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ABSTRACT
Evolutionary design of digital circuits has been well estab-
lished in recent years. Besides correct functionality, the de-
mands placed on current circuits include the area of the
circuit and its power consumption. By relaxing the func-
tionality requirement, one can obtain more efficient circuits
in terms of the area or power consumption at the cost of an
error introduced to the output of the circuit. As a result,
a variety of trade-offs between error and efficiency can be
found. In this paper, a multi-objective evolutionary algo-
rithm for the design of approximate digital circuits is pro-
posed. The scalability of the evolutionary design has been
recently improved using parallel implementation of the fit-
ness function and by employing spatially structured evolu-
tionary algorithms. The proposed multi-objective approach
uses Cartesian Genetic Programming for the circuit repre-
sentation and a modified NSGA-II algorithm. Multiple iso-
lated islands are evolving in parallel and the populations
are periodically merged and new populations are distributed
across the islands. The method is evaluated in the task of
approximate arithmetical circuits design.

Categories and Subject Descriptors
B.6.0 [Hardware]: Logic Design—General ; I.2.8 [Comput-
ing methodologies]: Artificial intelligence—Problem Solv-
ing, Control Methods, and Search

Keywords
Cartesian Genetic Programming; Parallel Evolutionary Al-
gorithms; Multi-objective Optimization; Cluster; Combina-
tional Circuit Design; Approximate Circuits

1. INTRODUCTION
While evolutionary design of digital circuits has been well

established in the past, the correct functionality has always
been an essential requirement put on the circuits. The other
parameters, like the area, delay or power consumption, have
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been considered as secondary and have not been optimized
as long as a fully working solution has been found. Recently,
power efficiency has become the most important parameter
of many real circuits. At the same time, a wide range of
applications capable of tolerating imperfections (e.g. multi-
media) has spread out. As a consequence, a new research
field has been brought into being – the approximate comput-
ing [3].

The approximate digital circuits are designed in such a
way that the functionality specification is not fully met in
exchange for savings in terms of area, delay, power consump-
tion etc. Although the circuit is not working properly, it can
still be suitable for applications in which certain level of error
is not recognizable (e.g. human perception and multimedia
applications). Moreover, in some cases (e.g. low battery),
the users could knowingly tolerate even more inaccuracy in
order to extend the battery life.

After the first manual attempts to circuit approximation
suffering from low scalability and efficiency [2, 7], a new class
of systematic methods has been developed. The Systematic
methodology for Automatic Logic Synthesis (SALSA) uses a
quality function which decides whether a predefined quality
constraint is met. The algorithm is allowed to modify the
circuit as long as the quality constraint is not exceeded [19].
Another approach, Substitute-and-Simplify (SASIMI), looks
for signal pairs having similar values with a high probability.
By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the
cost of an error introduced to the output [18].

The aforementioned methods have to be applied repeat-
edly with different error constraints if a set of trade-offs is
demanded. In this paper, we propose a multi-objective evo-
lutionary design approach which is capable of providing a
whole set of trade-offs between a set of conflicting objec-
tives. The proposed method is based on Cartesian Genetic
Programming (CGP), widely used for the design of digital
circuits, and a modified NSGA-II algorithm providing the
multi-objective approach.

Since the evolutionary design is very computationally de-
manding [6], much emphasis has been put to the parallel
implementation of the method. In order to make full use
of a computer cluster, a spatially structured evolutionary
algorithm has been introduced to the design process.

The proposed method has been evaluated in the task of
approximate arithmetical circuits design with respect to three
objectives – error, area and latency.
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2. EVOLUTIONARY DESIGN OF DIGITAL
CIRCUITS

In our previous work, we used Cartesian genetic program-
ming to either design digital circuits from scratch [6] or to
optimize existing circuits [14]. CGP, a branch of genetic
programming, has been introduced by Miller [9]. While GP
uses tree representation, an individual in CGP is represented
by a directed acyclic graph of a fixed size. The candidate
solution can have multiple outputs and intermediate results
can be reused, which makes CGP very suitable for the design
of digital circuits, e.g. arithmetic and logic circuits, digital
filters, cryptography related Boolean functions, etc. [10, 5].

CGP uses a fixed-sized cartesian grid of nr × nc nodes
interconnected by a feed-forward network (see Figure 1).
Node inputs can be connected either to one of ni primary
inputs or to an output of a node in preceding l columns.
Each node has a fixed number of inputs nni (usually nni = 2)
and can perform one of the functions from the set Γ. Each
of no primary circuit outputs can be connected either to a
primary input or to a node’s output. The area and delay of
the circuit can be constrained by changing the grid size and
the l-back parameter.

