple-
menting the entire evolvable systems in FPGAs [12], [13],
[14]. The first accelerators were based on a complete hardware
implementation of genetic as well as fitness engine. Despite
the fact that the authors reported a significant reduction of
time needed to evaluate a single candidate solution, the hard-
wired genetic engine did not enable to implement a more
sophisticated search strategy. Later, with the development of
a deep sub-micron semiconductor technology, new FPGAs
equipped with PowerPC processors operating at 400 MHz
were introduced. As the processors were directly connected
via a fast local bus to programmable elements of the FPGA,
the evolvable hardware systems could simultaneously benefit
from the fast evaluation of candidate circuits directly in the
FPGA and software implementation of evolutionary algorithm
(EA) which was more sophisticated than in the previous circuit
implementations [15], [16]. Recently, Xilinx introduced a new
family of programmable SoCs denoted as Zynq-7000 equipped
with a dual-core ARM processor tightly coupled with 7-series
Xilinx programmable logic which has a great potential for
evolvable hardware.

In this paper, a novel approach to the evolution of
transistor-level digital circuits is proposed. In order to reflect
behavior of real transistors and simultaneously keep the com-
plexity of fitness computation at a reasonable level, a discrete
high-level simulator of transistor circuits is introduced. The
main feature of the proposed simulator is the support of bidi-
rectional signal flow and ability to handle multiple logic levels.
The goal is to obtain a tool which will be able to simulate
digital circuits not only faster than by means of an analog
SPICE-based simulator, but also accurately. In order to further
improve the performance and scalability of fitness evaluation, a
hardware accelerator which implements the proposed simulator
in connection with evolutionary algorithm is developed in
FPGA.

The paper is organized as follows. Section II introduces
Xilinx Zynq Platform and discusses the principles of evolvable
systems. Section III describes the method designed for the
evolutionary synthesis of transistor-level circuits. Section IV
discusses the architecture of the proposed FPGA-based accel-
erator. Section V contains the evaluation of the accelerator and
discusses the obtained results. Concluding remarks are given
in Section VI.

II. XILINX ZYNQ-7000 PLATFORM

Recently, a new family of programmable SoCs (system-
on-chip) denoted as Zynq-7000 was introduced by Xilinx.
In contrast with common FPGAs, the Zynq platform is a
processor-centric system equipped with ARM processor tightly
coupled with 7-series Xilinx programmable logic. As the
architecture suggests, this platform targets the applications that
benefit from the software based control and hardware-based
processing.

The processing system (PS) consists of a dual-core ARM
Cortex-A9, memory interfaces and I/O peripherals. The Zynq
processors always boot first, programmable logic can be con-
figured as part of the boot process or configured at some point
in the future. ARM processor is equipped with two separate

32kB L1 caches for instruction and data, shared 512kB L2
cache, 256-kB on-chip memory, memory management unit and
two NEON co-processors extending the 32-bit instruction set
of ARM processor by multimedia instructions operating over
128-bit data widths. Each core can operate on 1 GHz oper-
ating frequency in both symmetrical as well as asymmetrical
multiprocessing configuration.

The architecture of programmable logic (PL) fabricated
with 28 nm technology is similar to Xilinx’s Artix-7 and
Kintex-7 families with the usual programmable resources
consisting of configurable logic blocks (CLBs), on-chip block
memories (BRAMs), DSP blocks and configurable I/Os. Each
configurable logic block is equipped with four 6-input lookup
tables (LUTs) and eight flip-flops (FFs). The LUTs in 7-series
FPGAs can be configured as either one 6-input LUT (64-bit
ROMs) with one output, or two 5-input LUTs (32-bit ROMs)
with separate outputs but common addresses or logic inputs.

A. Evolvable systems on Xilinx Zynq

From the viewpoint of evolvable hardware, the processor-
centrinc Zynq combining powerful processors with flexible
programmable logic represents an interesting and potentially
beneficial platform. The evolutionary algorithm can be exe-
cuted on ARM processor while the candidate solutions can be
efficiently evaluated in programmable logic. In addition to that,
the EA can run either on top of a high-level OS or directly on
a dedicated processor core.

