
Fast Covariance Recovery in
Incremental Nonlinear Least Square Solvers

Viorela Ila1 , Lukas Polok2, Marek Solony2, Pavel Smrz2 and Pavel Zemcik2

Abstract— Many estimation problems in robotics rely on
efficiently solving nonlinear least squares (NLS). For example,
it is well known that the simultaneous localisation and mapping
(SLAM) problem can be formulated as a maximum likelihood
estimation (MLE) and solved using NLS, yielding a mean state
vector. However, for many applications recovering only the
mean vector is not enough. Data association, active decisions,
next best view, are only few of the applications that require
fast state covariance recovery. The problem is not simple since,
in general, the covariance is obtained by inverting the system
matrix and the result is dense.

The main contribution of this paper is a novel algorithm
for fast incremental covariance update, complemented by a
highly efficient implementation of the covariance recovery. This
combination yields to two orders of magnitude reduction in
computation time, compared to the other state of the art
solutions. The proposed algorithm is applicable to any NLS
solver implementation, and does not depend on incremental
strategies described in our previous papers, which are not a
subject of this paper.

I. INTRODUCTION

Probabilistic methods have been extensively applied in
robotics and computer vision to handle noisy perception
of the environment and the inherent uncertainty in the
estimation. There are a variety of solutions to the estima-
tion problems in today’s literature. Filtering and maximum
likelihood estimation (MLE) are among the most used in
robotics. Since filtering easily becomes inconsistent when
applied to nonlinear processes, MLE gained a prime role
among the estimation solutions. In simultaneous localisation
and mapping (SLAM) [1], [2], [3], [4] or other mathematical
equivalent problems such as bundle adjustment (BA) [5], [6]
or structure from motion (SFM) [7], the estimation problem
finds the MLE of a set of variables (e.g. camera/robot
poses and 3D points in the environment) given a set of
observations. Assuming Gaussian noises and processes, the
MLE have an elegant nonlinear least squares (NLS) solution.

A major challenge appears in online robotic applications,
where the state changes every step. For very large problems,
updating and solving the system every step may become
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Fig. 1. Distance-based candidates for data association calculated using the
marginal covariances (95% confidence interval shown in green).

very expensive. Efficient incremental NLS solutions have
been developed, either by working directly on the matrix
factorization of the linearised system [2], by using graphical
model-based data structures such as the Bayes tree [4], or
by exploiting the sparse block structure of the problems [8].

The existing incremental NLS solutions provide fast and
accurate estimations of the mean state vector, for example
the mean position of the robot and features in the envi-
ronment. However, in a real applications, the uncertainty
of the estimation plays an important role. This is given
by the covariance matrix, which generalizes the notion of
variance to multiple dimensions. In particular, the marginal
covariances, that encode the uncertainties between a subset
of variables, are required in many applications.

Data association is the problem of associating current ob-
servations with previous ones, and it is the key to reduce the
uncertainty in SLAM. Finding those associations becomes
very expensive for large problems, nevertheless it can be
simplified when the uncertainties of the estimates are known.
Joint-compatibility tests in the case of landmark SLAM [9],
[10] or estimation of possible relative displacement between
poses in pose SLAM [11] are all based on recovering
the marginal covariances. Figure 1 shows how the data
association problem can be restricted to only a small set of
sensor registration indicated by the grey links between the
current pose of the robot and close poses already visited.

Information theoretic measures, such as mutual informa-
tion, are also computed using the marginal covariances.
This allows for principled ways to reduce the complexity
of the SLAM problem by selecting only the informative
measurements [11] or to plan reliable paths with the least
probability of becoming lost [12]. In computer vision, the
mutual information is used in online systems to compute the
most appropriate actions for feature selection [13] or in active
vision to guide efficient tracking and image processing. It is



also used in reducing the uncertainty in real-time monocular
SLAM [14] and in active matching [15] of image feature.
A problem related to active vision is the next best view for
3D reconstruction where the trace of the camera covariance
matrix is used to select the images that will reduce the
uncertainty in the reconstruction [16].