The genotype is of fixed length, whereas the phenotype
is of variable length depending on the number of inactive
nodes, i.e. nodes whose output is not used by any other
node or primary output. This implies the existence of indi-
viduals with different genotypes but the same phenotypes,
which is usually referred to as neutrality [20]. It was shown
that for certain problems the neutrality significantly reduces
the computational effort and helps to find more innovative
solutions [8].

CGP uses a simple mutation based (1 + λ) evolutionary
strategy as a search mechanism. The population size 1 + λ
is mostly very small, typically, λ = 4. The initial popula-
tion is constructed either randomly (evolutionary design) or
by mapping of a known solution to the CGP chromosome
(evolutionary optimization). In each generation, the best in-
dividual is passed to the next generation unmodified along
with its λ offspring individuals created by means of point
mutation operator. In case more individuals with the best
fitness exist, a randomly selected one is chosen. The mu-
tation rate m is usually set to modify up to 5 % randomly
selected genes.

In the case of digital circuit evolution, the fitness function
usually corresponds to the quality of the candidate circuit
measured as the number of correct output bits compared to
a specified truth table (i.e. the Hamming distance). In order
to obtain a fully working circuit, all combinations of input
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Figure 1: Cartesian genetic programming scheme.

values have to be evaluated. For a circuit with ni inputs
and no outputs, 2ni test vectors need to be fetched to the
primary inputs and no · 2ni output bits have to be verified
so as to compute the fitness value.

The fitness calculation is computationally very intensive,
since the number of test vectors grows exponentially with
the number of primary inputs. Recently, it has been sped
up by applying parallelism at various levels (data, thread,
process) [6, 5] or by introducing formal methods, e.g. SAT
solvers [14] or Binary Decision Diagrams (BDD) [16].

Besides the correct functionality, the demands placed on
current digital circuits include the area of the circuit and
its power consumption. The power consumption of digi-
tal circuits consists of two major components – the static
and the dynamic power dissipation. The dynamic dissipa-
tion occurs while changing the state of the gates and thus
it is highly dependent on the character of the gate’s input
signals. On the contrary, the static power consumption is
rather constant and depends on the area of the circuit. The
static dissipation has been substantially reduced by intro-
ducing the CMOS technology, which uses complementary
connected transistors. However, with the decreasing size of
the semiconductor technology process, the static dissipation
is increasing due to rising leakage currents and is becoming
the major component of the power consumption. Therefore,
when evolving digital circuits with respect to the power con-
sumption, the area of the circuit can be used to estimate the
power consumption [13].

Another important characteristic of a digital circuit is the
latency, i.e. the interval between the stimulation of the in-
puts and the response on the outputs. The latency can be
determined by finding the longest path from the inputs to
the outputs with respect to particular latencies of the gates
along the path. Since the propagation delay of a gate differs
for different transitions on the inputs, computing the total
circuit latency would require simulating all possible input
transitions on the whole circuit. The number of different
transitions Nt grows rapidly with the number of primary in-
puts ni: Nt = 2ni ·(2ni−1). Applying all these combinations
is computationally intensive, therefore, an estimation must
be used instead. In this paper, we assign each node function
a fixed latency. When computing the overall circuit latency,
the longest path from an input to an output considering the
latencies of all gates along the path is considered.

2.1 Approximate circuits
Many computer systems or programs have the ability to

tolerate some loss of accuracy or quality in the computa-
tional process and still produce meaningful and useful re-
sults. Significant area or energy-efficiency improvements can
be achieved by relaxing the functionality requirement. For
example, the growing popularity of portable multimedia de-
vices offers a great scope for approximate computation, since
human perception is limited and the users are ready to tol-
erate degraded quality of the multimedia content (e.g. video
playback) in exchange for longer battery life. Automatic
approximate computing techniques are being developed to
speed up the design process and to find the trade-offs be-
tween the resources being shrunk (e.g. energy, time, area)
and the inaccuracy of the computation.

Recently, several single-objective evolutionary approaches
to design approximate circuits have been introduced [12].
Different error metrics have been utilized, starting with the
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Hamming distance and introducing new metrics more suit-
able for arithmetical circuits, e.g. the worst case error, mean
absolute error, relative error etc. [15]. In this paper, we use
a compromise error metric which penalizes both the mean
error and the isolated deviations – the mean squared error:

fmse :=

∑
∀i

(
O

(i)
orig −O

(i)
approx

)2
2ni

, (1)

where O
(i)
orig is the decimal representation of the i-th circuit

correct output and O
(i)
approx is the individual’s i-th output.

