
Advanced Techniques for Reconstruction
of Incomplete Network Data

Petr Matoušek(B), Jan Pluskal, Ondřej Ryšavý, Vladimı́r Veselý,
Martin Kmeť, Filip Karṕı̌sek, and Martin Vymlátil

Brno University of Technology, Božetěchova 2, Brno, Czech Republic
{matousp,ipluskal,rysavy,ivesely,ikmet,ikarpisek}@fit.vutbr.cz,

xvymla01@stud.fit.vutbr.cz

http://www.fit.vutbr.cz

Abstract. Network forensics is a method of obtaining and analyzing
digital evidences from network sources. Network forensics includes data
acquisition, selection, processing, analysis and presentation to investi-
gators. Due to high volumes of transmitted data the acquired informa-
tion can be incomplete, corrupted, or disordered which makes further
reconstruction difficult. In this paper, we address the issue of advanced
parsing and reconstruction of incomplete, corrupted, or disordered data
packets. We introduce a technique that recovers TCP or UDP conversa-
tions so they could be further analyzed by application parsers. Presented
technique is implemented in a new network forensic tool called Netfox
Detective. We also discuss current challenges in parsing web mail com-
munication, SSL decryption and Bitcoins detection.

Keywords: Network forensic tools · TCP reassembling · Traffic recon-
struction · Web mail · Bitcoin · SSL encryption

1 Introduction

Network forensics is an emerging area of digital forensics connected with the
rapid network development. Many services and digital transactions are trans-
mitted over the Internet where criminal activities and security incidents also
occur. Network forensics provides post-mortem investigation of unlawful behav-
ior using special tools that reconstruct a sequence of events occurred at the time
of the attack. This reconstruction depends only on a captured network data.
In some cases, these data are incomplete, corrupted, or out of order. In order
to analyze the original communication using an incompletely captured data,
advanced techniques of reconstruction and communication recovery are needed.
Reconstruction of TCP streams is essential for any network forensic tool [1]. If
the TCP reassembling fails, application data cannot be properly analyzed.

Recovery of incomplete data in network forensics is a similar task to data
recovery from damaged media, e.g., hard drives, CDs, or DVDs. If some data
are missing, it can be either replaced by empty data units or approximated
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
J.I. James and F. Breitinger (Eds.): ICDF2C 2015, LNICST 157, pp. 69–84, 2015.
DOI: 10.1007/978-3-319-25512-5 6



70 P. Matoušek et al.

from known data. The goal is to provide enough data enabling reconstruction
of the original content. To guarantee an admissibility of forensic results newly
introduced data must be unambiguously distinguished from the original ones.

In this work, we deal with the analysis and reconstruction of incomplete
or damaged network data. Our research includes the development of heuristic
techniques that can detect incomplete or corrupted data on network and trans-
port layer and restore original sessions that can be further analyzed using usual
application parsers. The proposed technique was implemented in a new network
forensic tool Netfox Detective.

1.1 Contribution

The main contribution of this paper addresses practical issues connected with
network data reconstruction and proposes advanced techniques for parsing and
recovery of network conversations. These techniques in combination with
advanced application recognition methods increase the accuracy of content recon-
struction. We also explain several issues connected with application analysis,
especially with web mail services, SSL communication and Bitcoin transactions.
We evaluate the implementation of proposed methods and compare them with
other tools.

The paper is organized as follows: section two surveys current approaches
and results in the domain of network forensic tools; section three examines issues
related to network data parsing and reconstruction with focus on TCP reassem-
bling and Layer 7 (L7, application) data reconstruction; section four deals with
application detection and content analysis, which is demonstrated using exam-
ples of reconstruction of web mail, SSL traffic, and bitcoin transactions.

2 Related Work

There is a wide range of tools for network monitoring and forensics, i.e., Net-
work Security and Monitoring tools (NSMs) and Network Forensic Analysis
Tools (NFATs). NSMs include network analyzers (Wireshark, tcpdump), IDS
systems (snort, Bro), fingerprinting tools (nmap, p0f), and others [2]. NFATs
have similar functionality as NSMs, in addition, they also assist in a network
crime investigation. They capture an entire network traffic and allow an inves-
tigator to analyze it and reconstruct the original communication. Most of the
NFAT tools are proprietary, nevertheless, open source NFATs also exist, e.g.,
PyFlag, Network Miner, or Xplico.

