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ABSTRACT
Sparse matrix multiplication is an important algorithm in a
wide variety of problems, including graph algorithms, simu-
lations and linear solving to name a few. Yet, there are but a
few works related to acceleration of sparse matrix multiplica-
tion on a GPU. We present a fast, novel algorithm for sparse
matrix multiplication, outperforming the previous algorithm
on GPU up to 3× and CPU up to 30×. The principal improve-
ments include more efficient load balancing strategy, and a
faster sorting algorithm. The main contribution is design and
implementation of efficient sparse matrix multiplication al-
gorithm and extending it to sparse block matrices, which is to
our best knowledge the first implementation of this kind.

Author Keywords
parallel sparse matrix multiplication; parallel linear algebra;
matrix-matrix multiplication; GPGPU

ACM Classification Keywords
G.1.3 Numerical Linear Algebra: Sparse, structured, and very
large systems (direct and iterative methods); G.4 Mathemati-
cal Software: Parallel and vector implementations

INTRODUCTION
This paper presents a novel and highly efficient parallel algo-
rithm for sparse matrix multiplication. Sparse matrix-matrix
multiplication is an important algorithm, useful in a wide
variety of scientific tasks, including among others computa-
tional chemistry and physics, graph contraction, breadth-first
search from multiple vertices, algebraic multigrid methods,
finite element methods or solving (non)linear systems using
Schur complement [29].

The sparse matrix algorithms are usually tightly coupled to
the sparse matrix storage formats they use. Two of the pop-
ular formats are compressed sparse column (CSC) [12] and
compressed sparse row (CSR). Those are closely related; ma-
trices stored in one are transposes of the matrices stored in
the other. CSC stores matrices as a vector of prefix sums of
numbers of nonzero elements in each column and two vectors
storing element values and their respective rows. It is com-
mon for the elements in each column to be ordered by their
row number. The use of the CSC format is assumed in the
rest of this paper, unless specified otherwise.
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Figure 1. Time of different stages of the proposed algorithm.

Let us recall that in matrix multiplication C = A · B, each
element of the product Ci,j is a sum of products of the corre-
sponding elements in the ith row of A and the jth column of
B. The number of columns of A must match the number of
rows of B. In CSC, it is straightforward to look up elements
by column (O(1)) but not to look up elements by row (O(N)
in the number of nonzero elements), which would be needed
to calculate the elements of C in ordered fashion (gather).

The original algorithm for sequential sparse matrix multipli-
cation [16] is implemented e.g. in the popular CSparse pack-
age [12] (used by Google’s Ceres solver and Street View),
and is work-efficient in terms of its complexity being propor-
tional to the number of floating point operations (FLOP). It is
worth mentioning that this level of efficiency is only reached
for the price of calculating a partially unordered representa-
tion of the product, which is still useful in practice, but it is
not the canonical form.

The algorithm [16] is efficient by traversing the elements of
B column by column (assuming the CSC storage is used;
for CSR all the terms are transposed), where each element
Bi,j multiplies all the elements of A in the ith column (the
one corresponding to the row of the particular element Bi,j).
Many of the other sparse matrix multiplication algorithms use
this strategy. It produces partially ordered partial products
(scatter), which need to be summed up. The authors of [16]
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came up with an elegant way of quickly merging these par-
tially ordered sequences to form the (unordered) result.

Parallel sparse matrix multiplication algorithms (PSpGEMM
in BLAS terminology), however, generally decompose the
matrices to band or block submatrices and distribute the com-
putation of the partial products to different processors. Sim-
ilarly like in the previous case, the results need to be merged
to form the final product, using sparse matrix addition in
this case. This approach is further referred as a coarse-grain
work subdivision, since the submatrices are typically rela-
tively large. Packages [4, 2] use this approach.

RELATED WORK
Unlike dense matrix multiplication [3, 13, 9, 15, 14] which
is very well researched and widely understood, sparse ma-
trix multiplication [8, 7, 25] is much more challenging - and
even more so in the hardware. Many papers titled ”sparse
matrix multiplication” actually refer to sparse matrix-dense
matrix multiplication [17, 28], which is an extension of
sparse matrix-vector multiplication (PSpGEMV or PCSRMM),
an equally useful but nonetheless different algorithm.