The choice, which error metric to use, always depends on a
concrete application.

Although several attempts to use multi-objective evolu-
tionary algorithms exist [11], recent techniques have been
based mainly on multi-phase single-objective approaches [15]
or have used constrained resources in order to find approx-
imate circuits with smaller area or power consumption [12,
17].

3. MULTI-OBJECTIVE CGP
Unlike the single-objective optimization, which enables to

compare any two candidate solutions and decide which one
is better, the multi-objective optimization leads to the exis-
tence of a whole range of trade-off solutions, if the objectives
are conflicting. In the case of digital circuits design, the bet-
ter the circuit works, the larger area and power consumption
it has.

Many multi-objective evolutionary algorithms have been
proposed, most of them are based on the idea of Pareto
dominance. The solution p dominates the solution q if p
is no worse than q in all objectives and p is strictly better
than q in at least one objective. The principle can be seen
in Figure 2, the Pareto optimal solutions are not dominated
by any other solutions and form the so called Pareto front.

3.1 NSGA-II and its modifications
One of the most popular multi-objective evolutionary al-

gorithms is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [1]. It is based on sorting individuals according to
the dominance relation into multiple fronts. The first front
F0 contains all Pareto optimal solutions. Each subsequent
front Fi is constructed by removing all the preceding fronts
from the population and finding a new Pareto front. Each
solution is assigned a rank according to the front it belongs
to, the solutions from the front Fi have the rank equal to i.
The NSGA-II fast non-dominated sort (see Algorithm 1) is

f1

f2
Pareto optimal
dominated

Figure 2: Pareto optimal and dominated solutions.

very efficient, the overall complexity is O(MN2), where N
is the population size and M is the number of objectives.

fast-non-dominated-sort(P )

foreach p ∈ P do
F0 = ∅
Sp = ∅
np = 0
foreach q ∈ P do

if p ≺ q then
Sp = Sp ∪ {q}

end
else if q ≺ p then

np = np + 1
end

end
if np = 0 then

prank = 0
F0 = F0 ∪ {p}

end

end
i = 0
while Fi 6= ∅ do

Q = ∅
foreach p ∈ Fi do

foreach q ∈ Sp do
nq = nq − 1
if nq = 0 then

qrank = i + 1
Q = Q ∪ {q}

end

end
end
i = i + 1
Fi = Q

end
F = (F0, F1, . . . )
return F

Algorithm 1: Fast non-dominated sort.

The solutions within the individual fronts are sorted ac-
cording to the crowding distance metric, which helps to pre-
serve a reasonable diversity along the fronts [1]. The crowd-
ing distance is the average distance of two solutions on either
side along each of the objectives. The boundary solutions
are assigned an infinite crowding distance, which ensures
that these solutions will dominate the inner solutions (see
Algorithm 2).

crowding-distance-assignment(P )
l = |I|
foreach p ∈ P do

pdist = 0
end
foreach objective m do

P = sort(P , m)
P [0]dist =∞
P [l − 1]dist =∞ for i in 1 to l − 2 do

P [i]dist = P [i]dist +

(P [i + 1]m − P [i− 1]m)/(fmax
m − fmin

m )
end

end

Algorithm 2: Crowding distance assignment.

Any solution from the front Fi always dominate any solu-
tion from Fj , j > i. Within the fronts, solutions with higher
crowding distance are preferred.

Most real applications require to be able to constraint the
solutions on particular objectives. NSGA-II offers a sim-
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ple way to handle the constraints and keep the algorithm
complexity low. Each solution can be either feasible or in-
feasible, the infeasible solutions are assigned a constraint vi-
olation according to the Algorithm 3. The constraints on
the objective m are denoted by

〈
cmin
m , cmax

m

〉
.

constraint-violation-assignment(P )

foreach p ∈ P do
pconstr viol = 0
foreach objective m do

if pm < cmin
m then

pconstr viol = pconstr viol + (cmin
m − pm)/fmax

m
end
if pm > cmax

m then
pconstr viol = pconstr viol + (pm − cmax

m )/fmax
m

end

end

end

Algorithm 3: Constraint violation assignment.

