
An Improved Non-Orthogonal Texture Warping for Better
Shadow Rendering

Tomáš Milet
Brno University of
Technology Czech

Republic
imilet@fit.vutbr.cz

Jan Navrátil
Brno University of
Technology Czech

Republic
inavrati@fit.vutbr.cz

Pavel Zemčík
Brno University of
Technology Czech

Republic
zemcik@fit.vutbr.cz

SV SM RTW

OURS OURS-DV MIN-SM

The figure shows the difference in quality. Images are zoomed on shadows cast from Observatory scene for
different methods. Red pixels are wrongly evaluated. From left to right: Shadow Volumes (SV), Shadow

Mapping (SM), Rectilinear Texture Warping (RTW), our solution, our solution using only desired view (DV), SM
+ minimal shadow frustum.

ABSTRACT
In interactive applications, shadows are traditionally rendered using the shadow mapping algorithm. The disadvan-
tage of the algorithm is limited resolution of depth texture which may lead to aliasing artifacts on shadow edges.
This paper introduces an improved depth texture warping with non-orthogonal grid that can be employed for all
kinds of light sources. For instance, already known approaches for reducing aliasing artifacts are widely used in
outdoor scenes with directional light sources but they are not directly applicable for point light sources. We show
that the improved warping parameterization reduces the aliasing artifacts and we are able to present high quality
shadows regardless of a light source or a camera position in the scene.

Keywords
shadow-mapping, alias, warping, local warping, minimal frustum, shadows

1 INTRODUCTION

Images rendered on computers are still being improved
with various visual effects. Nowadays, computers can
synthesize images in nearly photorealistic quality and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

in real-time. One of the most important visual cues, still
worth improving, are shadows. The two key algorithms
for shadow rendering [Wil78, Cro77] have been accel-
erated on GPUs.The shadow volumes approach [Cro77]
suffers from the need to render large amount of data
to gather necessary information for rendering shadows.
On the other hand, shadow mapping approach [Wil78]
is limited by the size of depth texture. In this paper, we
addressed this problem with the improved depth tex-
ture parameterization that makes use of the available
resources more efficient.

The resolution of the shadow map determines the
number of samples that can be utilized. Recently, some

approaches were introduced that improve sampling of
the important parts of the scene. These approaches
work well for outdoor scenes where we can expect that
the major part of lighting comes from the directional
light source [ZSXL06]. This type of light sources
can be processed efficiently with the shadow mapping
algorithm. On the other hand, the basic shadow
mapping algorithm cannot easily address point light
sources and it needs additional improvements, e.g.
using cube shadow maps, or an alternative param-
eterization [BApS02, Ros12, JLZ13]. In this case,
the improved sampling is difficult to achieve using
approaches mentioned above because the algorithms
would need non-trivial modification. We omit the most
complex types of light sources such as area lights or
volume-based emitters in this paper.

Since the point light sources can cast shadows into all
directions, the regions where the need to improve scene
sampling exists can be distributed throughout the depth
textures. It all depends on the scene complexity and
also on the mutual position of the light source and the
camera. While outdoor scenes are lit by directional
light source, the important parts are located in front
of the camera and the importance decreases with a dis-
tance from the camera.

Various approaches have been introduced that can pa-
rameterize the shadow map and thus improve sampling
on selected parts of the scene based on the scene analy-
sis [VNHZ11, NZJP12, Ros12, JLZ13]. However, nei-
ther of these approaches is fully automatic or robust
enough and they work only in few cases when the scene
is lit with directional light sources or the light source is
outside a camera view frustum.

Our solution computes an improved parameterization
based on importance driven depth texture warping. We
can identify regions in the depth texture where the sam-
pling is not optimal and enlarge this regions in order to
get higher sampling rate. We employed modern GPUs
in the warping process thus these additional computing
steps have no crucial impact on an overall performance.

We introduce an additional step that is performed before
the traditional shadow mapping algorithm is applied. In
this step, a non-orthogonal warping grid is computed
and this grid is used during the shadow rendering step.

Our main contributions are:

• introduction of a novel importance function for
determining sampling rate of depth texture. This
function extends the set of functions introduced by
Rosen et al. [Ros12],

• the non-orthogonal warping grid which leads to bet-
ter control of importance-based warping without af-
fecting the nearest regions in the texture (in the same
row and/or column).