The insufficient support for reconfiguration of former
FPGA families was the key factor for introducing virtual recon-
figurable circuits (VRCs) [17]. The VRC implemented using
the programmable logic is, in fact, a second reconfiguration
layer developed on the top of an FPGA used to evaluate
candidate solutions. The main benefit of VRC can be seen in
very fast reconfiguration capabilities and possibility to define
application-specific programmable elements.

As the performance of the internal reconfiguration system
of recent 7-series FPGAs noticeably increased, it seems to be
useful to employ the dynamic partial reconfiguration. Dynamic
partial reconfiguration enables to quickly redefine behavior of
a part of programmable logic while the rest of programmable
logic is still working. Even if the research in this area is still in
the beginning, it has been already shown that an evolutionary
system utilizing the dynamic reconfiguration can achieve the
performance comparable with VRC [18]. As a consequence,
more dynamically reconfigurable fitness units can be placed
within a single FPGA chip by employing this technique. Thus,
additional speedup can be achieved because multiple fitness
units are able to evaluate more candidate solutions in parallel.

III. EVOLUTIONARY DESIGN OF TRANSISTOR-LEVEL
CIRCUITS

In order to evolve digital circuits at transistor level, a suit-
able representation enabling to encode complex graph struc-
tures containing multiple connections (junctions) is needed.
Various approaches to encode the candidate solutions were
adopted in literature. For example, Zaloudek et al. encoded
the circuits directly using a CGP-like representation. No loops
were allowed. Walker et al. utilized representation which
separates the directed graph topology of the genotype from



the transistor circuit topology of the phenotype [10]. The main
advantage of that approach is that it allows loops and multiple
connections to occur within the phenotype, whilst maintaining
the feed-forward nature of the representation. However, an
extra decoding step is required to convert between the floating-
point representation and phenotype.

In this paper, we utilize an integer-based encoding that is
inspired by CGP [4]. The proposed encoding has the ability
to encode loops and multiple connections and simultaneously
it does not require a decoding phase. Hence, the encoding can
directly be utilized in the FPGA-based accelerator.

A. Circuit Representation

A candidate circuit is represented by means of an array
of elementary nodes arranged in nc columns and nr rows.
Each node consists of a single output pin and two source pins
that can independently be connected either to the output of a
node placed in previous l columns or to one of the primary
circuit inputs. According to the configuration, each node can
act as a wire, junction, n-mos transistor or p-mos transistor.
The utilized nodes are shown in Figure 1.

Presence of a junction node represents the main feature
of the proposed technique. This node is able to combine two
input signals and one output signal together. As a consequence
of that, loops and multiple connections are natively supported.
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Fig. 1. Basic building blocks of transistor-level circuits: (a) wire connecting
the first pin with output, (b) p-mos transistor, (c) n-mos transistor, and (d)
junction that combines two signals together. If a proper level (voltage) is
applied on the gate electrode (Vss for p-mos, Vdd for n-mos), transistor
connects its source electrode with drain. Possible directions of signal flow
which have to be considered during the evaluation are shown.

The following encoding scheme is utilized. The primary
inputs as well as node outputs are labeled from 0 to ni +
nc.nr − 1, respectively, where ni denotes the number of
primary inputs. A candidate solution is represented in the
chromosome by nc.nr triplets (x1, x2, f) determining for each
node its function f , and labels of nodes or primary inputs (x1
and x2) that are connected to the source pins. The last part
of the chromosome contains no integers specifying the labels
of nodes where the no primary outputs are connected to. The
first and last primary input is reserved for power supply rails.
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Fig. 2. Example of a candidate circuit implementing function Y = A⊕ B
(XOR) using four transistors. Parameters are as follows: ni=4, no=1, nc=4,
nr=2, l=1. Chromosome: (0,1,p-mos)(1,3,n-mos)(4,5,junct)(2,5,p-mos)(2,6,n-
mos)(1,2,p-mos)(8,9,junct)(1,9,junct)(10).

Fig. 3. (a) Schematic of the circuit encoded using candidate solution
illustrated in Figure 2 and (b) its output waveform obtained using an analog
SPICE simulator, a TSMC 0.18µm CMOS technology and 1.8V power supply.
It can be seen that although the chromosome contains five transistor nodes,
only four transistors are utilized in the resulting circuit. As it was discussed,
there are two of four input combinations (A=’0’, B=’0’ and A=’0’, B=’1’)
with reduction in output voltage swing.