When comparing two solutions, a feasible solution is al-
ways preferred. If both solutions are infeasible, the solution
with smaller constraint violation is better. In the opposite
case, when both solutions are feasible, the dominance de-
pends on the rank and the crowding distance.

Since the original NSGA-II algorithm was based on a ge-
netic algorithm, there must have been changes to use it with
CGP [4, 11]. Firstly, due to the absence of the crossover op-
erator in CGP, the offspring population is constructed only
using mutation. Secondly, the crowding distance is often
not sufficient for CGP to maintain the diversity of the pop-
ulation. The neutrality present in CGP causes a premature
convergence, the Pareto fronts are flooded by individuals
that are genotypically distinct but phenotypically identical.
We propose to introduce a new equivalence rank, which en-
ables to put the equivalent solutions in an order and preserve
the neutrality character of the CGP. The principle can be
seen from Algorithm 4. At the beginning, the population
is randomly shuffled. Then, for each individual, the equiv-
alence rank of all individuals (except for already processed
ones) with the same fitnesses is incremented.

equivalence-rank-assignment(P )

foreach p ∈ P do
peq rank = 0

end
random shuffle(P )
Q = P
foreach p ∈ P do

Q = Q \ {p}
foreach q ∈ Q do

if p ≡ q then
qeq rank = qeq rank + 1

end
end

end

Algorithm 4: Equivalence rank assignment.

When comparing two individuals, the individual with a
lower equivalence rank always dominates the other one. Two
individuals with the same equivalence rank are compared
using the standard constrained-domination rules. As a con-
sequence, none of the fronts contains individuals with the
same fitness and the dominance relation among the individ-
uals with the same fitness is random.
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Figure 3: NSGA-II algorithm scheme.

Unlike the original NSGA-II algorithm, which uses a pop-
ulation of parents P and an offspring population Q, both
of size N , our modification enables us to set the offspring
size independently. In each generation, Np individuals are
selected as parents and Nq offspring individuals are created
by means of mutation. Besides the tournament selection, we
use a new deterministic selection mechanism, which cycli-
cally takes the individuals from the parent population P
and creates mutants.

The aforementioned principles make the multi-objective
approach even more similar to the standard CGP. The over-
all algorithm works as follows:

nsga-ii(Pt, Qt)
Rt = Pt ∪Qt

equivalence-rank-assignment(Rt)
constraint-violation-assignment(Rt)
F = fast-non-dominated-sort(Rt)
Pt+1 = ∅
i = 0
while |Pt+1|+ |Fi| ≤ Np do

crowding-distance-assignment(Fi)
Pt+1 = Pt+1 ∪ Fi

i = i + 1
end
crowding-distance-assignment(Fi)
sort(Fi, ≺n)
Pt+1 = Pt+1 ∪ Fi [0 : (Np − |Pt+1| − 1)]
Qt+1 = create-offspring(Pt+1)
t = t + 1

Algorithm 5: Modified NSGA-II.

In each generation t, the populations Pt and Qt form an
unified population Rt. The individuals in Rt are assigned
the equivalence rank and the crowding distance. Then, the
Pareto fronts are identified and the new parental population
Pt+1 is filled with the individuals from the first fronts until
Pt+1 is not overcrowded. The individuals from the last used
Pareto front are sorted using the crowding distance and a
fraction of them is selected just to fill the population Pt+1

(Figure 3).

4. PARALLEL MULTI-OBJECTIVE CGP
The evolutionary design is a very computationally de-

manding approach. In order to reduce the design time, one
has to deal with a parallel implementation of the fitness
function or search algorithm modifications. In our previous
work, we have introduced parallelism at various levels (in-
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struction, data, thread and process) to the CGP and sped
up the design process significantly [6, 5]. However, the work
was focused on single-objective design of (non-approximate)
digital circuits having several specifics, e.g. small population
size or the Hamming distance as the fitness function.

In the case of approximate arithmetical circuits, the fit-
ness function (Equation 1) is much more computationally
demanding and the implementation much less efficient. On
the other hand, the population size of the multi-objective
approach is much bigger, which makes the parallel process-
ing of the individuals more efficient.

Besides the parallel implementation of the fitness evalua-
tion, additional speed-up can be achieved by employing spa-
tially structured evolutionary algorithms. Since CGP does
not use any crossover operator, there is not a large scope of
methods. However, a simple isolated islands model with a
periodical exchange of the best individuals across the islands
has been confirmed to be beneficial [6].

