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Abstract—The support vector regression (SVR) is a very
successful method in solving many difficult tasks in the area
of traffic prediction. However, the performance of SVR is very
sensitive to the parameters setting and the selection of input
variables such as sensors providing the input data. In this paper,
we describe a new method, which simultaneously optimizes the
meta-parameters of SVR model and the subset of its input
variables. The method is based on a multiobjective genetic
algorithm. The proposed implementation is intended for a parallel
environment supporting OpenMP. We evaluated the method in the
tasks of data imputation, short term prediction of traffic variables
and travel times prediction using real world open data. It was
confirmed that the simultaneous optimization of SVR parameters
and input variables provides better quality of prediction than
previous methods.

I. INTRODUCTION

The machine learning methods like neural networks or
support vector regression are very successful in solving many
difficult tasks in the area of traffic prediction. However, per-
formance of machine learning methods is very sensitive to the
meta-parameters settings. It is usually necessary to properly set
various meta-parameters, which can be very hard and require a
lot of effort. The selection of proper inputs for these methods
is also a difficult task. The input variables usually come from
traffic sensors, cameras or groups of probe vehicles. In real
world traffic applications there are many of these candidate
variables. In our previous work, we focused on the selection
of proper subsets of traffic variables. We have shown that
using a proper subset of the input variables for the support
vector regression model, it is possible to obtain more accurate
prediction which is possible even if there are many missing
values in the input data. We verified these methods of feature
selection in the tasks of prediction of volume, occupancy [1]
and travel times [2].

One of the biggest drawbacks of our methods is that
the meta-parameters of SVR remain constant for all SVR
models. We set these constants according to our previous
experience. However, it is not possible to find one setting
of these meta-parameters that will be suitable for all SVR
models. This setting should be optimised for each SVR model.
In this paper, we describe a new method, which simultaneously
optimizes the meta-parameters of SVR and the subset of its

input variables. We evaluated the quality of our new method
in three different traffic prediction tasks. The first one is the
data imputation task in which the goal is to estimate missing
values in traffic data. Missing values can be caused by a
broken sensor, data transmission errors or other failures. The
second prediction task is a short time forecasting of traffic
volume and occupancy. These two variables are very useful
to describe the current traffic situation. They can be utilized
to autonomously modify signal plans or directly inform the
drivers. The third prediction task is the estimation of travel
times, in which the goal is to predict the travel time of vehicle.
This information can be useful for drivers in the case they have
more options how to get to the desired destination. There exist
various methods for estimation of travel times. Some of them
are based on traffic cameras. These cameras are connected to
the text recognition software, which is capable of reading the
license plates of vehicles. The differences between the time of
vehicle detection at the beginning of the road segment and the
end of the road segment can serve for estimation of travel time
[3], [4]. Other methods are based on the regression principle.
The regression models like neural networks, SVR or others
can predict the travel time using traffic variables like volume,
occupancy or speed [5], [6]. In our previous work, we proposed
a method, which combines these two principles [2].

Intelligent transportation systems usually gather a lot of
information obtained by various sensors, cameras and other
data acquisition systems. It is often necessary to process giga-
bytes of data and predict many traffic variables in a reasonable
time. The question is how to speed up algorithms to deal with
these big data. It is the main reason why we parallelize our
new method. Parallel methods are designed to be capable of
spreading the computation among many processor cores or
even many processors. This leads to much faster computation.

The rest of the paper is organized as follows. Section II
provides the basic information about support vector regression
and its meta-parameters. Section III describes multi-objective
optimization, the multimodal NSGAII algorithm and how it is
beneficial for solving real world problems. Section IV deals
with our method for traffic variables prediction and describes
how it differs from previously proposed methods. The results
are given in Section V. Section VI provides the conclusions.
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II. SUPPORT VECTOR REGRESSION