While easy to calculate in an information filter estimation
framework [11] or even explicit in Kalman filtering, the
marginal covariances are expensive to obtain in an NLS
framework. Some of the applications, such as graph sparsifi-
cation in the context of graph SLAM optimisation [17], [18],
are based on approximations of the marginal covariances, in
particular on local Chow-Liu trees [19]. In general, these ap-
proximations do not guarantee consistency, therefore recent
methods opted for exact solutions to marginal covariance
calculation [20], [21], such as the one introduced in [10].

This paper proposes a novel technique for obtaining the
marginal covariances in an online NLS framework, where
the system changes all the time. It is based on incremental
updates of marginal covariances every time new variables
and observations are integrated into the system, and on the
fact that, in practice, when the linearisation point changes,
the changes in the system are often so small that they can
be ignored. The proposed methods are accompanied by a
very efficient blockwise implementation. Extensive tests on
large online NLS problems have proven that the new strategy
significantly outperforms all the other state of the art exact
solutions, without compromising the accuracy.

II. INCREMENTAL ESTIMATION

In this paper, the problem is formulated as a maximum
likelihood estimation of a set of variables θ given a set of
observations z. The SLAM example is considered, where the
vector θ = [θ1 . . . θn] gathers the variables corresponding to
the robot poses and the map, and the vector z = [z1 . . . zn]
gathers the available observations. This estimation has to be
done incrementally in an online application; every step a new
variable and the associated measurements are integrated into
the system and a new solution is calculated. In this section
we briefly show how the MLE problem is formulated and
solved.

A. State estimation

The goal is to obtain, at every step, the maximum like-
lihood estimate (MLE) of a set of variables in θ given the
available observations in z:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z)} . (1)

It is well known that, assuming Gaussian distributed pro-
cesses and measurements, the MLE has an elegant and
accurate solution based on solving a NLS problem:

θ∗ = argmin
θ

{
1

2

m∑
k=1

‖hk(θik , θjk)− zk‖2Σk

}
, (2)

where h(θik , θjk) is the nonlinear measurement function
and zk are the normally distributed measurements with the

covariance Σk. Iterative methods, such as Gauss-Newton or
Levenberg-Marquardt, are often used to solve the NLS in (2).
This is usually addressed by solving the sequence of linear
systems at every iteration. Linear approximations of the
nonlinear residual functions around the current linearisation
point θi are calculated:

r̃(θi) = r(θi) + J(θi)(θ − θi) , (3)

with r(θ) = [r1, . . . , rm]
> being a vector gathering all

nonlinear residuals of the type rk = hk(θik , θjk)− zk and
J being the Jacobian matrix which gathers the derivatives
of the components of r(θ). With this, the NLS in (2) is
approximated by a linear one and solved by successive
iterations:

δ∗ = argmin
δ

1

2
‖A δ − b‖2 , (4)

where the matrix A and the vector b are defined as A ,
D−1/2J and b , −D−1/2r, with D gathering all the Σk

measurement covariances [1] . The correction δ , θ − θi

towards the solution is obtained by solving the linear system:

A> A δ = A>b , or Λδ = η , (5)

with Λ, the square symmetric positive definite system matrix
and η the right hand side. In the case of sparse problems such
as SLAM, it is common to apply sparse matrix factorization,
followed by backsubstitutions to obtain the solution of the
linear system. The Cholesky factorization of the matrix Λ has
the form R> R = Λ, where R is an upper triangular matrix.
The forward and back-substitution on R>d = η and Rδ = d
first recover d, then the actual solution δ. After computing
δ, the new linearisation point becomes θi+1 = θi + δ. The
nonlinear solver iterates until the norm of the correction
becomes smaller than a tolerance.

B. Block structure

In many estimation problems, the random variables have
more than one degree of freedom (DOF). For example, in a
two-dimensional SLAM, every pose has 3 DOF and every
landmark has 2 DOF; a 3D-SLAM has 6 DOF variables. The
associated system matrix can be interpreted as partitioned
into sections corresponding to each variable, called blocks,
which can be manipulated at once. If the number of variables
is n, the size of the corresponding Λ matrix is N×N , where
N sums the products of the number of variables of each type
and their DOF.