The work of Buluç [8] discusses the challenges of design-
ing and implementing scalable sparse matrix multiplication
in distributed memory systems. Coarse-grain 1D decomposi-
tion of the work is considered, and two novel 2D algorithms
are presented. The identified challenges are the load imbal-
ance, the amount of work for partial result reduction and the
communication overheads.

Matam et. al. [17] explore several variations of the work
division in a hybrid CPU + GPU algorithm: row-column,
column-row and row-row. Therefore, the technique is based
on the coarse grain algorithm. A heuristic is proposed for the
fastest row-row case that efficiently balances computational
load between the CPU and the GPU. The load balancing is
further extended for a special case of banded matrices. The
work contains highly efficient implementations of both mul-
tiplication of two sparse matrices and a sparse with a dense
matrix. The sparse kernel achieves 240.663 MFLOP/s on av-
erage on matrices from the SNAP dataset, using quad-core
Intel Core i7 920 CPU and Tesla C2050 GPU.

The work of Bell [5] is strongly influential in the context of
the later developments of GPU algorithms. It proposes the
Expansion Sorting Compression (ESC) algorithm. The ex-
pansion stage is based on the scattering of partial products to
a matrix stored in the triplet form (also known as the COO
format), using the same operation ordering as used in [16].
To convert to CSC, the partial products need to be sorted and
the entries contributing to the same element of the product
need to be reduced (summed up) at sorting and compression
stages. The parallel primitives considered here are amenable
to fine-grain work distribution. The proposed method is also
inspired by the ESC algorithm.

The work of Bell was further refined in [10]. Their imple-
mentation is public as [1] and it was used for comparisons
with the algorithm proposed in this paper. It focuses more in-
tensively on the GPU platform-specific optimizations, such as

avoiding passing data through global memory in favor of lo-
cal memory and registers, especially in the sorting stage. The
CSR storage is used, which is reflected in the three following
paragraphs.

A permutation matrix is introduced, which orders the left
operand by the work required to process a single row, facili-
tating load balancing. The product is later reordered, but the
cost of doing so is reportedly relatively low.

The memory traffic of the expansion phase is further opti-
mized for more regular coalesced accesses by casting the ex-
pansion process as a depth-first search on a layered bipartite
graphs of the nonzero elements of both factors.

The sorting phase is also optimized, by realizing that the pro-
duced expansion is partially sorted, the expansions of indi-
vidual rows are contiguous, and only intra-row sorting is re-
quired. This is implemented as sorting many rows in the local
memory at once. Very long rows which would not fit in the
local memory are sorted using a global sort. Further reduction
in sorting is achieved by a priori knowledge of the distribu-
tion of the bits of the sorted keys, and by copying lower bits
of column indices to unused upper bits of row indices, effec-
tively avoiding to have to sort simultaneously or sequentially
by two keys.

Well known parallel algorithms, such as parallel sum (reduc-
tion) and parallel prefix sum (scan) [6, 27] or parallel sort
[26, 18, 19] are used by the proposed technique. In the re-
mainder of this paper, it is assumed that the reader is familiar
with them.

In our previous work, we showed the usefulness of sparse
block matrices in solving nonlinear least squares problems
[23, 22] such as Simultaneous Localization and Mapping
(SLAM) in robotics or Bundle Adjustment (BA) and Struc-
ture from Motion (SfM) in computer vision, where the block
structure naturally occurs. Some instances of Finite Element
Method (FEM) problems may also exhibit block structure.
We also showed performance gains of performing arithmetic
operations exploiting the block structure [21] on CPU. In this
paper, we propose an efficient algorithm for parallel sparse
matrix multiplication which also extends to sparse block ma-
trices, which is to our best knowledge the first implemen-
tation of blockwise PSpGEMM in hardware (note that sparse
block matrix-vector multiplication was recently implemented
on GPU [24]). Our implementation, unlike some others, runs
entirely in the GPU, leaving the CPU available for other tasks.