A. Basic description

The machine learning methods can be divided into two
groups, the supervised methods and unsupervised methods.
The supervised learning expects that a reasonable portion of
data is available with known results. These data are used to
train a model. After the model is trained, it can be used for
unknown data. We will expect the training data in the form
{(�x1, y1), . . . , (�xl, yl)} ⊂ X×R. Here �xi represents the vector
of values of independent variables (�x ∈ X , X ⊆ R

n) and yi
represents the value of dependent variable (desired output). As
the prediction of traffic is a regression task, y is a continuous
variable. The training of SVR can be considered as an opti-
mization problem [7]. The goal of this optimization problem
is to find a function f(x) such that it has at most ε deviation
from the correct output yi for the given training vector �xi.
At the same time we want this function as flat as possible.
In the case of SVR, the flatness means the minimization of
vector �w. More precisely it, means minimization of 1

2 ||�w||2.
For many tasks, however, this problem can be infeasible. It
means there is no such �w, for which the deviation from the
correct yi is at most ε. Because of it, the so called ”soft margin
loss function” was introduced. New slack variables ξ and ξ∗
are used to convert the infeasible problem into the feasible
one. The precise formulation of SVR is shown in equation 1.

minimize: 1
2 ||�w||2 + C

l∑
i=1

(ξi + ξ∗i )

subject to:

{
yi− < �w, �xi > −b ≤ ε+ ξi
< �w, �xi > +b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

(1)

Here < �w, �xi > means a dot product of vector �w and �xi.
The regularization meta-parameter C > 0 controls the trade-off
between the flatness and the amount of deviation larger than ε.
The situation is depicted in Figure 1. Here the samples from
the training set are marked as small crosses and the regression
function is shown as the bold line. The permitted deviation
is depicted by two thin lines. However some points from the
training set don’t lie in the permitted area. The sizes of slack
variables ξ and ξ∗ for these points are also shown in the Fig. 1.

Fig. 1. Linear support vector regression.

B. Kernel functions

The linear SVR can be very useful, but many regression
tasks don’t have a linear character. To deal with this prob-
lem, the transformation of independent variables into more
dimensional space is commonly used. To do this we need a
proper function in the following form Φ : X → F , where
F has more dimensions than X . In the case of SVR, these
mapping functions are called the kernels. In the past, several
kernels were proposed, including polynomial kernel (eq. 2),
radial kernel (eq. 3) and sigmoid kernel (eq. 4) [7].

K(x, y) = (x.y + 1)p (2)

K(x, y) = e
−||x−y||2

2σ2 (3)

K(x, y) = tanh(κx.y − δ) (4)

C. Meta parameters

In order to obtain high quality predictions, it is necessary to
properly select the kernel function and set various parameters,
where regularization coefficient C is the most important one.
If this coefficient were set too strictly, the problem called over-
fitting could occur. The overfitting appears when the training
algorithm tries to find a very complex model, which is able to
predict almost all values from a training set set very precisely.
However, this complex model does not usually generalize well
and have a quite high error for new data. The opposite problem,
called underfitting, can appear if the regularization coefficient
is set too freely. In the case of underfitting, the model is too
simple to be able to predict desired variable.

III. MULTIOBJECTIVE EVOLUTIONARY OPTIMIZATION

A. Multiobjective optimization

In the real world, many problems can not be sufficiently
solved using only a single objective optimization algorithms,
simply because it is impossible to define the quality of a
candidate solution by only one objective function. Fortunately,
modern multi-objective methods can consider all these criteria
in a single run of the optimization algorithm. In order to com-
pare the quality of two candidate solutions, the multi-objective
optimization algorithms use the Pareto-dominance relation.
According to this relation, solution a Pareto-dominates solu-
tion b, if solution a is better in at least one objective, and the
solution a is not worse than b in all objective functions. Among
the whole set of all possible solutions, there exists a subset of
solutions called Pareto-optimal solutions. These solutions are
not dominated by any other possible solution and are targets
for the multi-objective optimization algorithms. The imaginary
line connecting Pareto-optimal solutions is called Pareto-front
and the goal of the multi-objective evolutionary optimization
is to find various trade-off Pareto-optimal solutions, which are
spread along the whole Pareto-front [8].