In theory, parsing the network communication is straightforward. However,
incompleteness and corruption of communication requires new methods involv-
ing robust parsers and complex recovery procedures. Surveys of different net-
work forensic frameworks can be found in [2,3]. These papers discuss various
approaches to network forensics, major challenges, and list available tools. In
our paper, we mostly focus on techniques of network data parsing and recovery.



Advanced Techniques for Reconstruction of Incomplete Network Data 71

There are not many published works describing techniques incorporated in
NFAT implementations, partly due to the protection of intellectual properties of
the tools. An exception is Cohen [1] that describes several challenges connected
with the stream reassembling (termination of streams, out of sequence packets,
missed packets) and the combination of streams into conversations. In our work,
we deeply examine issues that are essential for every network forensic tool. In
addition to [1], we present an algorithm that deals with these issues, and also
works with sequence number overflow, which is not discussed by other authors.
A detailed description of TCP reassembling is analyzed by Paxson in [4]. How-
ever, Paxson focuses on robustness of TCP reassembling in the presence of
adversaries that is out of the interest of this paper.

3 Data Parsing and Reconstruction

NFATs are designed to parse captured data, process packet headers and recon-
struct high-level protocol units. Application data are regularly transmitted using
TCP or UDP protocols over IP networks. By definition, IP communication does
not provide reliable data exchange [5]. Application data are segmented into TCP
packets and encapsulated into IP datagrams. Furthermore, IP datagrams can be
fragmented into smaller IP datagrams when required by an underlying link-layer
technology. The main goal of an NFAT is to extract and reconstruct original
application data from possibly incomplete captured collection of IP datagrams.
The method for assembling IP packet-based communications into conversations
is based on the following assumptions:

– An application conversation is distinguished by a pair of IP addresses, trans-
port ports and a protocol type. The conversation consists of a pair of flows
because the most of sessions are bi-directional.

– The beginning of a TCP session is identified by a synchronization TCP seg-
ment (SYN flag). A TCP segment with FIN/PSH/RST flag closes the session.

– A TCP session consists of a collection of TCP segments each associated with
a sequence number. A sequence number determines an offset of the segment
content in the TCP stream [6].

– An application message can be transmitted in one or more TCP segments.
Receiver must reassemble several TCP segments to obtain the original mes-
sage.

– The IP fragmentation happens independently on the TCP segmentation. The
IP defragmentation has to be accomplished before the application content
reassembling.

3.1 Challenges in TCP Reassembling

During our research of network data analysis, following challenges connected
with reassembling of TCP sessions have been identified:



72 P. Matoušek et al.

– Missing FIN packets or overlapping of TCP conversations.
Regularly, ephemeral source ports are dynamically assigned by OS to clients
whenever a communication socket is created [7, p. 99]. It helps to distinguish
several TCP sessions originating from the same node and targeting the same
remote process. When the client finishes communication, these ports can be
reused. Usually, the port number is not reused until the pool of ephemeral
ports is exhausted. NFAT can exploit this behavior to recognize different
TCP sessions safely. However, if there is a NAT translation along the com-
munication path observable port numbers can be reused quickly. In such case,
different TCP sessions can receive the same key fields within a relatively short
period. While end systems and NAT can accurately track the use of port num-
bers, for NFAT system it may pose a problem as there is a very short interval
between two TCP sessions with the same identification. NFAT can proceed
as follows:
1. FIN segment can determine closing of the first session segment while SYN

segment defines a new TCP session;
2. if these segments are missing in a captured collection, a flow needs to be

detected by analyzing sequence numbers;
3. if sequence numbers of two sessions overlap, the analysis of timestamps of

expected L4 packets have to be carried out.
– Combination of two L7 flows into a L7 conversation.