Correct manipulation of the block matrices enabled very
efficient NLS and incremental NLS solutions [22], [8], which
outperformed other similar state-of-the-art implementations,
without affecting the precision in any way. In this paper,
we will show that, based on the previously proposed block-
based data structure in [22], we can also efficiently recover
the marginal covariance matrices incrementally.

C. State augmentation and update

For large online problems, updating and solving at every
step can become very expensive. In our previous work [8],
we proposed an efficient algorithm and its implementation



to incrementally update and solve the NLS problem in
(2). At every step, a new variable and the corresponding
observations are integrated into the system. For each new
observation, the matrix A is augmented with a block-row Ak.
In general, just few variables are involved. Therefore, every
new row of the matrix A is very sparse. For observations
hk(θi, θj), involving two variables, the update of A becomes:

Â =

[
A
Ak

]
,withAk =

[
0 . . . Jj

i Σ
−1/2
k . . . 0 . . . J i

jΣ
−1/2
k

]
. (6)

This translates into additive updates of the system matrix Λ:

Λ̂ = Λ +A>u Au . (7)

In [8] we showed that, based on this, one can determine
which part of the R factorization changes. Furthermore, an
incremental block Cholesky factorization was introduced,
where the R factor and the r.h.s. vector d are efficiently
maintained.

When updating the factor R, two situations can be distin-
guished; a) when the linearisation point does not change and
b) when the linearisation point changes, the first being the
one of interest in this paper. Theoretically, the linearisation
point should change every iteration of the nonlinear system
solver. In practice, though, the changes are so small that they
can be ignored most of the time. This allowed for fast algo-
rithms to solve the incremental SLAM problem [2], [4], [8].
When the changes in the linearisation point are substantial,
the two matrices, Λ and R need to be recalculated, computing
the Jacobians using the new linearisation point. Sometimes,
these updates can be partial, only a few variables having
important changes [4], and in this case, Λ and R can be
updated partially as well [8], speeding up the update process.

III. COVARIANCE RECOVERY

When using MLE in real, online applications, the recovery
of the uncertainty of the estimate, the covariance, can be-
come a computational bottleneck. The covariance is needed,
for example, to generate data association hypotheses, to
evaluate the mutual information required in active mapping
or graph sparsification, etc. The calculation of the covariance
amounts to inverting the information matrix, Σ = Λ−1,
where the resulting matrix Σ is no longer sparse.

Several approximations for marginal covariance recovery
have been proposed in the literature. Thrun et al. [23] sug-
gested using conditional covariances, which are inversions
of sub-blocks of Λ called the Markov blankets. The result is
an overconfident approximation of the marginal covariances.
Online, conservative approximations were proposed in [24],
where at every step, the covariances corresponding to the
new variables are computed by solving the augmented system
with a set of basis vectors. The recovered covariance column
is passed to a Kalman filter bank, which updates the rest
of the covariance matrix. The filtering is reported to run in
constant time, and the recovery speed is bounded by the
linear solving. In the context of MLE, belief propagation
over a spanning tree or loopy intersection propagation [25]

can be used to obtain conservative approximations suitable
for data association.

An exact method for sparse covariance recovery was
proposed in [10]. It is based on a recursive formula [26],
[27], which calculates any covariance elements on demand
from other covariance elements and elements of the R
factor. Therefore, a hash map is needed for fast dependence
tracking. The method, though, does not benefit from the
incremental nature of the online problem.

The authors of [28] proposed a covariance factorization for
calculating linearized updates to the covariance matrix over
arbitrary number of planning decision steps in a partially
observable Markov decision process (POMDP). The method
uses matrix inversion lemmas to efficiently calculate the
updates. The idea of using factorizations for calculating
inversion update is not new, though. A discussion of ap-
plications of the Sherman-Morrison and Woodbury formulas
is presented in [29]. Specifically, it states the usefulness of
these formula for updating the matrix inversion after small-
rank modifications, where the rank is kept low enough to
allow faster updates than actually calculating the inverse. In
this section we propose a new update strategy which confirms
this conclusion, but it has more practical application.