B. Multimodal NSGAII

One of the popular algorithms for multi-objective optimiza-
tion is called NSGAII [9]. At the beginning this algorithm
creates a set of randomly generated solutions. This set is called
the parent population Pt. Each solution is represented by a
string of bits called the chromosome. The quality of these
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candidate chromosomes is evaluated using objective functions.
Then the crossover and mutation operations are performed on
Pt to create a set of new, potentially better solutions Qt. These
two subpopulations are merged together (Pt ∪ Qt) and good
solutions are chosen to new population Pt+1. This process is
repeated until the predefined number of iterations is reached.

A very important part of this process is the selection of so-
lutions, which will be accommodated into the new population
(Pt+1). The NSGAII algorithm utilizes the approach called
non-dominated sorting. In this approach, solutions from union
Pt ∪ Qt, which are not dominated by any other solution are
accommodated into new population Pt+1. If new population
Pt+1 is not filled, new search for non-dominated solutions in
Pt ∪ Qt is performed. Now it is without the already selected
solutions. New non-dominated solutions are again accommo-
dated into new population Pt+1. This process continues until
the new population Pt+1 is not filled. When the last portion of
solutions is accommodated, two potential situations can appear.
First, the number of non-dominated solutions is equal to the
number of remaining slots in new population Pt+1. In this case,
all non-dominated solutions are accommodated. Otherwise, the
number of non-dominated solutions is higher than the number
of slots. In this case, solutions are selected using crowding
distance sort, which tries to select such solutions which are
widely spread along the whole Pareto front.

In the applications considered in this paper, it is very
useful to obtain multiple different solutions with the same
quality. The reason is that one solution (e.g. predictor) can
be replaced by another if the first solution can not be used
because required data are not available due a sensor failure. We
call these solutions the multimodal solutions. In the context of
the multi-objective optimization, two solutions are multimodal,
if both have the same values of objective functions (i.e.
fi(a) = fi(b), ∀i = 1 . . . N ). Here fi(x) is a value of objective
function i for the solution x and N is the number of optimized
objectives. The modification of NSGAII capable of finding
these multimodal solutions is called multimodal NSGAII [10].
The main difference is in the accommodation of new solutions
into the new parent set. The multimodal NSGAII avoids of
accommodating of duplicate solutions into the new population.

C. Binary genetic algorithms

The crossover operator is able to create a new candidate
solution by combining two or more previously found solutions.
The uniform crossover needs two parent chromosomes p1
and p2 and produces two children chromosomes c1 and c2.
At first a random binary mask with the same size as parent
chromosomes is generated. If the value for a given item in the
mask is equal to zero, the item in c1 will be the same as in p1
and item in c2 will be the same as in p2. Otherwise the item
in c1 will be equal to the item in p2 and the item in c2 will be
equal to the item in p1 [11]. The Bernoulli distribution is often
used to generate the mask. Bernoulli probability distribution
takes value 1 with probability r and value 0 with probability
q = 1 − r. The binary mutation generates one binary value
for each gene in the chromosome according to the Bernoulli
distribution. The mask is then used to decide which values in
the chromosome will be changed [11].

D. Real valued genetic algorithms

In the case of chromosomes consisting of continuous values
another type of crossover should be used. One of frequently
used types of crossover for these chromosomes is called Simu-
lated Binary Crossover (SBX) [12]. The SBX uses the specially
defined probability distribution P (βi) for generating of values
in children chromosomes (Equation 5). Here, parameter ηc is
a non-negative number. If ηc is large, the value in the child
chromosome will be near the parent value. If ηc is small, the
generated value will be very different from the value in parent.
The process of creating new solutions by SBX is as follows.
At the beginning a random number ui ∈ [0, 1] is generated
for each gene i. After that, the ordinate βqi is taken from
the probability distribution P . The ordinate Bqi is defined
such that the area under the probability curve is equal to the
randomly generated number ui. The value of Bqi is calculated
by the equation 6.