NFATs try to reconstruct original bi-directional communication between appli-
cations. If more TCP conversations use the same IP addresses and ports (see
NAT problem above), these ports are not sufficient to unambiguously combine
corresponding L7 flows into a whole L7 conversation. The proposed solution
suggests considering initial TCP sequence numbers. TCP three-way hand-
shake starts with sending three synchronization segments between a sender
and a receiver. The sender sends a SYN segment with his initial, randomly
chosen, sequence number. The receiver replies with an SYN+ACK segment
transmitting receiver’s initial sequence number and sender’s next sequence
number. Based on hand-shake analysis, we can match initial TCP sequence
numbers of every L7 flow and its opposite L7 flow, which is necessary to create
bi-directional L7 conversation based on L4 header data only. If the hand-shake
is not captured, L7 flows are considered as one-directional L7 conversations.

– TCP sequence number overflow.
Network data parsing and analysis is mostly based on a chronological order of
packets in the flow using their sequence numbers. According to RFC 793 [6],
sequence numbers occupy space up to 232 − 1 Bytes, which gives possibil-
ity to transmit maximum 4.29 GB data. This value seems large enough to
avoid sequence number overflow. However, since initial sequence numbers are
generated randomly, maximum data size is lower than this theoretical value.
Figure 1 shows a snapshot of the distribution of maximum TCP message sizes
based on randomly generated initial sequence numbers as observed on 14,000
TCP sessions. The picture does not show full distribution range. TCP ses-
sions with possible payload greater than 500 MB are excluded, because of
their irrelevance for our study. However, these data show that TCP sequence



Advanced Techniques for Reconstruction of Incomplete Network Data 73

number overflow should be taken seriously. For example, we can see that the
sequence number would overflow in 0,12 % of TCP sessions with payload up to
5 MB. This situation can be solved by multi-pass processing of an L4 con-
versation and matching incomplete TCP sessions without SYNs when their
initial sequence numbers are closed to 232.

Fig. 1. Probability of TCP Seq numbers overflow related to maximal L7 payload size.

3.2 Building L7 PDUs from the PCAP File

The process of network data parsing starts with the tracking of L3 conversations
based on sender’s and receiver’s IP addresses, see Fig. 2. Further, L4 conversa-
tions are identified using port numbers and L4 protocol type, than L7 conversa-
tions are created. In case of UDP protocol, two UDP sessions running between
the same pair of ports cannot be distinguished. For example, SIP applications
regularly employ the same source and destination ports, e.g., 5060, for all SIP
conversations. Therefore, a L4 UDP conversation is considered to be a L7 con-
versation.

SYN+ACK <−> FIN

L4 conversation

L4 conversation

L4 conversation

L7 conversation

L7 conversation

L7 conversation

L7 flow

L7 flow

L7 flow

L7 flow L7 PDU

L7 PDU

L7 PDU

L7 PDU

L7 conversation

srcIP1 <−> dstIP2

srcIP3 <−> dstIP4

srcPort1 <−> dstPort2

srcPort3 <−> dstPort4

srcPort5 <−> dstPort6

SYN+ACK <−> FIN

HTTP Request

UDP session

SYN+ACK <−> FIN

srcPort3 −> dstPort4

srcPort4 −> dstPort3

srcPort1 −> dstPort2

srcPort2 −> dstPort1

SIP ACK

SIP INVITE

HTTP Response

L3 conversation

L3 conversation

Fig. 2. Extraction of L7 PDUs from input packets.



74 P. Matoušek et al.

In case of TCP protocol, the TCP reassembling is the key element in recon-
struction. If all data have been properly captured, TCP reassembling is a simple
task that involves port numbers, TCP sequence and acknowledgment numbers.
If some packets are missing, a following procedure implementing our heuristic
method can be applied to any network data. The procedure uses three heuris-
tic parameters: MaxLost, which represents the maximal length of missing data
that can be restored, MaxTime, describing the maximal permitted time delay
between two consequent packets using timestamps, and MaxPayload, represent-
ing the maximum payload size in a TCP packet. Based on our experience, we
use MaxLost = 4kB and MaxTime = 600 sec1. MaxPayload is computed on-
the-fly as the length of the TCP packet with the maximal size of a payload in
the L7 flow. Thus, application messages are built from captured data using the
following steps:

1. Select L4 flows and sort packets using their sequence numbers.
2. Process each L4 flow and create L7 flows using TCP handshake. Start with

the first SYN packet.
(a) Create a new L7 PDU if does not exist or if a previous L7 PDU was

closed.
(b) Check packet sequence number Seqi+1.
(c) If Seqi+1 �= Seqi + PSi (PS stands for a payload size obtained from the

packet header), i.e., the expected packet is missing, check timestamps
TS and sequence numbers Seq as follows:
i. If TSi+1 − TSi ≤ MaxTime and Seqi+1 − Seqi ≤ MaxLost then a

virtual packet will be created to replace the missing packet.
ii. If TSi+1 − TSi ≥ MaxTime and Seqi+1 − Seqi ≤ MaxLost then

there is an overlapping of TCP sessions because i+1 packet belongs
to a different L7 flow. Skip this packet and proceed with the next
one.

iii. If Seqi+1 − Seqi ≥ MaxLost then there are too many missing data.
The flow cannot be fully restored. Close it and proceed with next
SYN packet.

(d) If Seqi+1 = Seqi + PSi the expected packet is present, add it into the
L7 PDU.

(e) If FIN/RST/PSH flag is found or PS = MaxPayload, close the L7
PDU.

(f) GOTO 2a.
3. Process remaining packets without SYNs. Create new L7 flows using

timestamps and sequence numbers only.
4. Process every L7 flow and create L7 PDUs using TCP reassembling
1 MaxLost was experimentally set to 4 kB, which is more than two times greater than

maximal Ethernet PDU size, i.e., 1500 Bytes. MaxTime is six times greater than
recommended TCP connection failure timeout as defined in RFC 1122. These values
say that packet loss longer than 600 secs or missing 4 kB cannot be successfully
recovered.



Advanced Techniques for Reconstruction of Incomplete Network Data 75

– Add every packet of the L7 flow into the L7 PDU until FIN/RST/PSH or
PS = MaxPayload. Then close the L7 PDU and create new one for new
packets.

5. Combine opposite L7 flows into a L7 conversation using corresponding SYN
and ACK numbers.

The main benefit of this approach is the reconstruction of original UDP/TCP
sessions even if some important packets are missing. Based on TCP initial Seq
numbers, the algorithm combines two flows into a conversation. The algorithm
deals with missing SYNs, FINs, overlapping sessions, or TCP numbers overflow-
ing. As the result, we have L7 PDU objects that can be processed on L7.

Table 1 compares our approach with a few available NSMs or NFATs. For our
study, we have chosen Wireshark, Microsoft Network Monitor, NetWitness and
Network Miner. In the first test we used an artificially arranged dataset with
(i) one FIN packet missing, (ii) one SYN packet missing, and (iii) two SYNs
missing. Original 650 kB PCAP file contained 19 conversions. Further analysis
showed that in case of missing SYNs and the same port numbers, Wireshark
joins two conversations into one. MS Network Monitor works well with missing
SYNs, but it is not able to properly close communication if a FIN is missing.
In such case, it combines two conversations into one. NetWitness also joins two
conversations into one. Network Miner works similarly to Wireshark.

Table 1. Detection of network conversation when missing SYN/FIN packets.

File NFX Det Wireshark MS Monitor NetWitness Net Miner

One FIN missing 19 19 18 17 19

One SYN missing 19 18 19 17 18

Two SYNs missing 19 17 19 17 17

The second test used 8 MB PCAP file with some packets randomly deleted.
Table 2 shows results when 0 %, 1 %, 5 %, or 10 % of packets were removed.
Original file contained 126 conversations. Netfox Detective shows number of L7
conversations.

Table 2. Detection of network conversations when some data are deleted.

File NFX Det Wireshark MS Monitor NetWitness Net Miner

0 % missing 126 126 132 128 76

1 % missing 126 126 132 128 75

5 % missing 129 125 129 127 71

10 % missing 131 125 129 127 66



76 P. Matoušek et al.

The table shows that Netfox Detective finds more L7 conversations than
originally stored in the in-corrupted file. The reason is that when some packets
are missing, a corrupted L7 conversation is divided into several L7 conversation
due to the large number of missing packets or large timestamp difference, see
Fig. 3. Wireshark and NetWitness also miss a conversation. However, since they
consider all packets between the same src/dst ports as one conversation, missing
packets usually did not reduce number of all conversations. MS Network Monitor
also shows stable results. The results of Network Miner are very different but we
are not able to say why.