Figure 2 demonstrates the principle of utilized encoding on
a XOR circuit implemented using pass-transistor logic. This
chromosome encodes a candidate circuit using eight nodes,
however, only some of them contribute to the phenotype and
are active. The activity of a node is determined as follows.
A node is active if its output is (a) connected to any of the
primary outputs or (b) to the input of an active node. It means,
that node 7 and node 11 represent inactive nodes.

Schematics of the corresponding phenotype constructed
using the active nodes is given in Figure 3a. The resulting
circuit contains four transistors, two p-mos transistors and two
n-mos transistors. The first complementary pair of transistors
which comprises T4 and T5 represents a common CMOS
inverter. The second pair of transistors (i.e. T8 and T9) is
used to pass the appropriate logic level (direct or inverted
version of input line A) to the primary output. Even if this
XOR gate implementation is very compact, it is rarely used
in practice because of the connection of source electrode of
p-mos transistor T9. The electrode is connected to the input
line instead of being connected to power lines which causes a
reduction in output voltage swing (i.e. there is a threshold loss
at the output node for certain input combination). This effect
is visible in the output waveform shown in Figure 3b.

B. Evaluation of a candidate circuit

Evaluation of a candidate circuit consists of two steps.
Firstly, the set of active nodes is determined. Only the active
nodes are considered during the evaluation. The inactive nodes
are ignored. Potentially unwanted nodes causing short-circuits
can be removed in this step (e.g. node 11 in Figure 2). Note
that if there is a requirement to make the evaluation efficient,
this step is present also in a common CGP implementation.



Secondly, multi-level discrete event-driven simulator is
utilized to determine responses for each input combination.

In order to reflect the behavior of real transistors, the simu-
lator operates on seven discrete levels: ’0’ (Vss), ’1’ (Vdd), ’L’
(degraded logic 0, i.e. Vss+Vt), ’H’ (degraded 1, i.e. Vdd−Vt),
’Z’ (high-impedance), ’X’ (shortage), ’U’ (unknown). The
last value is used to identify already calculated values and
helps in avoiding worthless events. As a consequence of the
discretization, the behavior of each elementary node can be
defined by extended truth table. For example, an open n-mos
transistor is known to pass logic 0 well but logic 1 poorly. This
loss is known as threshold drop. An attempt to pass logic 1
(Vdd) never gives value above Vdd−Vt, where Vt is threshold
voltage. Among others, the extended truth table thus includes
the following rule: G=’1’ ∧ S=’1’ ∧ D=’Z’ ⇒ D=’H’.

Fig. 4. (a) Test bench and (b) output waveforms for p-mos and n-mos
transistors utilized to derive the content of extended truth table which is
embedded in discrete simulator. The waveform was obtained using an analog
SPICE simulator, a TSMC 0.18µm CMOS technology and 1.8V power supply.
The corresponding discrete values are shown on the right side. Note that the
peaks are caused by charging and discharging of parasitic capacitance.

Threshold drop is a well-known phenomenon which is well
understood. However, there can occur a situation whose un-
derstanding and proper evaluation requires deeper knowledge
of utilized technology. In order to avoid errors in the design
of extended truth table, we utilized an analog simulator to
determine the output value for a given state of input electrode
and gate. Figure 4a shows the SPICE test bench utilized to
evaluate the response of p-mos and n-mos transistors. The

test bench consists of two piecewise linear voltage sources,
transistors and output stage. The output stage consists of
voltage divider that ensures that a load is applied to the test
circuit. In addition to that, the divider helps to identify presence
of high impedance at transistor outputs. Figure 4b shows the
obtained output waveform. Each voltage source generates four
discrete values – two levels corresponding with full voltage
and two levels representing degraded values. As each source
utilizes a different clock period, every possible steady-state
combination of input values is evaluated during the analysis.
It can be easily verified that the n-mos transistor outputs H
value for G =′ 1′ ∧ S =′ 1′ (see the Vnmos waveform at
55 ns).

Fig. 5. Example from Figure 2 accompanied with the informations obtained
from discrete simulator for A=’0’, B=’1’.

