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Abstract 

Network forensics is a process of capturing, collecting and analysing network data for the purposes of 

information gathering, legal evidence, or intrusion detection. The new generation internet opens novel 

opportunities for cybercrime activities and security incidents using network applications. Security administrators 

and LEA (Law Enforcement Agency) officers are challenged to employ advanced tools and techniques in order 

to detect unlawful or unauthorized activities. In case of serious suspicion of crime activity, network forensics 

tools and techniques are used to find out legal evidences in a captured network communication that prove or 

disprove suspect’s participation on that activity.  

Today, there are various commercial or free tools for network forensics analysis available, e.g., Wireshark, 

Network Miner, NetWitness, Xplico, NetIntercept, or PacketScan. Many of these tools lack the ability of 

successful reconstruction of communication when using incomplete, duplicated or corrupted input data. 

Investigators also require an advanced automatic processing of application data that helps them to see real 

contents of conversation that include chats, VoIP talks, file transmission, email exchange etc.  

Our research is focused on design and implementation of a modular framework for network forensics with 

advanced possibilities of application reconstruction. The proposed architecture consists of (i) input packet 

processing, (ii) an advanced reconstruction of L7 conversations, and (iii) application-based analysis and 

presentation of L7 conversations. Our approach employs various advanced reconstruction techniques and 

heuristics that enable to work even with corrupted or incomplete data, e.g. one-directional flows, missing 

synchronization, unbounded conversations, etc.  

The proposed framework was implemented in a tool Netfox Detective developed by our research group. This 

paper shows its architecture from functional and logical point of view and its application on reconstruction of 

web mail traffic, VoIP and RTP transmissions.  
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1 Introduction 

Network forensics is a discipline that deals with obtaining and analysing digital evidences from network sources. 

It is an extended phase of network security where the main goal of network forensics is to track and analyse 

network data in order to detect security incidents and present evidences of these incidents to security 

administrators or investigators. Network forensics use different supporting tools and devices that (i) obtain and 

collect data (firewalls, IDS systems, capturing tools), and (ii) process, analyse and reconstruct captured data.  

Network forensic tools are mostly used by security administrators and LEA officers that try to search network 

data for legal evidences of unlawful behaviour. The aim of the analysis is to establish high level facts such as 

attribution, intent, identity, timelines and other information which may be relevant to the security incident.  

Tools for network forensics can be classified into two main groups: Network Forensic Analysis Tools (NAFTs) 

that allow administrators to monitor network, gather all information about the traffic and assist in network crime 

investigation, and Network Security and Monitoring (NSM) tools that are focused more on network monitoring 

and management. There is a wide range of commercial and open-source NFATs and NSM tools [1]. The primary 

motivation behind NSM tools is network security from perspective of system administration. NSM tools are very 

useful in processing large amount of data in short time with limited functionality concerning application protocol 

dissection. NMS tools include (i) IDS/IPS systems for detection or prevention of malicious activity on network, 

(ii) statistical tools used for data retention to store meta-information about the traffic, (iii) packet capture and 

analyses tools that capture communication on local networks and analysing it. The most common NSMs focused 

on packet capturing and analyses are Wireshark, TCPdump, or Microsoft Network Monitor. These tools are also 



 

used for basic network forensic analysis. However, they are mostly oriented on simple analysis of internet and 

transport layers of TCP/IP model. Some of them even contain an application layer protocol dissector, but the 

provided information is a context-free parsed internal protocol structure.  

In this work, we focus on NFATs. NFATs offer a wide range of research challenges in domain of analysis and 

reconstruction of captured traffic. Research challenges cover (i) network stream reassembling that include 

detection of TCP/UDP streams, dealing with out of sequence data, missing or corrupted packets, timestamps 

overflow, combing streams into bi-directional conversations etc. [2]; (ii) advanced identification of L7 

applications using AI techniques, data mining or statistical methods [3]; (iii) processing and analysis of L7 

application using application dissectors, (iv) identification and statistical processing of encrypted or tunnelled 

traffic, (v) efficient storage of big network data with parallel computation, (vi) correlation of different input data, 

etc.  

This paper describes architecture and implementation of a network forensic tool Netfox Detective developed by 

our team in frame of security research supported by Ministry of Interior of the Czech Republic. The tool is 

designed for advanced reconstruction and analysis of captured network data with focus on emails (including web 

mails), HTTP reconstruction and intelligent detection and reconstruction of Voice over IP. Our framework 

combines advanced techniques and heuristics for assembling captured data, identification of L7 traffic, 

reconstruction of original conversations, and presentation of L7 objects to an investigator. The proposed 

framework uses modular programming environment with well-defined API so new modules (application 

dissectors, processing engines) can be added without a need to re-build the entire application. It also supports 

parallel processing with efficient data storage.  