The remainder of the paper is structured as follows. The fol-
lowing section contains the analysis of the algorithm and pos-
sible improvements. Section Implementation details the pro-
posed implementation and optimizations used. Section Re-
sults shows the performance of the proposed solution through
benchmarks and time comparisons with the exiting imple-
mentations. Conclusions and future work are given in Sec-
tion Conclusions and Future Work

ALGORITHM DESIGN
The algorithm introduced in this paper is based on the ESC
algorithm [5, 10]. However, the focus is on removing load
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Figure 2. Data at the individual stages of the ESC algorithm2: a) the factors and their product, b) CSC representation of the factors, c) top: expansion
of the product, segments of product columns indicated by alternating color, bottom: sorted expansion, segments of product elements indicated by
alternating color, d) values of the product and its final CSC form.

imbalances and on simplicity, as especially the improved ESC
algorithm in [10] handles many special cases, depending on
the memory space (local or global) and granularity (thread,
warp or thread group) of each particular operation. In con-
trast, the proposed implementation only requires six custom
kernels, some of which are merely a fusion of multiple gen-
eral purpose operations such as scan, created for performance
purposes only.

Expansion Stage
Although the first conceptual stage of the algorithm is expan-
sion, on GPU it is not possible to directly proceed, without
first knowing its size, as all the memory needs to be allocated
before starting the computation. From [16], it is trivial to de-
rive the exact size of the expansion:

expansion(A,B) =

cols(B)∑
j=1

nnzc(B,j)∑
k=1

nnzc(A, row(B, j, k)),

(1)
where cols(·) gets the number of columns of a matrix,
nnzc(·, ·) returns the number of nonzero elements in a spec-
ified column of a specified matrix, and row(·, ·, ·) is the row
of the given element in a column of a matrix. Note that all
those are O(1) array look-ups if the matrix is stored in CSC
format. Also note that the expansion size is closely related to
the number of FLOPs required to carry the multiplication out.

The expansion size dictates the memory cost of the ESC algo-
rithm (the proposed variant as well as [5, 10]). Fig. 3 plots a
ratio of expansion size to the number of nonzeros in the prod-
uct. In certain cases 100×more storage than the final product
is required (please, refer to Section Results for the description
of the dataset). Fortunately, it is possible to transparently sub-
divide the product by cutting the B matrix to several column
slices, producing one slice of the product at a time.

The choice of granularity of expansion is crucial to load bal-
ancing. The proposed algorithm achieves perfect load balanc-
ing in the expansion stage by using granularity of individual
-1An interactive demonstrator is available online at http://www.
fit.vutbr.cz/˜ipolok/esc.
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Figure 3. Expansion factor by the number of product NNZ.

scalar products. To do that, it is necessary for each thread to
find the elements of A and B to process. Here, the interpola-
tion search [20] algorithm is employed. It is a special case of
binary search where the pivot is chosen based on linear inter-
polation of the values of the endpoints of the searched interval
with the needle as the argument. The average complexity is
O(log log N), worst case being O(N) (for comparison, bi-
nary search is O(log N) in both cases). Interpolation search
is not popular on CPU, as the linear interpolation is too ex-
pensive to outperform a regular binary search. However, it is
a perfect fit for GPU where linear interpolation nicely hides
under memory access latency and allows to find the needle in
fewer steps, with much less branching.

The expanded scalar products are essentially the product ma-
trix in the COO format; they can be stored in three vectors
of the same length, excols contains columns of the elements,
exrows contains rows of the elements and exvalues contains
values of the elements (see Fig. 2c). Note that the sparse mul-
tiplication algorithm generates a partially ordered expansion,
where excols is ordered and exrows consists of many short
ordered runs (given by the rows of elements in the columns
of A, which are typically ordered).
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Sorting Stage
The approach in [5] is to use a single global sort. On GPU, the
most efficient sort implementations use radix sort [18] with
complexity O(kN) where k is proportional to the number of
bits of the key. In the case of keys generated by the expansion,
the number of bits is given by base 2 logarithm of the number
of rows and columns, respectively, and this knowledge can be
used to accelerate the sort.

The radix sort may, however, not be the most efficient for a
sequence which is already nearly sorted. As the sort starts, the
expansion will be first ordered by the least significant bits of
the keys, corresponding to the row indices. This will shuffle
the column indices which were already ordered at the begin-
ning. The elements are moved by long distances, leading to
large amount of potentially uncoalesced global memory traf-
fic. These will be ordered again in the later stages of the sort,
by the most significant bits of the keys which correspond to
the column indices, leading to long distance movement again.