We propose to extend the multi-objective approach by
introducing the isolated islands model. Unlike the single-
objective case, the multi-objective algorithm requires to ex-
change the whole population. The Algorithm 6 is very sim-
ilar to the single-population case, the only difference is that
each Gr generations the populations are unified across the
islands and a common Pareto front is identified on each is-
land. Since the equivalence rank is assigned randomly to
the individuals with the same fitness, the Pareto fronts on
individual islands are phenotypically identical, but genotyp-
ically distinct. This principle should avoid the algorithm
to converge prematurely and help to preserve the diversity
across the populations.

nsga-ii-islands(Pt, Qt)
Rt = Pt ∪Qt

if t mod Gr = 0 then
Rt = MPI Allgather(Rt)

end
equivalence-rank-assignment(Rt)
constraint-violation-assignment(Rt)
F = fast-non-dominated-sort(Rt)
Pt+1 = ∅
i = 0
while |Pt+1|+ |Fi| ≤ Np do

crowding-distance-assignment(Fi)
Pt+1 = Pt+1 ∪ Fi

i = i + 1
end
crowding-distance-assignment(Fi)
sort(Fi, ≺n)
Pt+1 = Pt+1 ∪ Fi [0 : (Np − |Pt+1| − 1)]
Qt+1 = create-offspring(Pt+1)
t = t + 1

Algorithm 6: NSGA-II with the isolated islands model.

5. EXPERIMENTAL RESULTS
In this section, experiments regarding the multi-objective

design of arithmetical circuits are presented and the pro-
posed modifications to the NSGA-II algorithm are exam-
ined. All experiments were performed on a computer cluster
of 180 nodes with the following hardware configuration: 2×
8-core Intel E5-2665, 64 GB RAM, connected by Infiniband
links. Each node was fully loaded with 16 threads, the eval-
uation of the population was parallelized using OpenMP.

The circuits were design with respect to 3 objectives – the

mean squared error (as defined in Equation 1), the area of
the circuit (approximate number of transistors considering
common CMOS gates) and the latency (see Section 2). The
CGP parameters were set similarly to the single-objective
case [6], i.e. Γ = {BUF, NOT, AND, OR, XOR, NAND, NOR, XNOR} and
the mutation rate was set to 5 %, we used a linear CGP
(nr = 1). The number of columns was nc = 800 in the
case of the 4-bit multiplier and nc = 100 in the case of the
adder. All experimental results were obtained by running
100 independent evolutionary runs.

5.1 Selection type
In Section 3.1, we have proposed a modification to the

NSGA-II selection mechanism – a new deterministic selec-
tion. Furthermore, the offspring size Nq is not necessarily
equal to the parental population size Np. In order to draw a
comparison between the original tournament selection and
the new deterministic selection, a number of experiments
were carried out, the task was to design a combinational
4-bit multiplier.

The parental population size was set to Np = 50 and
the offspring size was Nq ∈ {50, 60, . . . , 150}, the generation
count was G = 5000. The same experiments were run for
both tournament and deterministic selection.

The results can be seen in Figure 4. The quality of the
resulting Pareto front was measured in terms of the Pareto
front size (number of individuals) and the best error achieved.
No matter how imperfect such comparison is, some trends
can be inferred. The tournament selection is beneficial in the
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cases, when Nq is not an integer multiple of Np. Otherwise,
both selection types evince about the same performance.

Similarly to the single-objective case, one can adjust the
number of generation and the population size so as the com-
putational effort is the same. In our second experiment, the
population size was fixed (Np = 50, Nq = 50), but the num-
ber of generations was G ∈ {5000, 6000, . . . , 15000}.

As can be seen in Figure 5, there is no conclusive differ-
ence between the two selection types. However, when com-
paring with the previous experiment (Figure 4), increasing
the offspring size seems to be slightly more advantageous
than increasing the number of generations.

5.2 Number of Islands
Recently, we have shown that a spatially structured evo-

lutionary algorithm can speed up the evolutionary design of
combinational circuits in comparison with a single-population
process [6]. The Figure 6 shows the influence of the number
of islands on the mean error achieved during the evolution-
ary design of a 4-bit multiplier. The single-population ap-
proach was compared to the multiple islands model with 2,
4 and 8 islands. The populations (each of Np = 100 parental
and Nq = 100 offspring individuals) were exchanged every
Gr = 500 generations across the islands. It can be seen
that increasing the number of islands significantly reduces
the mean error during the whole evolutionary process. The
more islands, the less generations is needed to achieve com-
parable results.
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Figure 6: The influence of the number of islands.