Resp

L4 conversation

L7 conversation

HTTP client <−> server

HTTP Req/Resp

L7 conversation
Corrupted

L7 conversation
Recovered

Req

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

HTTP Req/Resp

Fig. 3. Recovery of corrupted conversations.

3.3 Application Protocol Identification

The result of previously described reconstruction methods are L7 PDUs that
represent L7 objects (payloads) prepared for L7 parsing. Before L7 parsing,
L7 protocol should be identified in order to choose the right L7 parser. There
are many methods for application protocol identification. The easiest method
is based on well-known port numbers assigned by Internet Assigned Numbers
Authority (IANA). Unfortunately, this method does not work well with appli-
cations using dynamic ports, peer-to-peer communication, video streaming, etc.
More advanced methods use payload inspection that is suitable for protocols
that can be recognized by some characteristic patterns either in a header or
payload. There are also methods based on protocol fingerprinting or statisti-
cal data. In our approach, we combine several methods for application protocol
identification.

1. Identification using extended IANA database.
The first algorithm matches port numbers with extended IANA database of
well-known ports. Our database extends IANA data by similarities, i.e., one
input port number can match more applications. For example, Dropbox file
hosting service can work on ports 80, 443, or 17500. Based on given application
tags, L7 parser is chosen. Currently, our database can identify 1058 different
application protocols.



Advanced Techniques for Reconstruction of Incomplete Network Data 77

2. RTP Fingerprinting.
If there is no match on input ports, RTP fingerprinting method is applied [8].
This method uses a multi-stage classifier that observes minimal RTP header
length, RTP version number, and RTP payload type number. If a packet
successfully passes this filtering, per-flow checking is applied using minimal
number of packets in an RTP flow to reduce false positives.

3. Statistical Protocol Identification (SPID).
This method developed by Erik Hjelmvik [9] is based on supervised learn-
ing using pre-classified samples of captured network traffic where application
protocols are correctly annotated. The algorithm generates protocol model
database that stores application fingerprints. Currently, our database can
identify 20 protocols with an ability to add new protocols.

4 Application Parsing

After building L7 PDUs and successful L7 protocol identification, application
data can be processed by L7 parsers. As mentioned in Chap. 3, TCP/UDP
streams are reconstructed without any knowledge of higher layers. This helps
in case when an application parser is not implemented for a specific protocol. In
that case application data can also be extracted from communication.

Main goal of our approach is to augment the reconstruction process when
some data are missing. As mentioned earlier if only a few data is missing, lost
packets can be replaced by new packets with empty payload. If more packets are
lost, an original stream will be recovered as a collection of shorter streams that
formed the original stream.

In this section, we will discuss how data reconstruction influences L7 process-
ing and data presentation in case of incomplete data. For demonstration, we
choose three areas that build challenges for common network parsers: web mail
communication, SSL/TLS encrypted traffic, and bitcoin transactions.

4.1 Web Mail Analysis

Web mail communication is very popular today. Web mail servers employ HTTP
protocol to encapsulate transactions between a user web browser and a web
mail server. Mail exchange between web mail servers is mostly provided using
SMTP protocol. Forensic analysis of web mail services is different from com-
mon web browsing. Many web mail servers utilize advanced web technologies
like JavaScript, AJAX, JSON that dynamically create web pages. Analysis and
interpretation of captured web mail data are limited due to the usage of web
browser caches that store frequently used HTTP objects. These objects are not
present in captured traffic, therefore, they are unavailable for forensic analysis.

The web mail analysis includes two phases: (i) the identification of web mail
data between other HTTP traffic and (ii) the analysis of captured web mail
data. In addition, most of web mail transmissions are SSL/TLS encrypted, so
SSL/TLS decryption is required if possible (see Sect. 4.2). If encrypted, web



78 P. Matoušek et al.

mail traffic can be identified using a name or IP address of a particular web
mail server, see Table 3. If not encrypted, a pattern matching on URLs can be
applied.