The radix sort is efficient on GPU if the sorted elements are
only reordered by small distances, as such reordering can be
performed in the local memory. This is achieved by sorting
it in segments corresponding to the individual columns of the
product (Fig. 2c top), instead of sorting the whole expansion
at once. The individual segments can be sorted in parallel.
Now the elements are only reordered by relatively short dis-
tances, leading to better write coalescing and leaving ample
opportunity to do the sorting in the local memory. However,
load balancing issues arise, as the lengths of expansions of
the individual columns can vary wildly [10].

In the context of GPU computing, some operations have seg-
mented variants, e.g. a segmented scan. Its input is a vector
of values to calculate the scan of, and a vector of head flags,
a binary vector with ones at the positions of segment starts.
Note that segmented operation is performed on the bulk of
data rather than on the individual segments, and thus requires
no explicit load balancing. Unfortunately, radix sort is not
a good candidate for segmented implementation, as it would
lead to both runtime and space tolls: the key bit histograms
would need to be evaluated per each segment and the reorder-
ing would also need to take place per segment, leading to
more load balancing issues. Fortunately, for merge sort, seg-
mented variants exist0, and the performance toll, compared to
the non-segmented variant, is negligible. By using segmented
sort, the time of the sorting stage was significantly reduced;
one can compare Fig. 1 where sorting takes only 34%, with
Fig. 4 in [10] where it is closer to 63% of the total runtime.

Compression Stage
Once the expansion is sorted, the compression is a simple task
of calculating sums of elements with the same row and col-
umn, which are now in contiguous segments of the expansion
(see Fig. 2c bottom). A simple segmented reduction can be
used to calculate the sums, while the head flags can be cal-
culated as a difference of row and column numbers between

0One such implementation can be found at http://nvlabs.
github.io/moderngpu/segsort.html.

consecutive expansion elements. Note that similarly to ex-
pansion stage, the size of the compressed form needs to be
calculated first (e.g. as a sum (reduction) of the head flags) so
that the memory to store the results can be allocated, unless
the size of the product is known beforehand.

When handling matrices with large elements, such as long
double or especially block matrix elements (i.e. dense
blocks), it is beneficial to reorder the operations slightly: in-
stead of storing the values of the partial products in the expan-
sion, store only the pointers to the operands and calculate the
products themselves during compression. This reduces both
the size of the expansion and the memory traffic of sorting it.

IMPLEMENTATION
The proposed algorithm was implemented in OpenCL, and is
presented in Algorithms 1, 2 and 3. This separation to parts
is given by the need to allocate memory, which requires CPU
intervention. The algorithm therefore requires GPU - CPU
synchronization twice, at the beginning and after the end of
Algorithm 2. This may be omitted if the allocation sizes or
their upper bounds are known beforehand. Note that all the
allocated buffers reside in the GPU memory.

In the algorithms, several conventions are followed. For any
matrix M stored in the CSC format, M.p is the prefix sum
of nonzeros in each of its columns, M.i is the vector of row
indices of nonzero elements and M.x is the corresponding
vector of values of the elements. The parallel GPU kernel
calls are denoted by kernel, and the (one-dimensional) exe-
cution domain is specified as i = 0 . . .N , where i is the name
of the variable holding the thread id, and N is the required
number of threads (thread with id N − 1 is the last thread).

In the setup stage (Algorithm 1), the bcols vector is filled with
column indices of each corresponding element of B, making
B available in both COO (intermediate) and CSC (input) for-
mats. This allows O(1) lookup of column of any element
of B in the later stages of the algorithm. Additionally, each
element of bprods contains the amount of work required to
multiply all the preceding elements of B. This will be further
used to facilitate load balancing at the expansion stage. The
last element contains the total amount of work, which equals

Algorithm 1 Setup stage of PSpGEMM.
1: function GEMM(A, B)
2: bcols = ALLOCINT(NNZ(B))
3: bprods = ALLOCINT(NNZ(B) + 1)
4: kernel (i = 0 . . . NNZ(B))
5: bcols[i] = 0
6: row = B.i[i]
7: bprods[i] = A.p[row + 1]−A.p[row]
8: end kernel . the last element of bprods not initalized
9: kernel (i = 0 . . . COLS(B))

10: bcols[B.p[i+ 1]− 1] = 1
11: end kernel
12: bcols = EXCLUSIVESCAN(bcols)
13: bprods = EXCLUSIVESCAN(bprods)
14: exp size = bprods[NNZ(B)] . expansion size
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the expansion size. Note that the kernel at line 9 needs to be
modified if B is known to be rank deficient (then the num-
ber of succeeding empty columns needs to be added to each 1
in bprods, and care must be taken to not write to index −1).
These changes were omitted in sake of space.