2 PREVIOUS WORK
The shadow mapping algorithm was first published in
1978 [Wil78]. Since then, many approaches addressing
its aliasing issues have been published.
Stamminger and Drettakis [SD02] introduced an idea of
creating depth texture after performing of perspective
projection. This step emphasizes regions in front of the
camera where the aliasing error are mostly observable.
However, results in this approach are dependent on the
mutual position of a camera and a light source. In some
case, creating depth texture in post-perspective space
may lead to very unpleasant results because of the per-
spective transformation function. Also, the overall re-
sults are influenced by object outside the camera view
frustum because they introduce additional complexity
to the computation.
Fernando et al. [FFBG01] introduced a hierarchical
structure by subdividing shadow map into smaller
shadow map pages having different resolutions due
to different level of aliasing in different parts of the
current camera view frustum. With camera being dy-
namic, this hierarchical structure needs to be updated
per frame and due to limitations of graphics hardware
of that time, most of the algorithm runs on CPU.
This method was further optimized by Lefohn et al.
[LSK+05]. Evolution of GPU hardware allowed more
of the algorithm to move on the graphic chip itself by
programmable vertex and pixel shader pipeline stages.
Parallel-split shadow maps approach was introduced
by Zhang et al. [ZSXL06]. The idea is to split view
frustum into multiple parts according to depth, split
light frustum into multiple ones and then independent
shadow maps are rendered for each layer. Splitting
view frustum is based on a practical splitting algorithm
which averages logarithmic and uniform splitting
scheme. However, this method is targeted and op-
timized for outdoor scenes and it would need some
amount of work to adapt it for indoor scenes and
namely point light sources. Also, the approach does
not deal with the perspective aliasing error correctly.
Based on Zhang, Lauritzen et al. [LSL11] introduced
Sample distribution shadow maps which further im-
proves partitioning. The camera frustum is partitioned
automatically based on receiver sample distribution
given by depth buffer, eliminating areas with no
shadow samples. This sample distribution is also used
to compute tightly-bound light-space partition frusta.
The first method that addressed problem of important
regions distributed in the depth texture was introduced
by Rosen [Ros12]. He introduced the rectilinear warp-
ing maps that could easily control the sampling in par-
ticular parts of the depth texture. This could be con-
trolled by importance function and the approach could
be used for point light sources without complex mod-
ification. Nevertheless, the rectilinear warping schema

is not completely local.Other parts of a scene may re-
ceive unneeded resolution. This can lead to reduction
in overall quality.
Similar approach was published by Jia et al. [JLZ13].
They do not limit the approach to perpendicular split-
ting planes; therefore, they can control the results more
precisely. However, this approach needs multiple ren-
der passes of the scene to analyze the scene and decides
the dividing schema. This can introduce certain issues
for complex scenes.
Finally, some approaches that were focused only
on point light sources have been published recently
[VNHZ11, NZJP12]. Nevertheless, they discussed
possibilities for improving shadow quality using Dual-
Paraboloid shadow maps [BApS02]. But this technique
is not sufficient due to its nonlinear transformation
during generation of depth textures. This introduces
additional limitation regarding model quality and
especially size of polygons.

2.1 Scene Sampling and Parameterization
The shadow mapping algorithm works with two types
of samples. A view sample is a point on a scene surface
that is described by its 3D position (and other properties
such as color, normal vector etc.). The view samples are
generated by sampling the scene from a camera point of
view. Secondly, shadow samples are generated by sam-
pling the scene from a light source point of view. In
both cases, the sampling is performed using an orthog-
onal grid with a predefined resolution.
However, multiple view samples can be projected onto
one shadow sample and then aliasing can be observed
in a final image as jagged edges of the shadows. This
is caused by uniform rasterization of a texture produced
by a graphics hardware.
Another solution is to parameterize the sampling us-
ing a warping function y = f (x). The function enlarges
important parts of a scene in order to increase shadow
sampling rate. This technique increases a probability
that shadows for different view samples are resolved by
different shadow samples. There are two types of the
warping function - global and local. The global warp-
ing function can be defined by a transformation ma-
trix. This warping function mostly depends on a mu-
tual position of a camera, a light source and geometry
and ignores properties of view samples [SD02]. The lo-
cal warping function is derived from properties of view
samples and scene analysis [Ros12, JLZ13].