Table 3. Identification of web mail services during SSL/TLS handshake.

Web mail service Server name Encoding

seznam.cz, email.cz email.seznam.cz FastRPC

Gmail mail-
attachment.googleuser
content.com

application/x-www-form-urlencoded
;charset=utf-8

Yahoo mail.yahoo.cz application/json
multipart/form-data-incl JSON

MS Live various application/x-www-form-urlencoded

Centrum/Atlas mail.centrum.cz application/x-www-form-urlencoded

Roundcube private service hostname application/x-www-form-urlencoded

Horde private service hostname multipart/form-data

For processing of a captured web mail data, following observations were made:

– Web mail messages transmitted over HTTP can be detected using URL pat-
terns: /mail/.* for Gmail, o1/mail.fpp for MS Live Mail, appid=YahooMailNeo
for Yahoo, etc. However, these patterns usually change with a new version of
the server.

– The communication from a user towards the server is transmitted via POST
method of HTTP protocol [10]. GET method is employed for listing mail
folders.

– Web mail messages are mostly encoded using simple key=value pairs in the
URL. There are several types of actions that can be identified in a key field:
compose-message, send-message, save-draft, get-inbox, delete-message. Each
web mail service uses different names for these actions, so data analysis should
be performed for every new web mail protocol.

– Some web mail objects can be transmitted as JSON objects in MIME struc-
ture, XML-RPC objects, etc.

– Because of dynamic web programming and client-based technologies (i.e.,
JavaScript), forensic page rendering of web mail is difficult and cannot be
fully accomplished without having contents of web caches. Practically, inves-
tigator’s view is limited to a simple textual form of analyzed data.

4.2 SSL/TLS Detection and Encryption

The SSL/TLS encryption is a big challenge for current NFAT tools because it
completely hides the contents of the network communication. It forms a modular



Advanced Techniques for Reconstruction of Incomplete Network Data 79

framework that combines various cryptography mechanisms defined by a cipher
suite [11]. Clients and servers can negotiate cipher suites to meet specific security
and administrative policies during initial SSL/TLS handshake. The cipher suite
defines following mechanisms:

– A key exchange algorithm. General goal of the key exchange process is to
create a pre-master secret known to the communicating parties that is used
to generate the master secret. Using master secret encryption keys and MAC
keys are generated. Most common key exchange algorithms are RSA, Diffie-
Hellman, ECDH, etc.

– A peer authentication. TLS supports authentication of both peers, the server
authentication with an unauthenticated client, and total anonymity. When-
ever the server is authenticated, the channel is secure against man-in-the-
middle attacks. Server authentication mostly requires a RSA or DSA certifi-
cate to prove an authenticity of the server side.

– Message integrity. Message integrity is ensured using Message Authentication
Code (MAC) algorithms like MD5, SHA1, or SHA256. A cryptographic hash
(often called message digest) is computed using these algorithms and added
to the end of each block.

– A bulk cipher algorithm. This algorithm is used for a message encryption.
The specification includes the cipher type (stream, block, AEAD [12]), the
key size, the block size of the cipher (applied only to block ciphers), and the
length of initialization vectors (or nonces). Common bulk ciphers are RC4,
3DES, AES, IDEA, or Camellia.

There are two basic approaches for SSL/TLS decryption [13]:

– A getting server private key. This key can be used to calculate a session key
that have encrypted the conversation. The session key is generated during the
key exchange.

– A MitM attack on SSL/TLS connection. Another method to get decrypted
contents is to use man-in-the-middle (MitM) attack employing a special proxy
server to track the communication between the client and server. At the same
time, the communication with the user node employs different TLS keys gen-
erated by the proxy server. In this case, proxy server should offer a fake
certificate in order to impersonate the original server. There are several tools
implementing this proxy, e.g., SSLsplit, Fidler, etc.

Bulk cipher algorithms incorporate methods of a block cipher or stream
cipher encryption that defines how a block or stream of a plain text will be
encrypted and how the encryption key is generated for each data block, e.g.
CBC (Cipher Block Chaining), GCM (Galois/Counter).