The expansion stage (Algorithm 2) begins by allocation of
the arrays to hold the expanded values. The expansion is per-
formed by the number of threads necessary to saturate the
GPU (denoted GPUhardware threads), or less if the expan-
sion is smaller than that. Each thread will calculate the same
number of scalar products, as discussed in Section Expansion
Stage A range of scalar products to carry out (begin, count)
is allocated for each thread, which then looks up bprods

for the element of B where to start multiplying (line 22).
UPPER BOUND is a standard binary search function: for an
ordered vector and a value, it returns the right-most position
where this value could be inserted without violating the or-

Algorithm 2 Expansion and sorting stages.
15: excols = ALLOCINT(exp size)
16: exrows = ALLOCINT(exp size)
17: exvalues = ALLOCFLOAT(exp size)
18: exhf = ALLOCBIT(exp size) . head flags bit array
19: kernel (i = 0 . . . (N = GPUhardware threads))
20: begin = bexp size · i/Nc
21: count = bexp size · (i+ 1)/Nc − begin
22: elemB = UPPER BOUND(bprods, begin)− 1
23: col skip = begin− bprods[elemB]
24: for (prod = 0; prod < count; ++ elemB) do
25: rowB = B.i[elemB]
26: elemA = col skip+A.p[rowB]
27: endA = A.p[rowB + 1]
28: while (elemA < endA and p < count) do
29: dest = begin+ p
30: cur col = excols[dest] = bcols[elemB]
31: exrows[dest] = A.i[elemA]
32: exvalues[dest] = A.x[elemA] ·B.x[elemB]
33: exhf [dest] = cur col > bcols[elemB − 1]
34: ++ elemA,++ prod
35: end while
36: col skip = 0 . skip in the first iteration only
37: end for
38: end kernel

39: SEGMENTEDSORT(exhf , exrows, exvalues)
40: tail blocks = dexp size/block sizee
41: tail counts = ALLOCINT(tail blocks+ 1)

. or reuse bprods which is not needed below
42: kernel (i = 0 . . . exp size− 1)
43: local int flags[block size] . in local memory
44: flags[i] = excols[i] < excols[i+ 1] or

exrows[i] < exrows[i+ 1]
45: g = bi/block sizec . cooperating thread group
46: tail counts[g] = COOPERATIVE REDUCE(flags)
47: end kernel
48: tail counts = EXCLUSIVESCAN(tail counts)
49: product NNZ = tail counts[tail blocks] + 1

Algorithm 3 Compression stage.
50: C.p = ALLOCINT(COLS(B) + 1)
51: C.i = ALLOCINT(product NNZ)
52: C.x = ALLOCFLOAT(product NNZ)
53: kernel (i = 0 . . . exp size− 1)
54: g = bi/block sizec . cooperating thread group
55: col tail = excols[i] < excols[i+ 1]
56: elem tail = exrows[i] < exrows[i+1] or col tail

57: local int flags[block size] . in local memory
58: flags[i] = elem tail
59: flags = COOPERATIVE SCAN(flags)
60: compressed index = tail counts[g] + flags[i]
61: if (elem tail and i < exp size) then
62: C.i[compressed index] = i . write indices of
63: end if . reduced values of elements in expansion
64: if (col tail and i < exp size− 1) then
65: C.p[excols[i] + 1] = compressed index+ 1
66: end if . write positions of beginnings of columns
67: end kernel
68: C.p[0] = 0 . need to write this explicitly
69: exvalues = SEGMENTEDREDUCTION(C.i, exvalues)

70: kernel (i = 0 . . .product NNZ)
71: expansion index = C.i[i]
72: C.i[i] = exrows[expansion index]
73: C.x[i] = exvalues[expansion index]
74: end kernel
75: return C
76: end function

dering. The inner loop at line 28 loops over elements of a
particular column of the A matrix, while the outer loop (line
24) takes care of advancing onto the next columns. Note
that col skip is used to start the loop in the middle of a col-
umn, should that be required to equally balance the work-
loads. Also note that if A is known to be rank deficient, the
outer loop may need to advance multiple times, until reach-
ing a non-empty column (such that elemA < endA before
entering the inner loop).