A. Recursive formula for covariance matrix calculation

Operating on dense matrices is unwanted, especially in
the case of large size matrix such as Σ. Nevertheless, most
of the applications require only a few elements of the
covariance matrix, eliminating the need of recovering the
full Σ. In general, the elements of interest are the block
diagonal and the block column corresponding to the last
pose. Some other applications only require a few block
diagonal and off-diagonal block elements. In [10] was shown
how specific elements from the covariance matrix can be
efficiently calculated from the R factor by applying the
recursive formula:

Σii =
1

Rii

 1

Rii
−

n∑
k=i+1,Rik 6=0

RikΣki

 , (8)

Σij =
1

Rii

− j∑
k=i+1,Rik 6=0

RikΣkj −
n∑

k=j+1,Rik 6=0

RikΣjk

 .(9)

In case that R is sparse, the formulas above can be used
to compute the elements of Σ at the positions of nonzero
elements in R very efficiently [26]. To compute multiple
elements of the covariance matrix, such as the whole block
diagonal, these formulas becomes efficient unless all the in-
termediate results are stored. Figure 21 shows which elements
need to be calculated for a specific block diagonal element.

B. Incremental update of the covariance matrix

In II-C, we mentioned that most of the algorithmic
speedups can be applied in case the linearisation point is kept
the same. Then, the contribution of every new measurement

1An insightful animation of the covariance recovery is available online
at http://slam-plus-plus.sourceforge.net/cov/



Fig. 2. Recovering the diagonal of the covariance matrix using the recursive
formula.

can be easily integrated into the current system matrix Λ by
a simple addition (see (7)), but things get complicated when
the compute of the covariance is required:

Σ̂ = (Λ +A>u Au)−1 . (10)

By applying the Woodbury formula, the above inverse can
be written in terms of the previous covariance matrix:

Σ̂ = Λ−1 − Λ−1 A>u (I +Au Λ−1A>u)−1Au Λ−1 ,

Σ̂ = Σ− ΣA>u (I +Au ΣA>u)−1Au Σ . (11)

This shows that, in contrast to the information matrix which
is additive, the covariance is subtractive:

Σ̂ = Σ + ∆Σ, ∆Σ = −ΣA>u(I +Au ΣA>u)−1Au Σ.(12)

In SLAM, for example, this is easy to understand: a new
measurement adds information to the system and reduces
the uncertainty. It is important to mention that the size of
the matrix to be inverted, S , I +Au ΣA>u, is very small
compared to the system size. More precisely, the size of
S, (Mu × Mu) with (Mu � M), corresponds to the
measurements involved in the update. For the simple case
of a single measurement of a given DOF, Mu = DOF ,
regardless of the number of variables involved or their
respective DOF. Furthermore, due to the fact that Au is
very sparse, the computation of S can be performed very
efficiently. The complex update in (12) becomes a simple
block vector multiplication:

∆Σ = −B S−1 B> , where B = ΣA>u . (13)

Due to the sparsity of the Au, only few elements of the
full Σ matrix are referenced, in particular only the block
rows corresponding to the variables involved in the update.
A simple example where the update involves two variables,
is shown in Fig. 31. Furthermore, the size of B is (N ×
Mu), but the product in (13) is a full matrix. Therefore the
computation of the entire ∆Σ is prohibitive. We mentioned
above that only some elements of the covariance are needed
in the applications. For a single block, Σ̂ij , the update can
be easily calculated as:

∆Σij = −Bi S
−1 B>j , (14)

where Bi and Bj are block rows of B of size of the update
and the DOF of the variables i and j (Ni ×Mu and Mu ×
Nj , respectively). A similar formulation of the covariance
update was used in [11] in the context of filtering SLAM.
In there, the marginal covariance of the variables were used

to facilitate data association and graph sparsification using
information theory measures.