Let us describe the process of evaluation of the situation
shown in Figure 5. Firstly, all nodes are initialized to value ’U’
which indicates that the nodes have not been yet evaluated.
Then, the primary inputs are forced to A=’0’, B=’1’. This
change invokes evaluation of nodes 4, 5, 8 and 9. Node 4 is
evaluated as an open p-mos transistor which connects drain
with Vdd. Thus, value ’1’ appears on its output and node 6 is
planned to be evaluated. Then, node 5 is evaluated as closed p-
mos transistor providing ’Z’ to its output. As the output of this
node is connected to node 6, this node should be recalculated.
However, as it is already at the end of the update queue, it is not
appended again. Node 8 represents an open p-mos transistor,
however its source is connected to node 6 which produces
’U’ value, thus the output value remains unchanged. Node 9
evaluates as closed p-mos transistor and changes its output
from ’U’ to ’Z’. This change causes recalculation of node
10. Then, the junction encoded by node 6 evaluates as ’1’
and propagates this change to node 5 and node 8. The output
value of node 10 remains unchanged because the first input
contains unknown value ’U’. Node 5 changes its output value
from ’Z’ to ’1’ and invokes an update of node 6. Node 8 is
an open n-mos transistor that degrades value ’1’ to ’H’. As
the resulting value of node 6 remains stable, none additional
update is needed and the evaluation continues in the same
manner with node 10 and 9. Finally, the update queue is empty
and the primary output provides stable value ’H’.

C. Search strategy

As a search algorithm, the (1 + λ) evolutionary strategy
is utilized [4]. The initial population is randomly generated.
Every new population consists of the best individual and λ
offspring. In the case when two or more individuals have
received the same fitness score in the previous population, the
individual which did not serve as a parent in the previous
population will be selected as a new parent. The evolution



is terminated when a predefined number of generations is
exhausted or a required solution is found.

The search is guided by the fitness function which deter-
mines how good the current candidate circuit is. For evolution
of logic circuits, all possible input combinations have to be
applied at the candidate circuit inputs. The output values are
collected and the goal is to minimize the difference between
obtained responses and required truth table. In order to smooth
the search space, the fitness value is constructed as follows. If
the obtained output value equals to the expected one, 5 points
are added to the fitness value. If the calculated value exhibits
the same polarity but represents degraded voltage, 2 points are
used. Otherwise, no point is added because the response is
invalid. The weights were chosen experimentally. Additional
penalties may be applied. If there is a node that evaluates
during simulation to ’X’, the simulation is terminated and
penalty is applied to the total fitness value. Similarly, if the
simulator exceeds the predefined number of steps (i.e. node
outputs are not in stable state), the simulation is terminated
and the fitness value is penalized.

IV. ARCHITECTURE OF THE PROPOSED ACCELERATOR

The architecture of the proposed accelerator is shown in
Figure 6. The evolutionary algorithm is implemented using
the processing system equipped with 1GB of DDR3 memory.
The processing system is connected through point-to-point bi-
directional AXI4 interface with programmable logic which
implements an acceleration unit consisting of the controller,
fitness calculation unit and array of reconfigurable nodes
implemented using the systolic array (i.e. VRC).

The controller is responsible for communication with the
ARM processor, reconfiguration of the VRC and controlling
the simulator. A candidate circuit, represented by bitstream, is
generated on ARM processor and transmitted via AXI interface
to the controller which simultaneously reconfigures VRC. As
soon as the VRC is configured, active nodes are detected. To
accomplish this task, the VRC elements are switched to the
‘activation mode‘ for a specified number of clocks. Then, each
element, which is evaluated as an active node, proceeds to the
‘evaluation mode‘ and the fitness unit is activated. The fitness
unit resets the fitness value register, initializes VRC elements,
generates the first input combination and waits for a specified
amount of time to enable the input data to propagate through
VRC. Then, the output value is sampled for three consecutive
clock cycles. This sampling is used to detect a stable output
value. The obtained output is compared with the required
value and the fitness value is incremented as described above.
Then, the VRC is reinitialized, the next input combination is
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Fig. 6. Structure of the accelerator implemented using Zynq platform

generated and the evaluation is repeated. When the response
for the last input combination is calculated (i.e. 2ni−2 input
vectors were evaluated), the fitness unit is deactivated and the
controller sends the calculated fitness value to ARM processor.