– The Cipher Block Chaining requires complete data for successful reconstruc-
tion because of data dependency, see Fig. 4A. If data are corrupted, successful
analysis can be provided until the first error occurs in the stream. In such
case, only meta information about the conversation are available, e.g. TCP
completeness, probable conversation length, duration, etc.



80 P. Matoušek et al.

Fig. 4. CBC and GSM encryption.

– The Galois/Counter mode can be reconstructed even if some data are missing
because cipher blocks are independent, see Fig. 4B.

Currently, our tool Netfox Detective supports analysis and decryption of
various cipher suites, see Table 4.

Table 4. Cipher suites supported Netfox Detective.

TlsRSAWithAes128CbsSha TlsRSAWithAes256CbsSha

TlsRSAWithAes128CbsSha256 TlsRSAWithAes256CbsSha256

TlsRSAWithAes128GcmSha256 TlsRSAWithAes256GcmSha384

TlsRSAWithRc4128Md5 TlsRSAWithRc4128Sha

If a server key is available, this communication can be decrypted as presented
in Fig. 5. This picture shows a successful decryption of web mail communication
encrypted using TLS.

4.3 Bitcoin Detection

Bitcoins as currency (BTC) are getting more and more popular since 2008,
especially because of their anonymity. Bitcoin network is secure by design against
correlating transactions with individual users. However, forensic tools can at
least detect bitcoin traffic within a network.

Bitcoin operates over peer-to-peer (P2P) network consisting of two node
kinds: (i) clients, which send, receive, or relay BTC transactions; and (ii) miners,
which verify transactions using a special proof-of-work algorithm.



Advanced Techniques for Reconstruction of Incomplete Network Data 81

Fig. 5. Reconstruction of encrypted web mail data.

BTC uses three different protocols for its functionality where each protocol
has a different value for the forensic investigation. These protocols are as follows:

1. Bitcoin v.1 protocol2 is employed for P2P communication between peers (con-
nected nodes). For forensic analysis, its detection can help to identify the end
stations running Bitcoin client software. The protocol runs over TCP, port
8333. It transmits messages required for both a node discovery and Bitcoin
transactions.

Node discovery is provided twice in Bitcoin network:

– Upon software start-up, a client looks for special domain names (e.g., bit-
coin.sipa.be, dnsseed.bluematt.me) in DNS in order to discover initial set of
peers to get connected. Usually, the client uses a list of pre-configured stable
nodes of the Bitcoin network.

– Upon successful connection to a node, the client may request a list of neigh-
boring peers to expand its connectivity graph.

The protocol messages that helps us to detect a communication within Bit-
coin P2P network area as follows: version and verack (useful for connection
initiation), address (to detect a communication graph and provide informa-
tion of known nodes), and ping-pong (a keep-alive mechanism). For forensic
purposes, also messages inv, tx, and block are important since they transmit
valuable information about processed transactions. The list of all Bitcoin v.1
messages is shown in Table 5.
2 See https://bitcoint.org/en/developer-documenation, June, 2015.

https://bitcoint.org/en/developer-documenation


82 P. Matoušek et al.

Table 5. Bitcoin v.1 protocol.

Messages Description Message Description

version, verack Opening messages tx, notfound Responses to getdata

getaddr, addr List of known peers ping, pong Keepalive messages

inv A new object announcement alert Broadcast notification

getdata Request for object value mempool Retrieving a transaction

getblocks, blocks Retrieval of a block filterload/add Bloom filter operations

getheaders, headers Retrieval of a header reject Negative response

2. Another group of protocols (e.g., Getwork, Getworktemplate, Stratum) is
used for work distribution for miners cooperating in the pool. The detection
of these protocols implies an existence of bitcoin miner in the local network.

3. The last protocol group involves remote procedure call (RPC) messages that
are employed for remote control of various Bitcoin related services (e.g.,
remote wallets controlled by a smart phone, on-line trading on Bitcoin
exchanges, etc.).

Netfox Detective currently supports decoding of Bitcoin v1 protocol that
helps to detect devices that run Bitcoin clients, work as Bitcoin miners, or access
Bitcoin related services, see Fig. 6.