The storage of the dense matrix Σ must be avoided. Only
the blocks requred by the application (for instance only the
diagonal of Σ) are stored in a sparse block matrix. However,
in order to compute the update in (13) or in (14), other
elements of Σ are needed (the block columns, corresponding
to the variables v, involved in the update). Those are obtained
by solving the system:

ΛΣv = Iv or R Σv = R−>Iv , (15)

where Iv is a sparse block column matrix with only a few
identity blocks at the positions corresponding to the variables
involved in the update. The complexity of this calculation is
directly proportional to the sum of DOF of the variables,
involved in the update. For sparse R with nnz nonzero
elements, calculating a single column of Σv by forward and
back substitution amounts to O(2nnz).

C. Incremental downdate of the covariance matrix

Although very attractive, updating Σ as shown above
sometimes becomes impractical to implement. In general,
the covariances are calculated periodically, after the system
was updated, which happens after one or several steps. In
this case the Λ or R are not available anymore, as they were
replaced by Λ̂ and R̂, respectively. Similarly to (10), one can
downdate Λ̂ to obtain Σ:

Σ = (Λ̂−A>u Au)−1 . (16)

Following the same scheme as in (11), ∆Σ can be now
written in terms of Σ̂:

∆Σ = Σ̂A>u(I −Au Σ̂A>u)−1Au Σ̂ . (17)

Defining U , I − Au Σ̂A>u, which is a small size matrix
similar to S, (17) becomes:

∆Σ = B̂U−1B̂> , with B̂ = Σ̂A>u , (18)

with Σ̂v obtained from solving Λ̂Σ̂>v = Iv or R̂ Σ̂v =
R̂−>Iv, much like in (15). This allows us to update the
covariance at any step from the current Λ̂ or R̂ and a small
Au, instead of having to bookkeep the much larger Λ or R.
Also, it is not mandatory to upate Σ at each step: to perform
update to Σ over several steps, Au will simply contain all
the measurements since Σ was calculated.

IV. THE ALGORITHM

This section proposes an efficient algorithm for online
recovery of the marginal covariances. Based on whether or
not the linearisation point changed, the algorithm has two
branches: a) calculates sparse elements of the covariance
matrix using the recursive formula (8) and (9), and b) up-
dates sparse elements of the covariance using the covariance
downdate in (18). The decision is outlined in Algorithm 1.
Note that this algorithm also involves a simple incremental
Gauss-Newton solver, but other nonlinear solvers, even batch
solvers, are also suitable.



Fig. 3. Sparsity patterns involved in covariance update calculation (best viewed in color)

Algorithm 1 Covariance Recovery Algorithm Selection
1: function INCREMENTALGN(θ,v, r, zu,Σu, tol, itmax)
2: (θ̂, r̂) = UPDATE(θ,v, r, zu,Σu)
3: (Λ̂, η̂, Au) = LINEARSYSTEM(θ̂ , r̂)
4: changedLP = FALSE
5: for it = 0 to itmax do
6: δ = SOLVE(Λ̂, η̂)
7: if norm(δ) < tol then
8: break
9: end if

10: θ̂ ← θ̂ ⊕ δ
11: (Λ̂, η̂) = LINEARSYSTEM(θ̂, r̂)
12: changedLP = TRUE
13: end for . incremental GN solver
14: ordering = AMD(Λ̂)
15: R̂ = CHOL(Λ̂, ordering)
16: if changedLP then
17: Σ̂ = CALCULATECOVARIANCE(R̂, ordering)
18: else
19: Σ̂ = UPDATECOV(Σ, R̂, ordering,Au,v)
20: end if
21: end function

The two branches have different complexities. The first
branch has complexity of O(n2

nzN) in nnz , the number of
nonzeros of the R̂ factor and N , the sum of DOF of all
the vertices [26]. The second branch is dominated by the
complexity of O(nnzNu) where Nu is the sum of DOF
of vertices that are being updated. As a result, the second
branch is much faster if only a few vertices are changing. In
case that most of the vertices are being updated (e.g. after a
linearisation point change), the first branch becomes faster.