5.3 Examples of Evolved Circuits
In this section, the proposed multi-objective approach is

demonstrated on two examples of arithmetical circuits. Fig-
ure 8 shows the Pareto front of approximate 4-bit multipliers
obtained after 1000000 generations. The population size was
set to Np = 100 parental and Nq = 300 offspring individu-
als and tournament selection was used to create the offspring
population. Eight islands were exchanging the populations
every Gr = 1000 generations. At the end of the evolution,
66 trade-off solutions were found having the mean squared
error from 46.16 to 153.75, the area from 0 to 512 transistors
and the latency from 0 to 19 gates. The extremely erroneous
solutions are not shown in the Pareto front in Figure 8. Ta-
ble 1 shows the output errors for all input combinations.

The same experimental setup was used for the design of
combinational 4-bit adders. Since combinational adders are
much less complex circuits than the multipliers, the number
of generations was set to 100000. The resulting Pareto front
can be seen in Figure 9, Table 2 shows the output errors for
the individual with the lowest error. In comparison with the
multiplier, the error is significantly smaller and the circuit
has much smaller area (70 transistors) and latency (3 gates).
The wiring diagram is depicted in Figure 7.
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Figure 7: The best 4-bit adder diagram.
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· 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
2 0 2 0 1 0 2 0 1 0 2 0 1 0 2 0 1
3 0 1 1 -2 0 0 -3 -6 0 1 1 -2 -5 -8 -11 -14
4 0 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0
5 0 -1 0 0 0 -2 0 -4 -1 2 -3 -8 -5 -2 -7 -12
6 0 -1 0 -3 0 1 -5 -11 0 -1 0 -3 8 2 4 1
7 0 0 1 -6 0 -4 -11 -18 -1 0 -7 -14 0 1 -3 -10
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 1 0 1 0 -1 2 0 0 -3 0 -4 3 -6 1 -8

10 0 2 0 1 0 -3 3 -7 0 3 -5 -15 0 -3 -13 -23
11 0 3 0 -2 0 -8 -3 -14 0 -4 -15 -26 -5 -16 -27 -38
12 0 0 0 -5 0 0 8 4 0 0 0 -5 16 4 0 1
13 0 1 0 -8 0 -2 2 1 -1 -6 -3 -16 4 -1 2 -4
14 0 -1 3 -11 0 -7 0 -3 0 -1 -13 -27 8 1 -5 -19
15 0 0 1 -14 0 -12 -3 -10 -1 -8 -23 -38 0 -4 14 -1

Table 1: Error table for the best multiplier.
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Figure 9: Combinational 4-bit adder.

+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
2 0 0 0 0 0 0 -1 -2 0 0 0 0 0 0 -1 -2
3 0 -1 0 -1 0 -1 -2 -3 0 -1 0 -1 0 -1 -2 -3
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
6 0 0 -1 -2 0 0 0 0 0 0 -1 -2 0 0 0 0
7 0 -1 -2 -3 0 -1 0 -1 0 -1 -2 -3 0 -1 0 -1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1

10 0 0 0 0 0 0 -1 -2 0 0 0 0 0 0 -1 -2
11 0 -1 0 -1 0 -1 -2 -3 0 -1 0 -1 0 -1 -2 -3
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1 0 -1
14 0 0 -1 -2 0 0 0 0 0 0 -1 -2 0 0 0 0
15 0 -1 -2 -3 0 -1 0 -1 0 -1 -2 -3 0 -1 0 -1

Table 2: Error table for the best adder.
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6. CONCLUSIONS
Recently, a new application area for evolutionary algo-

rithms has emerged, EAs have been confirmed to be com-
petitive in the task of approximate circuits design [17]. The
evolutionary design is a computationally demanding task,
therefore, several approaches to speed up the entire process
have been proposed [6].

In this paper, a new multi-objective evolutionary method
for designing approximate digital circuits has been presented.
The method is based on the well-known NSGA-II algorithm
modified in order to be more suitable for the use with CGP.
Besides a parallel implementation of the population fitness
evaluation, a simple spatially structured algorithm is intro-
duced for the purpose of speeding up the evolutionary pro-
cess.

The proposed method has been evaluated in the task of
approximate combinational multiplier and adder design. In
comparison with existing methods, the multi-objective ap-
proach enables to obtain a set of Pareto optimal solutions
in a single run.

In our future research, we will focus on increasing the scal-
ability of the method in order to be able to design more com-
plex circuits. For that purpose, the fitness function needs to
be accelerated.
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