2 Related Work 

Network forensics was formally defined in 2001 on the First Digital Forensic Research Workshop [4] where also 

major issues were identified: (i) time, i.e., synchronization and integrity of data and time associated with events 

being analysed; (ii) performance, i.e., speed and effectiveness of processing and computation; (iii) complexity, 

i.e., general environment with multiple operating systems, network devices, different data formats, and (iv) 

collection, i.e., who will collect data, when, and what to be collected?  

After a decade of innovations and research, general process model for the network forensic analysis has been 

introduced [1]. General model was composed of blocks with separated functions and was divided into two 

layers: (i) lower layer that included preparation, detection, collection, and preservation; and (ii) upper layer 

containing examination, analysis, investigation, and presentation.   

Overview of different frameworks based on distributed systems, soft computing, honeypots, graphs, formal 

methods, or aggregation can be found in [1]. In that paper, Pilli et al. present a survey of current network 

forensic frameworks. Most of discussed frameworks were designed to as research tools to prove advanced 

approaches and techniques in the area of network forensics. Our tool presented in this paper employs some of 

these ideas but its development is driven by practical usability and deployment. 

On the field of free tools, there are several applications that were observed. NetWitness filters captured traffic by 

processing frames and creating a lexicon of identifiers found in different L3-L7 layers, e.g., IP addresses, email 

addresses, URIs, etc. An investigator searches this lexicon to filter interesting captured content. The result can be 

stored as filtered captured traffic or analysed by another NFAT. Another popular tool is NetworkMiner
1
 

developed by Erik Hjelmvik, an author of Statistical Protocol Identifier (SPID) algorithm for application 

protocol detection [3]. NetworkMiner processes captured or online communication with an instantaneous 

analysis of application protocol. The analysed content is grouped into categories based on its characteristics, e.g. 

images, messages, credentials, files, frames, hosts, sessions. The tool lacks detailed views of captured data and is 

not able to backtrack objects to its original representation in captured packets. Xplico
2
 is an open source NFAT 

platform composed of functional blocks. Application data are prepared by traffic decoder and then processed by 

manipulators. Xplico supports various application protocols, e.g., HTTP, SIP, IMAP/POP3/SMTP, FTP, etc. 

with ability to provide congruent investigation for multiple investigators at once. The tool provides a user 

interface via a web browser which is simple to use, but it is not suitable for advance analysis, e.g., advance 

filtering, getting data integrity statistics, etc. Nevertheless, Xplico is the most advanced open source NFAT 

available.  

 

                                                           

1 See http://www.netresec.com/?page=NetworkMiner. 
2 See http://www.xplico.org. 

http://www.netresec.com/?page=NetworkMiner
http://www.xplico.org/


 

3 Netfox Detective Architecture 

By testing available NFATs we discovered that none of these tools is sufficient to accurately extract incomplete 

network data. In addition, advanced processing of application protocols with user-friendly presentation was 

mostly missing and limited large deployment of these tools for investigators. To overcome these limitations, a 

new network forensics framework was proposed with advanced parsing features. 

Netfox (NETwork FOrensiCS) Detective is a NFAT framework operating upon four upper layers of generic 

process model of NFATs as described in [1]. The tool processes input network data stored in different PCAP 

formats
3
 using a generic algorithm that respects L2-L7 encapsulation of PDUs.  As described in [2], advanced 

heuristics is employed to extract maximal amount of information from PDU headers.  
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Fig. 1: Functional architecture and data model of Netfox Detective. 

Netfox Detective has been designed to be used on Windows 7+ platform. To ensure proper behaviour and 

modular architecture as shown in Fig.1, the Model-View-Viewmodel (MVVM)
4
 design pattern has been chosen 

with asynchronous programing provided by .NET 4.5.2 and C# 6. When launching the tool, a new workspace is 

created or a recently used workspace is re-loaded. The workspace represents a directory structure in a file system 

where all data related to the workspace are stored. The workspace contains one or more investigations that can 

consists of one or more PCAP files, see Fig. 2. Data processing is controlled by Core Controller that 

communicates with PmLib module, Conversation trackers and Snoopers. Application Recognizers use different 

techniques to identify L7 applications, see below. Application analysis and presentation of the results is 

implemented using L7 Snoopers over HTTP, Emails, IMs, Web mails, or SIP. 