P (βi) =

{
0.5(ηc + 1)βηc

i , if βi ≤ 1

0.5(ηc + 1)
1

ηc+2 , otherwise.
(5)

βqi =

⎧⎨
⎩

(2u)
1

ηc+1 , if ui ≤ 0.5(
1

2(1−ui)

) 1
ηc+1

, otherwise.
(6)

Then, the obtained ordinate Bqi is used to create a new
children. New values of gene i in the offspring are calculated
using equations 7 and 8.

x
(1,t+1)
i = 0.5

(
(1 + βqi)x

(1,t)
i + (1− βqi)x

(2,t)
i

)
(7)

x
(2,t+1)
i = 0.5

(
(1− βqi)x

(1,t)
i + (1 + βqi)x

(2,t)
i

)
(8)

E. Parallel genetic algorithms

Current processors contain many computational cores. This
can significantly increase the performance of the machine and
lower the time of computation. However, to obtain this higher
performance, it is necessary to use algorithms capable of
spreading the computational effort among many computational
units. Fortunately there exist many approaches to parallelize
genetic algorithms. The basic approach is known as the master-
slave model. In this case the master process performs all
operators such as selection, crossover and mutation. The only
part of the algorithm which is conducted in parallel, is the
evaluation of the quality of candidate solutions. In this process,
chromosomes of candidate solutions are distributed to the
computational units (workers), which evaluate the quality of
solutions and return computed values of fitness functions
back to the master [13]. Another approach is the multiple-
population or island model, in which each computational unit
has its own population of candidate solutions and performs
all genetic operators on its own. After a predefined number of
generations the most promising solutions are exchanged among
the computational units simulating thus a migration [13].
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IV. METHOD

A. Multiobjective search

In our previous work, we have shown that it is possible to
use a multi-objective optimization to find many SVR models
for prediction of traffic variables. These SVR models differ in
the set of input variables that they utilize. We simultaneously
optimized three objective functions: (1) the quality of predic-
tion, which is calculated as root mean squared error (RMSE);
(2) the number of input variables and (3) the portion of time,
for which one of the input variables is missing. At the end we,
for example, obtained SVR model, which provides very precise
prediction but uses many input variables. However, this SVR
is often useless because one of the values of input variables
is often missing. On the other hand, we obtained a model
which is less precise, but uses only a few input variables.
We also obtained many compromise solutions between these
two extremes. The main reason for multiple different SVRs
is that we can choose a model for which the input variables
are currently available. This is very usefull because traffic
variables are often missing, because of various reasons, for
example, broken detectors, data transmission errors etc.

We propose a method to dynamically switch the prediction
model according to available data. If it is possible, we use the
model with the best RMSE (minimal error). If one of desired
input variables is missing, we use corresponding SVR with
the second best RMSE. The process continues until we find
SVR, which can be used or we run out of pre-trained SVRs
[1], [2]. In our previous method, we optimized only the set
of input variables, but the meta-parameters of SVR remained
unchanged. However, this is far from the optimum, because
for each SVR the optimal settings of the meta-parameters is
different. In this work, we try to improve prediction results by
simultaneous search for the optimal data inputs for SVR and
the optimal meta-parameters in one run of the multiobjective-
genetic algorithm.

B. Optimization of SVR Metaparameters

Two types of kernels are supported in our work: linear
SVR and SVR with radial basis kernel. For linear SVR it
is necessary to optimize only a regularization coefficient C.
The radial kernel requires, in addition to C, to optimize the
kernel parameter gamma. The whole chromosome is divided
into two parts. The first part contains the information about
used input variables. Each gene represents one potential input
variable. If the value of gene is equal to one (true), the input
variable will be used as the input for SVR model. Otherwise,
the corresponding input variable will not be used. The binary
part of the chromosome contains one additional bit, which
defines the type of kernel (0 – the linear kernel; 1 – the
radial kernel). We use uniform crossover and bit flip mutations
to modify this part of the chromosome. The second part of
the chromosome consists of real values, which are devoted to
SVR meta-parameters. The first real value defines the value of
regularization coefficient in the case that linear SVR is used.
In this case the value of regularisation coefficient is equal to
2Clinear . The second value represents the value of regulariza-
tion coefficient in the case that radial kernel is used. In this
case the regularisation coefficient is equal to 2Cradial . Finally,
the third real value is for gamma parameter (γ = 2gamma).