A. Sparse Blockwise Covariance Calculation

The proposed implementation of the recursive formula is
slightly different from the other state of the art implementa-
tions [10] or [3]. These use a hash map or a similar structure
for fast lookup of the elements of the covariance matrix that
were already calculated in the course of evaluating (8), (9).

In contrast, the proposed algorithm calculates the covari-
ance matrix column by column, right to left, calculating
only the queried covariance elements and all the elements
at the same place as the nonzero elements of the R̂ factor.
By the time the algorithm evaluates a specific element, it
is guaranteed that all the references were already evalu-
ated, eliminating the need for a hash map. A similar, but
element-wise approach is described in [27]. The algorithm
CALCULATECOVARIANCE was thus omitted to save space.

Algorithm 2 Incremental Covariance Update

1: function UPDATECOV(Σ, R̂, ordering, Au, v)
Require: Σ is the covariance matrix to be updated
Require: R̂ is Cholesky of Λ̂ with fill-reducing ordering
Require: ordering is fill-reducing ordering used in R̂
Require: Au is matrix of measurements since Σ
Require: v is list of vertices being updated

2: Iv = EYE(SIZE(R̂))v
3: Iv = PERMUTE(Iv, ordering)
4: T = R̂\Iv
5: T = PERMUTE(T, ordering−1)
6: Q =

(
T>
)
v

7: M = DENSE((Au)v)
8: U = EYE(SIZE(Q))−MQM>

9: B̂ = T (1 : ROWS(Σ), :)M>

10: Σ̂ = Σ + B̂U−1B̂>

11: ov = COLUMNS(Σ)
12: nv = COLUMNS(Σ̂)− COLUMNS(Σ)
13: Σ̂(:, ov : end) = T (:, COLUMNS(T )− nv : end)
14: return Σ̂
15: end function

Note that the resulting covariance matrix is sparse: the
algorithm does not calculate more elements, than [10], [3].

Once finished, the proposed algorithm permutes the calcu-
lated covariance matrix to the natural order, so that the block
columns and block rows of Σ̂ correspond to the variables of
the optimized system. The covariance matrix is symmetric,
and only the upper-triangular part is stored.

B. Covariance Update

Updating the covariance incrementally is significantly
faster in the second branch of the Algorithm 1. To calculate
an update to the covariance matrix from the previous step,
Algorithm 2 closely follows the calculation outlined in
Section III. Note that reordering the system matrix (Λ̂ or
R̂), e.g. as described in [8] does not impede the incremental
update and that the algorithm is valid, but not efficient when
the linearisation point changes.

The algorithm begins by evaluating T , the block columns
of Σ̂ corresponding to the vertices, v, that are being updated
(lines 2 to 5). This is illustrated in Fig. 31, where T comprises
the highlighted columns of Σ on the left (or rows on the
right, as Σ is symmetric). Note that the inverse fill-reducing
ordering is applied so that the block rows of T correspond
to the variables of the optimized system.

To calculate the small matrix U by directly following
(17) would involve several sparse matrix products. In the



Dataset iSAM g2o SLAM++ SLAM++ Total
Manhattan 206.58 180.42 4.37 13.88

10k 6712.03 5902.46 179.69 388.67
City10k 4585.15 3742.66 55.87 219.43

CityTrees10k 1009.91 938.97 30.98 60.41
Sphere 6051.73 5536.48 24.64 105.35
Intel 6.23 6.92 0.54 1.11

Killian 19.27 21.59 1.43 2.99
Victoria Park 310.57 293.09 13.89 37.11
Park Garage 237.13 216.28 10.77 27.08

TABLE I
TIME PERFORMANCE IN SECONDS FOR THE COVARIANCE RECOVERY

METHOD ON MULTIPLE SLAM DATASETS, THE BEST TIMES IS IN BOLD.

proposed algorithm, dense calculations are used instead:
the small portion of Σ used in the product is copied to
a small dense matrix (Q on line 6, corresponding to the
highlighted blocks of Σ in the center of figure 31). Similarly,
nonzero columns of Au are copied to another dense matrix
(M on line 7). The calculation of U on line 8 is then
performed using only small dense matrices, enabling better
cache coherency and acceleration using e.g. SSE instructions.
The result is identical to the one obtained by the equivalent
sparse calculation in (17).