User
Netfox 

Detective
Workspace

Manager
Core

Controller

Create Workspace

Create Investigation

Create Workspace

Create Investigation

Add Capture
Add Capture

Export SIP
Export SIP

Select Workspace

Select Investigation

Show exports

 

Fig. 2: Logical interactions of presentation model. 

                                                           

3 E.g., see LibPCAP and PCAP NG at https://wiki.wireshark.org/Development/LibpcapFileFormat (PcapNg), or MS Network Monitor PCAP 

at http://blogs.technet.com/b/netmon/p/downloads.aspx.  
4 See https://msdn.microsoft.com/en-us/library/hh848246.aspx. 

https://wiki.wireshark.org/Development/LibpcapFileFormat
http://blogs.technet.com/b/netmon/p/downloads.aspx
https://msdn.microsoft.com/en-us/library/hh848246.aspx


 

NFATs usually require flexible design with extensibility that allows addition of new features and propagation of 

these updates throughout the modular architecture without changing internal data structures. This can be 

implemented using document-oriented database that processes dynamic semi-structured data types in contrast to 

pre-defined types in relational databases where relations between data are fixed and must be defined in advance. 

Netfox Detective framework employs document-oriented database system MongoDB
5
. This approach ensures 

persistence across the entire framework using only one implementation for each data model. Basic data models 

Workspace, Investigation, Capture, and InvestigationInfo are listed in Fig. 3. 

Fig. 3: Database models used in Netfox Detective to ensure persistence of workspaces and investigations. 

Captured network data are processed using a pipeline that extracts crucial information for further analysis, see 

Fig. 4. At first, a PCAP file is added to an investigation and parsed in PmLib module that builds a frame 

collection. Each module LxConversationTracker asynchronously processes every new frame and creates an 

appropriate PersistenceCollection for X-th level conversation, e.g., for L3, L4, or L7 layer. The 

L7ConversationTracker builds application layer conversations over TCP or UDP sessions, and creates 

application protocol messages called L7PDUs without any syntactical knowledge of the particular application 

protocol. Conversation tracking and reconstruction uses port numbers and TCP sequence numbers to detect 

missing data or unclosed sessions. It also employs timestamps to increase accuracy of reconstruction. Detailed 

description of packet reassembling is described in [2]. 
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Fig. 4: Asynchronous capture file processing pipeline. 

The key issue for successful L7 analysis provided by application extractors (snoopers) is a correct identification 

of L7Conversations. Identification is provided by the Recognizer that assigns one or more application tags to a 

L7Conversation. The algorithm uses extended IANA database of well-known ports, RTP recognizer for dynamic 

RTP streams [5], or SPID algorithm [3] using statistical based identification. 

                                                           

5 See http://www.mongodb.org/about/.  

http://www.mongodb.org/about/
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Fig. 5: SIP application protocol data extraction using the SIP Snooper module. 

Snooper modules are dynamically loaded to Netfox Detective, therefore, no recompilation is needed when a new 

application parser (snooper) is added. The snooper is a reconstruction engine of the application protocol. Outputs 

of one snooper can be chained into another snooper for further reconstruction, e.g., outputs of HTTP analysis 

can become inputs of web mail snooper. Snoopers export the contents of conversations with corresponding 

meta-data obtained during the application protocol processing into a current investigation. Each snooper defines 

its own models, views and view-models to provide a detailed presentation of reconstructed data, e.g, HTTP 

snooper shows reconstructed web pages, an email snooper lists reconstructed emails, VoIP snooper describes 

VoIP session with RTP streams to be replayed, etc. Example of SIP snooper processing is at Fig. 5. 

As mentioned above, snoopers provide a syntactical analysis of communication. Until this point, data processing 

has been based purely upon information obtained from layers L3 and L4. The snooper analyses a particular 

application protocol, i.e., it parses application messages. The snooper communicates with low level modules as 

PDUStreamReader, or PDUProvider that deal with missing or overlapping segments, TCP sequence number 

overflow, missing SYN and FIN packets, IP defragmentation, etc. The snooper processes logical L7PDUs as 

soon as all conversations have been successfully restored over L4. It receives data from the PDUStreamReader 

module. PDUProvider prepares input data for PDUStreamReader using one of four strategies shown on 

following example, see also Fig. 6: 

1. Broken Interlay – The first application message 

consists at maximum of PDU1 and PDU2 

transmitted in Frame 1, 2, 3. The arrival of Frame 4 

on client side signals that the application message 

has ended. This is typical for request/response 

protocols. The second application message is 

contained only in PDU3 and the third in PDU4. 