We use SBX crossover and normally distributed mutations to
modify the real valued part of the chromosome. The schema
of the whole chromosome is depicted in Figure 2.

Fig. 2. Chromosome scheme.

C. Speedup by parallel implementation

One of the disadvantages of genetic algorithms is that
it is necessary to evaluate the quality of a huge number
of candidate solutions during the optimization process. This
can be very time consuming. However, as it was mentioned
earlier, it is possible to accelerate this process by parallel
implementation. In our work we utilized the master-slave
principle. Each computational unit, which is one processor
core in our case, computes the values of fitness functions for
some portion of the population. The parallel implementation
is written in R language for statistical computation. We used
”foreach” and ”doMC” libraries. The library ”doMC” is based
on OpenMP technology and allows us to run fitness function
evaluation on multiple processor cores. The only parallel
part of our algorithm is the loop with evaluation of new
candidate solutions. The main problem is a different time
needed for evaluation of candidate solutions. These differences
are undesirable in parallel loops because of synchronization
problems. Hence we investigated the influence of SVR meta-
parameters and the influence of the number of SVR inputs
on the solution evaluation time. We measured the dependency
between the value of regularization coefficient C and the
time of SVR training for prediction of traffic variables. The
results are shown in figure 3. It can be seen that the time is
rapidly growing if the regularization coefficient is higher than
23 for linear kernel and 27 for radial kernel. Because of it
we restricted the values in the chromosomes in the following
manner. The Clinear gene is restricted to be within the interval
[−5, 3], Cradial in [−5, 7] and gamma in [−15, 3].

V. RESULTS

In order to evaluate the proposed method, we used publicly
available data from Seattle (www.its-rde.net). These data are
provided by the Research Data Exchange project and can be
downloaded from the Internet. The Seattle data consist of
datasets. In this work, we mainly focus on Seattle sensys
data [14] and arterial travel times [15]. The Seattle sensys
data provides the values measured on traffic detectors places
on 23 intersections. This data set contains the values of
traffic volume, occupancy and mean speed. The arterial travel
times data which are measured by cameras and license plate
recognition system contains the information about the time of
vehicles trips. In order to simplify the prediction we aggregated
available data into five minute intervals. We used the data
from July 2011 for experiments with data imputation and short
term prediction. The data from June 2011 were utilized for
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Fig. 3. Dependency between the value of regularisation coefficient (C) and
the time of training: linear kernel (top) and radial kernel (bottom).

travel time prediction. The first 15 days are considered as
training set and the rest is considered as test set. We used
the model switching described in the previous section. The
values of traffic volume are given in the number of vehicles
per 5 minutes and occupancy is the portion of time for which
the given place on the road is occupied by vehicles. The travel
times are in seconds.

We used the same setting of the evolutionary algorithm
NSGAII for each experiment. We performed 25 independent
runs, each of them counting 100 generations with the popula-
tion size of 40 chromosomes. Other parameters are: probability
of binary crossover 70%, probability of binary mutation 1%,
ηc = 2, and δ = 1.

A. Data imputation

The data imputation is a process, in which we try to
estimate missing values in data. The method was evaluated
on the imputation of traffic volume and occupancy data on
four intersections (11, 19, 22 and 23) in the dataset. For each
intersection we test four sensors with the biggest mean value.
Table I shows a comparison with the method which optimizes
only the inputs of SVR [1]. The RMSE for method, which
optimizes only the inputs, is given in the column ”RMSE –
Only feature selection”, while the RMSE for our new method,
is shown in column ”RMSE – Meta-parameters”. The volume

is measured as the number of vehicles per 5 minutes and the
occupancy as a portion of time in which the current place is
occupied by vehicle. The RMSE corresponds to this variables.
The improvement reached by our new method is shown in the
last column. The mean improvement for data imputation is
2.29 %.