Finally, the additive update of Σ to Σ̂ is calculated on
line 10. Note that it is not necessary to calculate full dense
B̂U−1B̂>. Instead, only the relevant blocks of Σ can be up-
dated by using ∆Σij = B̂iU

−1B̂>j , in analogy to (14). In our
implementation, this product is carried out in parallel. Some
parts of Σ̂ do not need to be updated, as they were already
calculated using forward and backsubstitution (at lines 2 to
5). These are specifically the columns, corresponding to the
vertices being updated. In Algorithm 2, this is used to extend
Σ̂ with covariances of the newly introduced vertices.

V. EXPERIMENTAL VALIDATION

In this work, we focused our efforts on testing the pro-
posed algorithms on SLAM applications, but the applicability
of the technique remains general. Many other applications
from robotics such as active vision, planning in belief space
etc. can benefit from the solution presented in this paper.

The computational efficiency and precision of the method
and its implementation were tested and compared with sim-
ilar state of the art implementations, in particular, iSAM [2]
and g2o [3]. For iSAM v1.7 we used revision 10 and for
g2o, svn revision 54. Both, iSAM and g2o use fairly similar
implementation of the recursive formula (8), (9) together
with a cache of already calculated covariances, based on
STL hash map containers. Although highly efficient, these
implementations do not handle incremental updates of the
covariance. The proposed online covariance recovery will
be included in SLAM ++4, our block-efficient NLS frame-
work, which is distributed under MIT open-source license.
Other implementations can easily benefit from the proposed
scheme. The only requirement on the solver is to be able to
solve for dense columns of Σ and to have explicit Au.

4http://sourceforge.net/p/slam-plus-plus/

The evaluation was performed on five simulated datasets;
Manhattan [30], 10k [31], City10k and CityTrees10k [32],
Sphere [3] and four real datasets; Intel [33], Killian
Court [34], Victoria park and Parking Garage [3] (see
Tab. I). These are the datasets commonly used in evaluating
NLS solutions to SLAM problems. The tests were performed
on a computer with Intel Core i5 CPU 661 running at
3.33 GHz and 8 GB of RAM. This is a quad-core CPU
without hyperthreading and with full SSE instruction set
support. Each test was run ten times and the average time was
calculated in order to avoid measurement errors, especially
on smaller datasets.

A. Time evaluation

Table I shows the time performance of the incremental
covariance recovery strategy in Algorithm 1 tested on the
above-mentioned datasets and compared with g2o and iSAM
implementations. The block-diagonal and the last block-
column of the covariance matrix are recovered at every step
in all the cases. These are the only elements of the covariance
matrix required for taking active decisions based on the
current estimation and efficient search for data association
in an online SLAM application [11]. In incremental mode,
the covariance is calculated after each variable added to the
system (e.g. for the 10k dataset, it is calculated ten thousand
times). The total time spent in solving the SLAM problem
with covariance recovery is reported in the last column.

Figure 4 left reports the covariance recovery time on loga-
rithmic scale while Fig.4 right shows the cumulative time of
the incremental covariance computation on the Intel dataset
during the execution of the algorithm. An approximate time
complexity was estimated from these readings using least
squares. The time complexity for SLAM ++ O(n1.77) is
superior to the ones of g2o O(n2.31) and iSAM O(n2.36).

The performance of our incremental NLS solver in [8]
was also compared against GTSAM 2.3.1. However, the
computation of the marginal covariances is not optimised
for recovering all the block-diagonal elements in the current
version of the GTSAM, therefore we excluded it from our
comparisons. Nevertheless, we tested the available function
for recovering the covariance of a single variable, the first
variable (the most expensive one to calculate), against a sim-
ilar function in SLAM ++, and this produced on Manhattan,
26.270 s GTSAM vs. 2.125 s SLAM ++, on 10k, 261.880 s
vs. 50.550 s, and on Intel, 1.429 s vs. 0.148 s.