2. Continued Interlay – The first application message 

consists at maximum of PDU1, PDU2, and PDU4 

without taking into account frames arriving in 

opposite direction.  

3. Mixed Interlay – The first application message 

might consist of PDU1, PDU2, PDU3, and PDU4. 

This mode mixes PDUs from both directions into 

one bi-directional stream. 

4. Single Message Interlay – Every application 

message consists only of one single PDU. 

Generally, one application message can be composed of one or more PDUs. When some frames are missing, a 

virtual frame is created in order to complete proper PDU processing by a snooper. Using this approach, 

succeeding un-corrupted message will be properly reassembled in contrast to MS Monitor that might 

misinterpret succeeding messages. 

Fig. 6: Processing PDUs 
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4 Extracting Application Data  

Application protocol data extraction is a process of analysing application layer data streams, i.e., payloads of L7 

conversations.  This analysis requires knowledge of application protocol syntax as well as semantics to extract 

significant information for forensic analysis. Following examples of application processing demonstrate how L7 

parsing is implemented in NetFox Detective. They also describe advanced techniques for reconstruction of 

incomplete or corrupted application data.  

4.1 Web mail 

Communication using emails is necessity for everyone today. A majority of users uses web browser to access 

their mail boxes and to operate with their mail accounts. Therefore, HTTP protocol is mostly used to tunnel web 

mail communication. Traditional email protocols like POP3, IMAP, and SMTP have been mostly put aside from 

the end user perspective, even though they are still used among email providers. 

In this study, we have focused on web mail traffic analysis in order to create a general model that would be able 

to process web mail independently on particular service used. As it is seen in Table 1, following operations 

similar for all analysed web mail services can be identified despite the fact that general structure of web mail is 

not standardised and web mail providers implement various transmission methods how to deliver web mail 

contents, e.g., using RPC sessions, JSON applications, etc. Table 1 shows how basic web mail operations can be 

identified in URL or HTTP header payload using simple pattern matching.  

Operation Web mail patterns used in URL or HTTP header  

New Message Keywords: from, to, subject, cc, bcc, content/body, SendMessage. 

Message manipulation URL request/HTTP header: move, delete, MoveMessageToFolder. 

Email header request URL request/HTTP header: list, search, GetInboxData. 
 

Table 1: Common operations and methods of their detection. 

Web mail services can be divided based on data privacy protection into three groups: (i) web mail service with 

unencrypted authentication and mail transmission, e.g. zoznam.sk, tiscali.cz (ii) web mail services with encrypted 

authentication and unencrypted mail transmission, e.g., centrum.cz, atlas.cz and mujmail.cz (iii) web mail 

services with encrypted authentication and encrypted mail transmission, e.g., seznam.cz, gmail.com, email.cz. 

When web mail authentication is encrypted, web mail communication cannot be identified using standard URL 

analysis but other techniques can be employed. One possibility is to use client’s header extension in SSL/TLS 

handshake where Hello message contains the server name. The server name might indicate that following 

SSL/TLS communication transmits web mail. Also, DNS resolution can be employed to detect web mail service, 

see Table 2. 

Web mail Server name Encoding 

seznam.cz, email.cz email.seznam.cz FastRPC 

Gmail mail-attachment.googleusercontent.com application/x-www-form-

urlencoded;charset=utf-8 

Yahoo mail.yahoo.cz application/json 

multipart/form-data – incl JSON 

MS Live  application/x-www-form-urlencoded 

Centrum/Atlas/Mujmail mail.centrum.cz application/x-www-form-urlencoded 

Roundcube <private service hostname> application/x-www-form-urlencoded 

Horde <private service hostname> multipart/form-data; 
 

Table 2: Identification of particular web mail service. 

4.2 Voice over IP  

Voice over IP (VoIP) is a technology for transmission of phone calls over IP infrastructure Main advantage of 

VoIP is that uses the same infrastructure for both data and voice transfers which save money but also reduce 

maintenance requirements. From point of view of network forensics, VoIP creates a new challenge for detection 

and interception of suspect’s calls. Traditional call interception on telecommunication networks was subjected to 

strict and well-known rules. VoIP works in flexible environment of IP networks with a large variety of 

application protocols and codecs.  The most common VoIP technologies are SIP [6] for call signalling and RTP 

[7] for media transmission. Following section describes how SIP and RTP protocols can analysed. 