A. Array of reconfigurable elements

The structure of the reconfigurable array utilized to evaluate
the candidate solutions is shown in Figure 7. It consists of
programmable elements (Eij) placed in a grid of nc columns
and nr rows that can be configured to implement one of the
elementary functions described in Section III-A. Each element
can be connected either with a primary input or the output
of an element situated in the preceding column. The primary
outputs can be connected to the output of any element. The
reconfiguration is performed column by column, one column
is configured in a single clock cycle.
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E1,nr

E2,1

E2,2

E2,nr

Enc,1

Enc,2

Enc,nr

IN CONFIG MODE SHORT-CIRCUIT OUT
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DF1 DF2

DBnc

DFnc
DFnc-1

Fig. 7. Architecture of the bi-directional virtual reconfigurable circuit.

In contrast with VRC utilized in [16], forward and back-
ward data path are established between adjacent columns. The
forward path (DFi) supplies the data from outputs of the
elements of a certain column to the inputs of the elements
placed in the succeeding column. The backward path (DBi)
is used to propagate the changes of element’s states back
through theirs input pins to the elements in the preceding
column. In addition to that, the backward path is utilized to
detect active nodes during the activation mode. The proposed
implementation allows us to simulate transistor-level circuits
exhibiting bi-directional data flow.

IN

DBi+1

DFi-1

Ei,j

DBi,j

DFi,j

MODESHORT-CIRCUITCONFIG

C

ActivationLMode
Logic

EvaluationLMode
Logic

Fig. 8. Structure of the VRC’s programmable element.

Due to the inherent parallelism of VRC, it is not necessary
to implement event-based message passing to maximize the



TABLE I. AVERAGE TIME (t) NEEDED TO EVALUATE A SINGLE CANDIDATE SOLUTION AND ACHIEVED SPEED UP (s) FOR VARIOUS IMPLEMENTATIONS
AND VARIOUS NUMBER OF PRIMARY INPUTS ni OF THE BENCHMARK CIRCUIT

implementation platform frequency
ni = 4 ni = 5 ni = 6 ni = 7

t s t s t s t s

HW accelerator (PL+PS) Zynq 50MHz (PL), 667MHz 41 us 0.8 44 us 1.7 49 us 3.7 54 us 4.7
HW accelerator (PL only) Zynq 50MHz 2 us 17.0 3 us 24.3 6 us 30.0 11 us 23.0

ngspice simulator Xeon 2.3GHz 49 ms - 60 ms - 100 ms - 237 ms -
discrete simulator Xeon 2.3GHz 34 us 1.0 73 us 1.0 180 us 1.0 253 us 1.0
discrete simulator Zynq 667MHz 130 us 0.3 320 us 0.2 762 us 0.3 950 us 0.3

simulator’s performance as it was inevitable in the soft-
ware implementation. Instead, the programmable elements are
equipped with output registers and operate in parallel. The
simulation of a candidate solution is implemented as follows.
Each element calculates its output value according to the
rules specified by the extended truth table. Then, with raising
edge of clock signal, all elements synchronously update their
output registers. The final state of the nodes is resolved after
performing a certain number of clock cycles. The number of
cycles is determined for each candidate solution in advance
according to the number of occurrences of each node type.

The structure of the programmable element is shown in
Figure 8. The element consists of two logic blocks that are
dedicated to the computation of output values in the evaluation
and activation mode. In the activation mode, a backward path
is used to determine the active nodes. The value of DBij is
calculated using the data provided by input DBi+1 which
contains information about active nodes in the succeeding
column. Each active node and node connected directly to a
primary output generates ’1’, otherwise ’Z’ is generated. The
block denoted as C represents a logic that computes a single
value according to the knowledge of the values provided by
the active elements that are connected to the node Eij . If this
block returns ’1’, it means that the output of the element is
connected to an active node. On the other hand, value ’Z’
means that no active node utilizes the output of the element.

In the evaluation mode, two possible situations can occur.
If a node is active, it determines its output values according
to the actual configuration and information from forward and
backward data paths. Otherwise, value ’Z’ is generated by both
outputs. The output value reflects the behavior of the current
node.