2.2 Rectilinear Texture Warping
Our algorithm is partially based on Rectilinear Texture
Warping (RTW) approach [Ros12]. Let us make a short
overview of RTW algorithm using backward analysis.
RTW approach utilizes various properties of view sam-
ples, e.g. distance to a camera, normal vector or edge

detection. The warping function can be constructed us-
ing forward, backward or hybrid analysis.

The first step in the forward analysis is rendering of
scene from a light source point of view. Then, the
importance map is computed.One additional rendering
step is necessary to compute shadows. In the backward
analysis, the G-buffer with the scene’s depth and color
is rendered from a camera point of view. Then, the im-
portance analysis is performed using samples projected
into the light space. The hybrid analysis combines both
approaches.

The backward analysis is the fastest method because it
requires a scene to be rendered only two times. The
first rendering pass is used to create a depth buffer from
a camera. The second rendering pass creates a warped
shadow map. Its complexity is linear with relation to
the number of light sources.

Figure 1: Two 1D warping functions enlarge parts of
the scene that are important according to the importance
map.

The warping function in RTW is composed of two 1D
warping functions that operate in projection plane of
a light source (see Figure 1). These functions are de-
rived from an importance map. The importance map
is constructed by projection of view samples onto the
projection plane of a light source. Multiple view sam-
ples can be projected into one pixel of the importance
map. In every pixel, the importance value is computed
based on the view sample properties. The 1D warping
functions are derived separately for column and rows
according to a maximal importance value. Since the
functions parameterize vertical and horizontal compo-
nent of the shadow map separately they produce an or-
thogonal warping grid.

3 SHADOW RENDERING USING
NON-ORTHOGONAL WARPING
GRID

The basic idea of our algorithm is to achieve better dis-
tribution of view samples in the shadow map. Every
shadow sample resolves shadow for all view samples
that were projected on it. The ideal situation occurs

when one texel from the shadow map samples a sur-
face that is projected onto one pixel in the image space.
However, this is hardly achievable in most of the scenes
because of the scene complexity, geometry and mutual
position of the camera and the light source. Because of
this fact, we can assume that the best result is observed
when the number of view samples for all shadow sam-
ples is the same.

In our approach, the importance map has the same res-
olution as the shadow map. Every pixel in the impor-
tance map stores the number of view samples that are
sampled by the given shadow sample. The importance
map can be created by projection of view samples into
to the light space and increase a counter by one. This
step can be easily accelerated by contemporary GPUs.

The complete algorithm for computing shadow consists
of the following steps:

1. Render a scene from a camera point of view to G-
buffer

2. Project every view sample into the importance map

3. Compute prefix-sum for every row in the importance
map

4. Construct the set of warping functions for rows ac-
cording to equation 4. Use the prefix-sum from the
Step 3

5. Smoothen the set of warping functions, e.g. using
weighted average

6. Project every view sample onto the importance map
(and increment by 1) leveraging the set of warping
functions created in the previous step

7. Repeat the Steps 2-5 for all columns

8. Create shadow map using both sets of warping func-
tions

9. Evaluate shadows in the scene using G-buffer, the
set of warping functions and the warped shadow
map

The first step is generation of the G-buffer. Apart from
other properties, it contains positions of view samples
that we need to analyze the importance for.

The most important are the steps 2-7 where we con-
struct the set of 1D warping functions. We derive
the warping functions in different manner than Rosen
[Ros12]. For every row and every column, we con-
struct one 1D warping function separately and thus we
do not allocate unneeded resolution in other parts of the
shadow map. The degree of freedom for warping func-
tions is increased using this approach and we should not
allow the situation illustrated on the Figure 2. The steps
are described in detail in the following section.

x

y

x

y

Figure 2: Importance map for RTW, Left: Combination
of two 1D warping function, Right: two 1D warping
function. It can be seen that blue parts are oversam-
pled. The larger cells cover more important areas of the
shadow map.

3.1 Construction of 1D Warping Func-
tions

For one row of the importance map, let us assume
a function f (x) that returns the number of view sam-
ples on a normalized position x and its corresponding
prefix-sum function g(x):

n = f (x) x ∈ 〈0,1〉 (1)

s = g(x) =
∫ x

0
f (x)dx (2)

For evenly distributed view samples in the row, the ratio
of the number of view samples on all positions before x,
i.e. g(x), and the total number of view samples g(1) =
N is equal to ratio of the position x and the row length:

g(x)
g(1)

=
x
1

(3)

Expression g(x)/g(1)> x/1 implies that there are more
view samples than the number of samples x and thus the
area needs to be enlarged to achieve uniform sampling
rate. On the other hand, expression g(x)/g(1) < x/1
implies that there are less view samples and the area
can be smaller.