Fig. 6. Bitcoin analysis using Netfox Detective.

Based on these information, it is possible to create Bitcoin communication
graphs and correlate the pool member and mining rig owner.



Advanced Techniques for Reconstruction of Incomplete Network Data 83

Captured network data can be used to provide an evidence that the seized
server really conducted Bitcoin transactions, see Fig. 7.

Fig. 7. Digital investigation of Bitcoin transactions.

5 Conclusion

Network forensics represent several challenges for security analysts. Network
data are volatile what causes that communication traces are not captured com-
pletely. In addition, plenty of protocols are utilized in the current network com-
munication. Many network applications also employ application-level protocol
HTTP only as a data channel offering end-to-end connection. With the increased
amount of traffic being encrypted, it is even complicated to recognize classes of
applications in the captured communication.

In this paper, an overview of issues related to a recovery of the application
content from captured traffic was presented. For identified problems, proposed
methods were tested by implementing them in a novel network forensic tool.
Based on the comparison to related tools, achieved results are promising for the
further development of our NFAT tool.

Future work is delineated by the stated facts. Because of widely used traffic
encryption, NFAT tools have to analyze meta-information associated with the
traffic, e.g., recognizing events from communication, identifying end users, or
approximate the meaning of information hidden in the encrypted communica-
tion. Also, the amount of communication requires NFATs to handle big data
from various sources. Finally, NFATs should be extensible to deal with various
classes of applications, e.g., web mail or Bitcoin traffic.



84 P. Matoušek et al.

Acknowledgment. Research in this paper was supported by project “Modern Tools
for Detection and Mitigation of Cyber Criminality on the New Generation Internet”,
no. VG20102015022 granted by Ministry of the Interior of the Czech Republic and an
internal University project “Research and application of advanced methods in ICT”,
no. FIT-S-14-2299 granted by Brno University of Technology.

References

1. Cohen, M.I.: PyFlag - an advanced network forensic framework. Digit. Investig. 5,
112–120 (2008)

2. Pilli, E.S., Joshi, R.C., Niyogi, R.: Network forensic frameworks: survey and
research challenges. Digit. Investig. 7, 14–27 (2010)

3. Hunt, R., Zeadally, S.: Network forensics: an analysis of techniques, tools, and
trends. Computer 45, 36–43 (2012)

4. Dharmapurikar, S., Paxson, V.: Robust TCP stream reassembly in the presence of
adversaries. In: USENIX Security Symposium. (2005)

5. Postel, J.: Internet Protocol. RFC 791 (1981)
6. Postel, J.: Transmission Control Protocol. RFC 793 (1981)
7. Stevens, W., Fenner, B., Rudoff, A.M.: UNIX Network Programming: The Sockets

Networking API, 3rd edn. Addison-Wesley, Reading (2004)
8. Matousek, P., Rysavy, O., Kmet, M.: Fast RTP detection and codecs classification

in internet traffic. J. Digit. Forensics Secur. Law 2014, 99–110 (2014)
9. Hjelmvik, E., John, W.: Statistical protocol identification with SPID: preliminary

results. In: Swedish National Computer Networking Workshop (2009)
10. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Barners-

Lee, T.: Hypertext Transfer Protocol - HTTP/1.1. IETF RFC 2616 (1999)
11. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2.

IETF RFC 5246 (2008)
12. McGrew, D.: An Interface and Algorithms for Authenticated Encryption. IETF

RFC 5116 (2008)
13. Davidoff, S., Ham, J.: Network Forensics: Tracking Hackers through Cyberspace,

1st edn. Prentice Hall, Upper Saddle River (2012)


	Advanced Techniques for Reconstruction of Incomplete Network Data
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Data Parsing and Reconstruction
	3.1 Challenges in TCP Reassembling
	3.2 Building L7 PDUs from the PCAP File
	3.3 Application Protocol Identification

	4 Application Parsing
	4.1 Web Mail Analysis
	4.2 SSL/TLS Detection and Encryption
	4.3 Bitcoin Detection

	5 Conclusion
	References