TABLE I. RMSE IN DATA IMPUTATION

Place Sensor Variable Sel. RMSE RMSE Improvement
Num. Num. Type Only Feature Meta-param. (%)

11 1 occupancy 5.81 5.42 6.73
11 17 occupancy 4.96 4.80 3.14
11 3 occupancy 5.28 4.53 14.06
11 4 occupancy 11.95 11.92 0.28
19 3 occupancy 3.09 2.90 6.20
19 4 occupancy 4.42 4.45 −0.54
19 8 occupancy 8.95 8.70 2.76
22 1 occupancy 3.86 3.69 4.59
22 3 occupancy 4.18 3.94 5.57
22 6 occupancy 2.49 2.49 0.00
22 8 occupancy 3.18 3.00 5.84
23 1 occupancy 11.92 11.72 1.68
23 2 occupancy 8.67 8.40 3.08
23 3 occupancy 10.41 10.29 1.09
23 7 occupancy 8.46 8.40 0.68
11 1 volume 4.94 4.90 0.67
11 13 volume 4.31 4.29 0.48
11 17 volume 3.74 3.65 2.45
11 3 volume 5.62 5.60 0.38
19 3 volume 5.80 5.98 −3.09
19 4 volume 6.42 6.42 0.00
19 7 volume 5.74 5.49 4.33
19 8 volume 4.77 4.78 −0.30
22 1 volume 3.92 3.84 1.99
22 4 volume 5.16 5.32 −3.17
22 7 volume 4.71 4.64 1.55
22 8 volume 4.38 4.32 1.33
23 6 volume 4.11 4.11 0.00
23 7 volume 6.36 6.19 2.66
23 8 volume 6.40 6.30 1.56
23 9 volume 4.53 4.31 5.04

B. Short Term Prediction of Traffic Variables

Table II summarizes the results for short time traffic
prediction. Mean values calculated from 25 independent runs
of NSGAII are reported. The format of the table is the same
as for the data imputation. We predicted the values of these
variables with the prediction horizon of 15 minutes. The mean
improvement against [1] is 26.35 %.

C. Travel times prediction

The estimated travel time is a very useful information for
drivers. This information can be shown by boards near the road
or available through cellphones or other mobile devices. We try
to further improve it by the optimization of meta-parameters
of SVR. In Table III, ”place begin” is the identifier of the start
of road segment and ”place end” is the identifier of the end
of the segment. The column ”use history” informs whether
only current measured values were used for prediction (-), or
a short history (15 min.) was also considered. The proposed
method was compared with the method, which optimizes only
the subset of input sensors [2] (column ”Only Feature”). It can
be seen in column ”Meta-param” that our method provides
only a small improvement in this case (the mean is 0.32 %).
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TABLE II. RMSE FOR SHORT TERM TRAFFIC FORECASTING WITH

PREDICTION HORIZON 15 MINUTES.

Place Sensor Variable Sel. RMSE RMSE Improvement
Num. Num. Type Only Feature Meta-param. (%)

11 1 occupancy 4.18 3.62 13.40
11 17 occupancy 3.65 3.20 12.34
11 3 occupancy 2.47 1.68 32.06
11 4 occupancy 9.62 9.02 6.31
19 3 occupancy 1.59 0.98 38.34
19 4 occupancy 2.49 1.62 34.93
19 8 occupancy 5.84 4.00 31.48
22 1 occupancy 2.42 1.99 17.42
22 3 occupancy 2.38 1.81 23.94
22 6 occupancy 1.13 0.53 53.14
22 8 occupancy 1.87 1.24 33.86
23 1 occupancy 7.11 6.04 15.04
23 2 occupancy 6.50 5.82 10.46
23 3 occupancy 8.02 6.24 22.11
23 7 occupancy 4.54 3.91 13.89
11 1 volume 1.51 1.24 17.97
11 13 volume 2.12 1.46 31.38
11 17 volume 1.98 1.26 36.39
11 3 volume 1.75 1.48 15.44
19 3 volume 3.19 2.15 32.41
19 4 volume 3.21 1.89 41.17
19 7 volume 3.15 2.27 28.06
19 8 volume 2.97 1.73 41.79
22 1 volume 1.84 1.36 25.90
22 4 volume 2.16 1.30 39.84
22 7 volume 2.29 1.56 31.84
22 8 volume 1.91 1.27 35.85
23 6 volume 1.80 1.39 22.58
23 7 volume 2.54 2.14 15.73
23 8 volume 2.67 2.17 18.85
23 9 volume 1.59 1.23 23.04

TABLE III. RMSE FOR TRAVEL TIMES ESTIMATION.