 

4.2.1 Signalling protocols 

Session Initiation Protocol (SIP) is an application layer protocol for signalling and controlling multimedia 

sessions over IP networks. It is mostly used for voice/video calls and instant messaging. It defines messages that 

establish, modify and terminate sessions between end points. SIP is a text-based protocol with some similarities 

to HTTP or SMTP. It serves mainly for user registration and establishing VoIP connection. Media streams (voice 

or video) are transmitted using RTP protocol [7] or its secured version SRTP [8]. Description of transmitted 

media stream is encoded using Session Description Protocol, SDP [9].  

SIP communication is independent on transport protocols and may use TCP, UDP or SCTP transport. The 

protocol utilizes a transaction based communication. Each transaction is represented by a request and at least one 

response. SIP protocol usually communicates on TCP/UDP ports 5060 or 5061 (encrypted sessions). 

4.2.2 SIP analysis 

The extraction algorithm iterates over L7 conversations identified by an application recognizer. Whenever a 

valid SIP message is obtained, it is processed by SIP snooper that extracts meta-data related to the call. SIP 

messages with the same Call-ID form a SIP event. Generally, SIP snooper uses two basic methods INVITE for 

call establishment and REGISTER for authentication. However, this trivial processing is not sufficient when 

some messages are corrupted or missing. 

1 INVITE sip:10.10.10.109 SIP/2.0 

2 Call-ID: D99151DA-1DD1-11B2-B23A-BC0375BD6E00@10.10.10.214 

3 From: "unknown"<sip:10.10.10.214>;tag=30652209562016038532 

4 To: <sip:10.10.10.109> 

5 

... 

c=IN IP4 10.10.10.214 

... 

m=audio 49152 RTP/AVP 3 97 98 110 8 0 101 

... 

 

Table 3: Example of data transmitted in a SIP message 

Table 3 shows what kind of information can be obtained from SIP protocol: 

1. Request method or response code – this can be used to recognize a call. 

2. Call-ID – a unique identifier used for grouping corresponding messages. 

3. From header – identifies caller party. 

4. To header – identifies calling party. 

5. SDP body – identifies media stream, codecs, RTP ports, etc. 

For network forensic purposes, several SIP message are interesting to get meta-data about call exchange, e.g, 

INVITE, BYE, and REFER as requests and 100 (Trying) and 180 (Ringing) as responses. Using these requests 

and responses, we are able to extract SIP calls even if captured signalling is incomplete. As depicted on example 

in Fig. 7, even if INVITE message is lost, the same information can be obtained from related messages (marked 

by red dot). 
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Fig. 7: Typical message exchange during a SIP call. 



 

Another issue is pairing incomplete signalling data with media streams. Network Detective implements heuristic 

based on RTP and TCP timestamps that result in probabilistic correlation of reconstructed VoIP calls. Utilizing 

these strategies, we are able to provide better reconstruction in comparison with other tools, see Table 4. 

FILE NFX DETECTIVE WIRESHARK NETWITNESS PACKETSCAN 

Complete PCAP 2 2 2 2 

PCAP without INVITE 2 0 2 0 

PCAP without 200 OK 2 2 2 2 

 

Table 4: Detection of VoIP calls when INVITE or 200 OK messages are missing. 

4.2.3 Real-time Transport Protocol (RTP) 

RTP [7] is a stateless application protocol used to transfer media streams over the network. The RTP also 

provides simple detection of lost packets and multiple streams synchronisation with minimal overhead. It is 

usually transferred over UDP due to minimal overhead and stateless behaviour. RTP does not retransmit lost 

packets because even if they had eventually arrived, they would have not been needed any longer. RTP detection 

is not easy due to the dynamic port assignment. As a part of RTP standard is description of RTP Control Protocol 

(RTCP) messages that are used to deliver additional control session data, e.g., stream source description, sent 

data size counter, packet loose, jitter, etc. 

4.2.4 Detecting RTP without signalling protocols 

Common VoIP concepts separate signalling data (SIP/SDP) from media streams (RTP). Both protocols use their 

own PDUs and paths through the internet. When signalling data are missing, it is generally not easy to detect 

RTP stream with dynamic UDP ports and identify what kind of codec is used for voice or video data transmitted. 