V. EXPERIMENTAL RESULTS

A. Results of Synthesis

The evolutionary platform was described in VHDL and
synthesized using Xilinx Vivado. The results of synthesis
showing the amount of PL resources required to implement
various VRCs are summarized in Table II. It can be seen that
the utilization of look up tables (LUTs) noticeably increases
with the increasing size of VRC while the number of flip-flops
(FFs) remains stable. This behavior is caused by the fact that
the LUTs are occupied mainly by (a) multiplexers ensuring
reconfigurability and (b) the backward path logic resolving
the output value of each element. Interestingly, the number of
primary inputs ni has a negligible impact on the amount of
occupied resources. According to the results of synthesis, the
worst-case operational frequency is 55 MHz.

B. Performance of the proposed accelerator

In order to evaluate performance of the proposed acceler-
ator, we chose the problem of the evolutionary design of a
multiple-input NAND gate. The following setup was utilized.
The processing system operates at 667 MHz, programmable
logic runs at 50 MHz, VRC consists of 10×8 elements, λ = 4,
ni varies from 4 to 7, and the maximum number of generations
is set to 500 · 103.

The obtained results are summarized in Table I. The per-
formance is expressed as the average time needed to evaluate
a single candidate solution. The time is averaged over 10
independent experimental runs and over all evaluations. The
performance of the proposed hardware accelerator is compared
with three SW-based implementations – the analog circuit
simulator ngSPICE running on Intel Xeon E5-2630@2.30 GHz
and the proposed event-based discrete simulator, described in
Section III, running on Intel Xeon and Zynq ARM processor.

The performance of the discrete simulator is significantly
higher (approx. three orders of magnitude) comparing to
performance of ngSPICE. In addition to that, the performance
decreases exponentially with the increasing number of primary
inputs ni. This effect is caused by doubling of the number of
input combinations that have to be evaluated. If we compare
the ARM-based and Xeon-based implementations, the ARM-
based one requires approximately three times more time to
evaluate a candidate solution. This corresponds with the fact
that the operating frequency of ARM is approx. three times
lower.

According to the experimental evaluation, the proposed
accelerator provides the speed up from 0.8 to 4.7 compared
to a software-based implementation running on a common
CPU (see ‘HW accelerator (PL+PS)‘ in Table I). However,
theoretical performance of the acceleration unit implemented
in PL should be noticeably higher. Thus we performed an
in-depth analysis and identified that AXI interface represents
the main bottleneck. The communication introduces substan-
tial overhead which cannot be sufficiently overlapped with
evaluation phase as the time needed to evaluate a candidate
solution represents only a fraction of time needed to send

TABLE II. AMOUNT OF XC7Z020 RESOURCES REQUIRED TO
IMPLEMENT VARIOUS VRCS

VRC ni = 4 ni = 5 ni = 6 ni = 7

(nc × nr) LUTs FFs LUTs FFs LUTs FFs LUTs FFs

7× 4 16 % 2 % 15 % 2 % 15 % 2 % 15 % 2 %
8× 6 29 % 3 % 31 % 3 % 28 % 3 % 30 % 3 %
10× 8 54 % 4 % 55 % 4 % 53 % 4 % 55 % 4 %



the chromosome into PL. In particular, the communication
introduces approx. 95% overhead for ni = 4 and 20% for
ni = 7. In order to mitigate the communication overhead and
increase the performance, we modified the architecture of the
accelerator. The modification consists in an implementation
of a hardware circuit which is able to generate the required
chromosomes directly in PL. As a consequence of this mod-
ification, the amount of data transfers between PS and PL is
significantly reduced. The obtained speedup is given in Table I,
see ‘HW accelerator (PL only)‘. The speedup of the accelerator
increased by a factor of 5-20.

C. Evolutionary design of logic circuits

The proposed method and the implemented accelerator
were experimentally evaluated on the evolutionary design of
basic logic circuits having up to 5 inputs. Two experiments
are presented in this paper – evolutionary design of 2-input
XOR gate and 4-input AND-OR-INVERT gate. The goal of
the experiments was to evolve fully functional implementations
exhibiting full voltage swing. It means that no degradations
are allowed on primary inputs and outputs. The XOR gate as
well as AND-OR-INVERT gate with full voltage swing can
be implemented using 8 transistors in CMOS logic.