Once the expansion is calculated, the exrows, exvalues pairs
can be sorted while using the head flags as segment markers
(note that the beginning of the first segment is implied and
does not need to be explicitly represented). Finally, once the
expansion is sorted, the boundaries of the elements and the
columns can be easily spotted, and the number of nonzeros
of the final product can be calculated, using the kernel at line
42. The variable block size refers to the size of the blocks of
the EXCLUSIVESCAN kernel, which is selected at runtime to
best fit the target GPU.

In the final compression stage (Algorithm 3), the storage for
the product is calculated. In the first kernel of this phase,
the expansion is scanned for column tails (changes in excols,
line 55) and element tails (changes also in exrows, line 56).
The scan of the element flags gives the element index in the
compressed matrix. Note that the reduction of these flags was
already calculated in the previous stage (line 46), which could
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be promoted to a scan to avoid recalculation, but storing the
scans would require O(expansion size) memory and would be
disadvantageous from both memory requirements and com-
putational time standpoints.

Once the global index in the compressed matrix is known,
indices of the final values of the elements in exvalues can be
written (C.i is used as temporary storage), and C.p can be
filled. Again, if the product is rank deficient, care needs to
be taken: C.p might contain runs of multiple occurrences of
the same index (including the zero index at the beginning),
corresponding to the runs of empty columns.

Finally, the expansion values are summed up using segmented
reduction, with C.i serving as tail flags, leaving the final val-
ues of the elements of the product at the tail positions in
exvalues (line 69). The last kernel (line 70) merely copies
these values to their compressed destinations in C.p and
rewrites C.i by the corresponding row indices. Note that this
kernel could be fused with the segmented reduction.

RESULTS
In this section, the timing results of sparse matrix multiplica-
tion performed using the proposed implementation1 are com-
pared with a similar state of the art implementation, CUSP
0.3.1 [1]. It was also compared to CSparse 1.2.0 [12], which
runs on the CPU2. Despite all effort, we were unable to find
any existing OpenCL PSpGEMM implementations.The eval-
uation was performed by all-to-all multiplication of sparse
matrices from The University of Florida Sparse Matrix Col-
lection [11] and their transposes (for matrices which share
a common dimension). This collection was chosen because
it contains sparse matrices corresponding to a diverse set of
problems, and as such it is suitable for testing of general pur-
pose linear algebra implementations.

All the tests were performed on a computer with NVIDIA
GeForce GTX 680 (3 GB RAM) and Tesla K40 (12 GB
RAM), a pair of AMD Opteron 2360 SE CPUs running at
2.5 GHz and 16 GB of RAM. In both cases, the program was
compiled as x64, and both CUDA and OpenCL used 64-bit
pointers. The latest GPU drivers (version 344.48) were used.
CUDA implementations were linked against CUDA 6.5 SDK
libraries. During the tests, the computer was not running any
time-consuming processes in the background. Each test was
run at least ten times until cumulative time of at least 5 sec-
onds was reached, and the average time was calculated in or-
der to avoid measurement errors, especially on smaller ma-
trices. Explicit CPU - GPU synchronization was always per-
formed, using cuCtxSynchronize() or clFinish(),
respectively. ECC was disabled on the Tesla GPU.

Our implementation works with the CSC format. The imple-
mentations working with CSR format had their matrices con-
verted (transposed) accordingly. Recorded times do not in-
clude the conversion or data transfers. The benchmarked ver-
sion of the proposed algorithm handles all the rank-deficient
1The implementation of the proposed algorithm is available, at
https://sourceforge.net/projects/blockmatrix/.
2CSparse is used as an orientative example, more efficient CPU im-
plementations exist.

Figure 4. Performance scaling comparison on Tesla K40. Note that both
axes are logarithmic.

cases described in the Section Implementation in a fully gen-
eral way, without requiring prior detection or specialized ker-
nels. The memory for the expansion and the product was
allocated as outlined in Section Implementation, without any
prior knowledge of the size of either. All the calculations
were carried out in double precision.

Timing results for the all-to-all product benchmarks are on
Fig. 4. Note that for very small matrices of less than ten
thousand FLOP, CSparse is the fastest. For larger matrices,
the proposed implementation takes over. Note that time of
CSparse scales linearly with the number of FLOPs, as can
be expected from a serial implementation of [16]. The times
of the parallelized implementations grow slowly before the
GPU gets saturated, then also scale approximately linearly.
Least squares was employed to estimate the saturated costs to
27.7 ms/MFLOP for CSparse, 4.2 ms/MFLOP for CUSP and
finally 3.0 ms/MFLOP for the proposed.