Place Place Use Sel. RMSE RMSE Improvement
begin end history Only Feature Meta-param. (%)

58 46 - 57.19 56.99 0.34
58 46 15 min 57.36 57.11 0.43
7 58 - 27.11 26.99 0.44
7 58 15 min 26.12 26.09 0.08

D. Parallelization

In order to analyse the speedup provided by the parallel
implementation we performed 10 runs of our method for short
time traffic prediction using a different number of processor
cores. We measured the number of GA iterations (generations)
performed in a one hour run. Fig. 4 shows that the method
scales well for 2-16 CPUs.

Fig. 4. Parallel speedup for short time traffic forecasting.

VI. CONCLUSIONS

In this paper, we proposed a new method for robust traffic
prediction. This method is based on a multi-objective genetic
algorithm and SVR. The main advantage against the other
methods is that it simultaneously optimizes the input variables
of SVR and SVR meta-parameters. We have shown that the
method provides better prediction than methods optimizing
only the set of input variables. The method is especially
successful for short term traffic prediction. We also shown
a parallel implementation to reduce the computational time.

ACKNOWLEDGMENT

This work was supported by the IT4Innovations Centre
of Excellence CZ.1.05/1.1.00/02.0070 and Brno University of
Technology project FIT-S-14-2297.

REFERENCES

[1] J. Petrlik, O. Fucik, and L. Sekanina, “Multiobjective selection of input
sensors for svr applied to road traffic prediction,” in Parallel Problem
Solving from Nature PPSN XIII, ser. Lecture Notes in Computer
Science, T. Bartz-Beielstein, J. Branke, B. Filipi, and J. Smith, Eds.
Springer International Publishing, 2014, vol. 8672, pp. 802–811.

[2] ——, “Multiobjective selection of input sensors for travel times fore-
casting using support vector regression,” in Computational Intelligence
in Vehicles and Transportation Systems (CIVTS), 2014 IEEE Symposium
on, Dec 2014, pp. 14–21.

[3] S. Takaba, T. Morita, T. Hada, T. Usami, and M. Yamaguchi, “Es-
timation and measurement of travel time by vehicle detectors and
license plate readers,” in Vehicle Navigation and Information Systems
Conference, 1991, vol. 2, Oct 1991, pp. 257–267.

[4] K. Kanayama, Y. Fujikawa, K. Fujimoto, and M. Horino, “Development
of vehicle-license number recognition system using real-time image
processing and its application to travel-time measurement,” in Vehicular
Technology Conference, 1991. Gateway to the Future Technology in
Motion., 41st IEEE, May 1991, pp. 798–804.

[5] C.-H. Wu, J.-M. Ho, and D. Lee, “Travel-time prediction with support
vector regression,” Intelligent Transportation Systems, IEEE Transac-
tions on, vol. 5, no. 4, pp. 276–281, Dec 2004.

[6] A. Dharia and H. Adeli, “Neural network model for rapid forecasting
of freeway link travel time,” Engineering Applications of Artificial
Intelligence, vol. 16, no. 78, pp. 607 – 613, 2003.

[7] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.

[8] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, Apr 2002.

[10] K. Deb and A. R. Reddy, “Reliable classification of two-class cancer
data using evolutionary algorithms,” Biosystems, vol. 72, no. 12, pp.
111 – 129, 2003, computational Intelligence in Bioinformatics.

[11] M. Gendreau and J. Potvin, Handbook of Metaheuristics,
ser. International Series in Operations Research & Man-
agement Science. Springer US, 2010. [Online]. Available:
http://books.google.cz/books?id=xMTS5dyDhwMC

[12] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 3, pp. 1–15, 1994.
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