Now, we can derive the warping function to be defined
as an offset o(x) that has to be added to the actual view
sample position. The offset function is given by:

o(x) =
g(x)
N
− x (4)

Let us assume that the view sample is projected onto a
particular row in the shadow map. Then, a new sample
position x′ in the row is given by:

x′ = x+o(x) (5)

Before we proceed with construction of warping func-
tions for columns, we need to recompute the impor-
tance map. But now, we apply the newly derived set
of 1D warping functions for rows. After this step, the
number of view samples that have to be redistributed in
a given column is nearly constant (see Figure 3). When
the 1D warping functions for columns are derived, all
the view samples are distributed uniformly.

Figure 3: Left: Five rows of the importance map. Blue
dots indicate view samples. Right: the importance
map constructed using the set of row warping functions.
Columns in the left do not contain the same number of
view samples. Columns in the right contains approxi-
mately the same number of view samples.

As we mentioned in the Section 2.2, the RTW algo-
rithm constructs two warping functions - for rows and
columns respectively. We improve this approach and
construct the set of warping functions for all rows and
all columns. Nevertheless, we need to smoothen these
functions in order to prevent them from providing too
different offsets. Otherwise, the large polygons that are
linearly rasterized would not be processed by the warp-
ing functions correctly. The smoothing step is included
in the RTW algorithm as well. Rosen performs this step
on the warping functions. However in our approach, we
smoothen among all warping functions. It can be im-
plemented, for instance, as a weighted average of the
results based on the number of view samples on a row
or a column respectively (see Figure 4).

The complete warping function can be expressed as:

warp(x,y) = (x+o(i)x (x),y+o(j)
y (y)) (6)

i = by ·wc

j = b(x+o(i)x (x)) ·wc

where w is the shadow map resolution (number of pix-
els in one row), o(i)x (x) is a warping function for ith row,
o(j)

y (y) is a warping function for jth column.

100

0

Figure 4: Top Left: Importance map, Top Right: a set
of warping functions for every row of the importance
map. Bottom left: smoothed warping functions, Bot-
tom right: The importance map after application of row
warping functions - importance map for columns. Yel-
low color in warping functions means positive offset for
certain position in the row.

When we apply both sets of warping functions, the view
samples projected onto the projection plane of a light
source are better spread as can be seen on the Figure 5.

Once we constructed both sets of the warping func-
tions, the shadow map can be generated (see Step 8 of
the proposed algorithm). A surface point with a world-
space coordinate v = (v0,v1,v2,1) is projected onto the
shadow map in Algorithm 1. Final shadow map can be
seen in Figure 6.

Input: v - vertex in world space, M - light
projection view matrix

Output: p - vertex in the shadow map clip space

1 a = M ·v;
2 b = ((a1,a2)/a4 +1)/2;
3 c = warp(b);
4 d = (c ·2−1) ·a4;
5 p = (d1,d2,a3,a4);

Algorithm 1: Warping function that can be used
in vertex / evaluation shader. Steps 1, 2 project
vertex into normalized coordinates of shadow
map. Step 3 moves vertex according to warp-
ing funcions. Steps 4, 5 project vertex back into
shadow map clip space.

3.2 Minimal Shadow Frustum Extension
We extended our solution with an additional improve-
ment. We implemented an algorithm for finding a min-
imal shadow frustum (MSF) [SD02] and we extended it
using rotating caliper. Using this technique, we project

Figure 5: Top Left: Scene rendered from a camera point
of view, Top Right: the importance map created from
view samples. Bottom Left: reprojected view samples
using only row warping functions. Bottom right: repro-
jected view samples using both sets for warping func-
tions. It can be seen than importance is more spread
across the importance map in the final stage. Black
parts of second image are pixels with no view samples.
These pixels correspond to those shadow map pixels
that are useless - they resolve shadowing equation for
invisible parts of the scene. In final image, these black
parts almost disappear.

only parts of the scene that are visible in the camera
view frustum and occluders outside the frustum that
cast shadows on objects inside the frustum.