Netfox Detective uses advanced detection algorithm to identify RTP as follows. For full algorithm, see  [5]: 

1. RTP header contains a fixed version 2.  

2. Mostly all current VoIP applications use only UDP transport protocol with ports greater than 1024. 

3. Observed packets should have a minimal packet length as required by the standard unless extension 

flag is set. 

4. Typical RTP stream is collection of large number of small packets with the same SSRC identifier.  

RTP header contains Payload type (PT) for codec identification. This field is mostly used for statically mapped 

codecs like G.711, GSM, G.722, or G.729, see [10]. Dynamically assigned codecs like Speex, G.726, AMR, or 

Silk require identification information transmitted in signalling protocols. If signalling protocols are not present 

in a captured file, it is hard to identify the codec. In such case, it is possible to use an identification method based 

on ratio between payload size of RTP packets and timestamp differences between two successive packets. Since 

this ratio usually does not change, this method is sufficient for codecs identification without signalling data [5].  

4.2.5 Incomplete RTP streams 

In case of incomplete or corrupted RTP packets, advanced reconstruction techniques have to be applied. 

Following case studies present some solutions how to reconstruct such data. 

The first case study (see Fig. 8) shows communication between Alice and Bob where a link towards Bob is 

lossy. In this case, Bob’s phone will miss two RTP packets 2 and 4. When naïve approach to decode a received 

audio stream is applied, audio tracks would not be synchronized, see Fig. 9. This will complicate further 

reconstruction and forensics analysis. 

1 2 3 4 5

1 2 3 4 5

Alice Bob  

Fig. 8: Incomplete RTP streams 
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Fig. 9: Naïve RTP Reconstruction 

For advanced RTP reconstruction, a following procedure is proposed: 

1. Compute the number of lost samples.  

Using RTP timestamps a difference between the last received packet and the next one after the loss can be 

calculated. Then, correlation between real-time and timestamp difference indicates how many packets were 

lost. Although this correlation is codec dependent it can be used for reconstruction. For example, if the last 

received packet had timestamp 1000 and the next received packet had timestamp 9000, we may assume that 

8000 audio samples were lost. 

2. Reconstruction of missing samples. 

The knowledge of a codec used is important to encode raw audio data since the codec specifies the sampling 

rate that has been used. For example, codec G.711 uses sample rate 8000 Hz. In case of 8000 lost samples 

with sampling rate 8000 Hz one second audio is missing. Therefore, lost packet can be substitute with 

silence audio or white noise right after decoding to fill the specified gap and synchronize bi-directional 

audio steams.  

Example of RTP streams after reconstruction is depicted in Fig. 10. As it is seen now, timeline of both RTP 

streams is properly aligned that is important for proper forensic analysis. 

1 3 5

1 2 3 4 5

Alice Bob

silence silence

 

Fig. 10: Reconstructed RTP streams. 

5 Conclusions 

This paper presented a new framework for network forensics analysis developed during security research. This 

framework has modular architecture with focus on two important areas: stream reassembling and application 

reconstruction. Stream reassembling is an important part of the tool. If not done properly, some packets can be 

skipped without proper analysis. On the other hand, some streams can be reconstructed incorrectly and include 

frames that do not belong to the reconstructed stream. The main benefit of our study is proposal of different 

heuristics and techniques that are able to build streams from captured packets even if some packets are missing 

without a need to parsing application protocol. Proposed heuristics are used to detect missing SYN and FIN 

packets, to identify lost packets within a stream, to detect overlapped conversations, etc., so that TCP and UDP 

streams are properly reconstructed for further network forensics analysis.  

Following application reconstruction is provided by independent application snoopers that parse reconstructed 

L7 streams, extract application based meta-data, and visualize results to an investigator or security administrator.  

Application snoopers also implements advance techniques for proper reconstruction of incomplete application 

data as presented on web mails and VoIP communication. At the moment, Netfox Detective is able to work with 

any IP, TCP or UDP streams. It supports reconstruction of web pages, web mails, emails using SMTP, POP, or 

IMAP protocols, instant messaging protocols (XMPP, ICQ, Yahoo), and VoIP (SIP, RTP). The user interface 

allows an investigator to filter required conversations and expert interesting data for further analysis.  

In this research, we concentrated more on accurate data reassembling, parsing and reconstruction. Future 

research will be focused on efficient analysis of big data, distributed parsing and employment of advanced 

detection methods using machine learning, statistical based detection, etc.  
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