Firstly, we investigated the impact of CGP parameters such
as l-back parameter, the number of nodes (i.e. VRC size) and
mutation rate h. Note that the l-back was investigated only
in software implementation. In order to evaluate the effect of
these parameters, we calculated success effort which measures
the expected number of generations before a solution is found.
Success effort was calculated as suggested in [19]. The results
were obtained from 50 independent runs using the following
experimental setup: gmax = 500 · 103, λ = 4, h = {1, 5, 15},
nc × nr = {10× 8, 7× 4}.

Interestingly, the l-back parameter does not have any
significant impact on the success effort of the investigated
problems if a sufficient mutation rate is provided (h ≈ 5%).
Otherwise, the higher values of l-back caused deterioration of
the success rate for h < 5%. Hence, it seems to be beneficial
that the proposed accelerator has the l-back parameter fixed to
one.

The obtained success effort plots for different setting of
CGP parameters are shown in Figure 9 and 10. It can be
seen that the evolutionary design was successful in both cases.
More than 80% of evolutionary runs successfully discovered
a fully functional solution of a XOR gate. A run is successful
if the evolved circuit obtains the maximal possible fitness
score which means that it exhibits full voltage swing. More
generations, however, are required to achieve the same success
rate in the case of the AND-OR-INVERT gate design. Over
70% of the evolved XOR gate solutions occupy 6 transis-
tors. The largest solution consists of 10 transistors. The best
discovered AND-OR-INVERT implementation containing 8
transistors was found in 24% successfull evolutionary runs.
The largest implementation utilizes 14 transistors.

By observing the success effort across different mutation
rates, we can identify that h = 5 (h = 15) provides the best
results for array 7 × 4 (10 × 8). This result complies with a
general recommendation that advises to set h to be equal to

5% of chromosome size [4]. The chosen setup h = 5 (h = 15)
ensures that up to 6.2% (5.8%) genes are modified.
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Fig. 9. Success effort of evolutionary design of the 2-input XOR gate for
different sizes of VRC
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Fig. 10. Success effort of evolutionary design of the 4-input AND-OR-
INVERT logic circuit for different sizes of VRC

The increasing VRC size has a positive impact on the
success effort in both cases. The lower number of generations
are required to achieve the same success rate.

Example of the evolved XOR circuit is shown in Figure 11.
Note that the inactive nodes were omitted due to the limited
space. While a common CMOS implementation requires 8
transistors, the evolved circuit consists of 6 transistors, pro-
viding a full voltage swing at the outputs and exhibiting high
operating frequency. The evolution discovered a solution which
is known as the transmission-gate XOR circuit.
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Fig. 11. Evolved XOR circuit (bottom) and its output waveform obtained
using analog SPICE simulator (top). The circuit consists of an inverter realized
using T1 and T2, a transmission gate implemented using T5 and T6 and two
additional transistors T3 and T4.

VI. CONCLUSION

A new approach suitable for the evolutionary design of
transistor-level digital circuits based on event-driven discrete
simulator was introduced in this paper. In addition to that,
a hardware accelerator implemented using Xilinx Zynq plat-
form was proposed. The accelerator consists of an array
of reconfigurable nodes supporting a bidirectional data flow
and processing system running the evolutionary algorithm.
We evaluated the proposed method in evolutionary design of
basic logic circuits and demonstrated that it is tractable to
evolve logic circuits directly at transistor-level. We showed that
the hardware implementation is able to provide a reasonable
speedup (30) w.r.t. an optimized software implementation even
for those relatively small circuits.

However, we identified that the communication interface
represents a bottleneck which noticeably hurts the overall per-
formance. Thus, future work has to be conducted to eliminate
this problem and exploit all the features and advantages of
Zynq platform. Some further changes in the proposed method
are expected in order to increase the achieved speedup. For
example, the reconfigurable elements could be implemented
more efficiently for a cost of BRAM memories. As a con-
sequence, multiple reconfigurable circuits could be placed in
the programmable logic and more candidate circuits could
be evaluated in parallel. Another possibility is to utilize a
dynamic partial reconfiguration which enables to reduce the
area overhead of VRC.
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