However, since the algorithm is complex, it runs on
CPU and thus it may influence rendering speed. More-
over, issues caused by precision of floating point oper-
ations have to be considered during implementation.

The goal of this additional improvement is to verify
whether the MSF does not provide better results with
a less cost.

Rosen et al. presented a desired view (DV) function
that works similarly to the MSF. However, they did not
clearly show how it influences the overall quality. We
support the DV in our solution as well, but it is only
used as pre-process step before computing the impor-
tance map.

DV simply finds minimum and maximum view sam-
ples coordinates in the importance map. In addition,
the MSF rotates the bounding box to an optimal posi-
tion and adjusts near and far planes.

Rosen et al. computes DV in RTW approach from the
importance map by finding first/last row and column
that contains an importance value greater than zero. In

our solution, DV is computed by parallel reduction over
the set of view samples projected into the shadow map
space. DV does not contribute to warping process, it
only focuses the relevant part of shadow map. We can
apply the DV function before construction of the warp-
ing functions (before the Step 2 of the Algorithm 1):

3.3 Implementations Details
We implemented the algorithm in OpenGL 4.4 using
compute shaders. For creation of the importance map,
we used image atomic operation imageAtomicAdd de-
livered with OpenGL.

Our solution requires additional memory as compared
to the basic shadow mapping algorithm. We used de-
ferred shading for creating the G-buffer that requires set
of 2D textures. For storing the warping functions, we
used two one-channel floating point 2D textures. These
have the same resolution as the shadow map. Further,
the algorithm requires few textures for storing tempo-
rary results - the importance map, prefix sum map and
storage for not smoothed warping functions. The addi-
tional memory requirements are thus dependent on the
shadow map resolution.For instance, when we use the
shadow map with resolution w = 1024, we need to al-
locate additional 20 MBytes of the memory.

The memory requirements can be decreased by using
e.g. another format of textures. For instance, 16bit tex-
tures for the importance map or prefix-sum map. Also,
with increasing number of lights, the memory require-
ments increase only for storing the warping functions:
8w2[bytes] for one light source.

4 RESULTS AND DISCUSSION
The results were measured on a PC running Intel Core
i7 4790 with 16GB of memory. We used a high-end
GPU: NVidia GTX 980. Operation system was Linux
Ubuntu 14.04.2.

We compared our solution with the Rectilinear Texture
Warping algorithm (RTW) [Ros12], the basic shadow
mapping algorithm (SM), accelerated silhouette-based
shadow volumes algorithm (SV) [MKZP14] and the
shadow mapping algorithm extended with the minimal
shadow frustum (MIN-SM). We measured quality and
speed of all approaches (see Table 1 and teaser image).

Regarding quality comparison, we selected the shadow
volumes algorithm as the ground truth. It provides
sample-precise shadows and moreover, it also defines
a lower boundary for speed. No solution based on
the shadow mapping algorithm can be slower than the
silhouette-based shadow volume approach [MKZP14].

The RTW algorithm is the most similar approach to our
solution. And since we suggested some improvements,
the comparison to RTW is very important. We imple-
mented RTW algorithm with backward analysis used

SM RTW OURS OURS-DV

Figure 6: Images show shadow maps (grey squared images) for Observatory scene. From left to right: shadow
mapping (SM), Rectilinear Texture Warping (RTW), our solution, our solution using only DV.

Method time per frame
SM 1.596
MIN-SM 1.7
SV 8.750
RTW 3.296
Ours 4.708
Ours-DV 2.521

Table 1: Performance comparison of implemented
methods. Times are in miliseconds. Measured for Ob-
servatory scene on 1024× 1024 resolution with 512×
512 resolution for the shadow map.

for creation of the importance map. The timings for the
crucial steps of both approaches can be seen in Table 2.
We used both the distance to eye importance function
and the desired view function in all reference images
(see teaser image).

Also, comparison with the shadow mapping algorithm
extended with the minimal shadow frustum (MSF)
shows some interesting results. The main reason
for including this method is that we wanted to know
whether the MSF is not sufficient enough to render
images of the similar quality. Rosen did not described
this extension and did not show any results.

We measured our algorithm on three scenes (see Fig-
ure 7). We selected various types of scenes (outdoor as
well as indoor) in order to show that our solution can
be adapted to different environment and types of light
sources. Times for all scenes are shown in Table 3.