A more conventional comparison is presented in Table 1.
This comparison was performed on the SNAP subset of the
University of Florida Sparse Matrix Collection. It contains
9 different classes of matrices, a single matrix was chosen
from each of them, much like evaluation in [17]. Each of
the matrices was multiplied by itself (or in case of rect-
angular matrices, by its transpose). The proposed solution
maintains the best times for most of the matrices, except for
roadNet− CA, where the number of scalar products per el-
ement of the B matrix is very low, yielding high thread diver-
gence in the proposed implementation. On smaller matrices
such as p2p−Gnutella31, CUSP does not scale well and is
slower despite the divergence. Reducing this divergence is
the subject of the future work. Note that on cit− Patents,
both the proposed and CUSP ran out of memory on GTX 680,
and on as− Skitter there was not enough system memory
to perform the multiplication even on the CPU. This is not a
principal problem of the algorithm, rather it is an implemen-
tation issue. One would only need to add an extra parameter
of how many columns of the B matrix should be processed
at a time (corresponding to the same number of columns of
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Table 1. Performance comparison on the SNAP subset, the best times are in bold (all times in seconds). The last two columns indicate relative speedup
over CSparse and CUSP.

GF GTX 680 Tesla K40
Matrix nnz/row FLOP CSparse CUSP ours CUSP ours MFLOP/s ×CSp. ×CUSP
roadNet-CA 2.807 22.138 M 0.774 0.156 0.199 0.103 0.099 223.662 7.823 1.038
web-Google 5.571 91.665 M 5.312 0.447 0.433 0.315 0.249 368.356 21.347 1.265
email-Enron 10.020 72.510 M 1.150 0.360 0.271 0.247 0.173 418.961 6.645 1.429
amazon0312 7.987 42.368 M 1.659 0.209 0.241 0.141 0.123 344.389 13.488 1.148
ca-CondMat 8.081 5.899 M 0.140 0.035 0.027 0.024 0.015 394.591 9.347 1.575
p2p-Gnutella31 2.363 539.035 k 0.032 0.015 0.007 0.008 0.003 190.560 11.304 3.003
wiki-Vote 12.497 7.254 M 0.082 0.036 0.024 0.025 0.015 482.961 5.482 1.633
cit-Patents 4.376 95.457 M 13.414 out of RAM 0.497 0.446 214.127 30.089 1.114
as-Skitter 13.081 53.771 G out of RAM3
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Figure 5. Performance scaling comparison of sparse block matrix mul-
tiplication on the first four matrices of SNAP.

the result), and the CPU would schedule the multiplication as
several calls of the original algorithm.

For a synthetic benchmark of the sparse block matrix mul-
tiplication, the matrices from SNAP were used again. Each
element was replaced by a dense block, while the block size
was varied between the different tests. The results of this
benchmark are on Fig. 5. As expected, the proposed im-
plementation exhibits performance increase with increasing
block sizes.

CONCLUSIONS AND FUTURE WORK
We presented a novel algorithm for sparse matrix multipli-
cation and demonstrated its extension to sparse block ma-
trices. The algorithm yields on average 329.7 MFLOP/s,
outperforms CUSP by a factor of 1.53×, and outperforms
CSparse running on a single CPU by a factor of 13.19×.
The sparse block matrix multiplication exhibits further per-
formance scaling with increasing block size, yielding up to
1.26 GFLOPS on Tesla K40 (email−Enron, 8× 8 blocks).
This makes it attractive in problems with block structure such
as FEM, SLAM, BA or SfM. To improve the performance
even more, multi-GPU or hybrid CPU-GPU extensions could
be implemented. The implementation needs to be improved
to handle large matrices by splitting the computation to bands,
when the expansion does not fit in the GPU memory at once.

Currently, only constant block size compressed column for-
mat (CBC) is supported. This can be extended to variable
block size compressed column (VBC), once addressing possi-
ble thread divergence problems. Also, to better integrate with
the existing CPU pipelines which use the SSE instruction
set, allocation of the product matrix with the proper memory
alignment of the blocks needs to be solved.
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