In conclusion, the proposed implementation significantly
outperforms all the existing implementations due to the
proposed incremental covariance update algorithm and the
blockwise implementation of the recursive formula.

B. Memory Usage Evaluation

Memory consumption of the above-mentioned implemen-
tations was also evaluated. The memory usage has been
measured during two series of runs: with and without the
marginal covariances computations. Figure 5 shows on the
left the overall memory usage from experiments performed
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Fig. 4. Left: Logarithmic plot of time on standard datasets. Right: Marginal covariances computation cumulative times on Intel dataset.
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Fig. 5. Left: Overall memory usage with and without marginal covariances computation. Right: Memory allocation of marginals algorithm only.

on the Intel dataset and on the right the memory allocation
of marginal covariances calculation only.

The overall memory usage plot shows that SLAM ++
uses the least memory, which is achieved thanks to efficient
implementation of matrix storage. The evaluation of the
memory used by marginal covariances computation algo-
rithm is comparable to g2o and iSAM. SLAM ++ performs
pooled memory allocation, which can be seen as steps in the
plot. This is advantageous, compared to the noisy allocation
patterns of g2o and iSAM, which probably lead to more
system calls and thus higher execution time.

C. Numerical Precision Evaluation

Since the proposed incremental update of the covariance
is additive, it is likely that arithmetic errors in calculating
the update will accumulate over consecutive steps, causing
the solution to drift away from the correct values. Although
no proof of numerical stability is offered here, we consider
it is very important to show how the algorithm behaves in
practice. A benchmark was performed on the Intel dataset,
where the covariances were calculated using recursive for-
mula, using the proposed method and using back and forward
substitution to solve for a full inverse. The Intel dataset was
chosen specifically because it contains just a handful of loop
closures, causing the incremental covariance update to last
for long periods, exceeding hundreds of steps.

Although being the slowest, backsubstitution was shown
to be numerically backward stable. Therefore, the covariance
calculated using back and forward substitution was used
as a ground truth. The recursive formula in (8) and (9) is
arguably less precise, as it reuses already calculated values
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Fig. 6. Covariance Precision on Intel Dataset

of the covariance, potentially amplifying their error. The
increment, ∆Σ, is calculated from backsubstitution so it
should be relatively precise, however the update is additive,
allowing the error to slowly creep in. Figure 6 plots the
relative norm of error of covariances, calculated using the
recursive formula and using the incremental update. It can be
seen that the errors are quite correlated, incremental update
having mostly lower error. This is given by the fact that
the covariance for incremental update is initialized using the
recursive formula after a linearisation point change occurred.
Generally, it shows that the covariance was calculated with
error at 10th decimal place and that using the incremental
update slightly increased precision, rather than decreasing it.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel method for incre-
mentally updating the covariance in an NLS problem, which
significantly speeds up the computation of the covariance
matrices useful in a broad range of robotic applications. We



targeted problems which have a particular block structure,
where the size of the blocks corresponds to the number
of degrees of freedom of the variables. The advantage of
the new scheme was demonstrated through an exhaustive
comparison with the existing implementations on several
available datasets. The tests show that the proposed scheme
is not only about an order of magnitude faster, but also
numerically stable. Error of the covariance calculated using
the incremental update is, on average, lower than the error
of the commonly used recursive formula.

In our multimedia attachment1, we demonstrate the use-
fulness of the incremental covariances calculation in a data
association context, where the number of expensive sensor
registrations can be reduced by applying distance tests [11].

Even though the proposed algorithm proved to be signif-
icantly faster than other state of the art implementations,
several improvements can still be applied. For example, when
solving bundle adjustment type of problems, Schur comple-
ment is typically used to accelerate the matrix inversion. The
incremental update can be adapted to work with the Schur
complement. However, the recursive formula would require
more attention. Finally, the block layout was designed with
hardware acceleration in mind. Our SLAM ++ framework
runs on embedded platforms, multi-core CPUs and steps
were already taken to implement a GPU accelerated version.
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