In Figure 7, you can see differences from a reference
solution (shadow volumes algorithm). Red pixels are
incorrectly computed.

As it can be seen in Table 3, our method is slightly
slower than RTW but it produces better visual results
(see teaser image and Figure 7). Measurements show
that computing MSF is not expensive and it may be suit-
able in some situations.Also, it did not provide the best
quality. Computing desired view (DV) function in our
method is the third fastest method but visual results are
worse than using MSF. Results also show that DV func-

tion is major part of decreasing alias error, but in some
situation it is not sufficient.

scene Conf. room Sponza Observatory
ours rtw ours rtw ours rtw

desired view 13.9 89.1 15.4 82.5 18.4 86.8imp. map 68.4 61.0 69.0
shadow map 14.4 7.3 19.9 14.1 8.2 9.3
final pass 3.3 3.5 3.7 3.2 4.4 3.8

Table 2: Overhead of steps in our algorithm for differ-
ent scenes. Values are in percent.

Scene Conf. room Sponza Observatory
triangles 126665 261978 52583
gbuffer 2.16 2.229 1.84
SV 9.64 18.41 14.96
SM 0.21 0.40 0.16
RTW 3.14 3.47 3.02
Ours 3.63 3.84 3.23

Table 3: Performance comparison of implemented
methods for different scenes. Times are in miliseconds.

Minimal Shadow Frustum

The experimental results show that performance of DV
and MSF depends on current hardware setup. MSF
performs better than DV when running on fast CPU
and slow GPU. When we compared the impact of both
approaches on quality comparing the texture warping
techniques, the results are following. The MSF or DV
perform better when a small part of a scene is rendered.
However, in real world scenes the camera renders a big-
ger part of a scene and in these cases the warping tech-
niques perform better (see Figure 7 and 6). The MSF or
DV do not generate the view frustum small enough and
thus artifacts on shadow edges are more apparent.

4.1 Limitations
Our implementation as well as the RTW algorithm have
to deal with linear rasterization unit. In Figure 5 (bot-
tom right), we can see the result of our warping process.
It can be seen that the warping functions distorted the

Figure 7: Images show difference between shadow mapping techniques and shadow volumes. Images in the first
column show basic shadow mapping. The second column shows RTW method and third column shows our new
warping method. First scene is Sponza, second scene is Observatory and last scene is Conference room. Times are
shown in Table 3.

space. Nowadays, the rasterization pipeline can han-
dle only the triangle vertices. If the warping function
changes rapidly between two vertices, we can see some
errors (see Figure 7 top, right for missing shadows un-
der curtains). We used a few techniques in our solution
to deal with these errors.

Firstly, we utilized the adaptive tessellation provided by
OpenGL. The similar improvement was suggested by
Rosen et al. Further, we modified the size of smooth-
ing window when averaging the warping functions. The
wider the window is the less different are the warping
functions. In extreme case, our solution converts to the
RTW algorithm. Another solution is to use weights dur-

ing smoothing step. It can influence sizes of offset val-
ues.

5 CONCLUSION AND FUTURE
WORK

This paper presents an extension of the Rectilinear Tex-
ture Warping algorithm achieved through the improved
non-orthogonal warping grid constructed using the set
of 1D warping functions. The novel importance warp-
ing function results in less artifacts at the shadow edges.

The improvement has been evaluated on various testing
scenes. We showed that the method is fast and provides
better results than the RTW algorithm. Also, we dis-

cussed various improvements and extensions that can
be used together with our solution.

Standard methods for alias reduction globally change
sampling rate using partitioning of a scene where direc-
tional light sources are commonly used. Our method
change sampling rate locally and thus it can be used
with other kinds of light sources using DPSM or cube
maps.

The future work includes adaptation the algorithm for
other visual effects, e.g. mirrors, refraction etc. We will
focus on more experiments with the shadow mapping
algorithm for point light source, i.e. the Cube Shadow
Maps.

6 ACKNOWLEDGMENTS
This work was supported by the Ministry of Education,
Youth and Sport of the Czech Republic under the re-
search program TE01020415 (V3C - Visual Computing
Competence Center). Additional data and algorithms
were provided by Cadwork.

7 REFERENCES
[BApS02] Stefan Brabec, Thomas Annen, and

Hans peter Seidel. Shadow mapping for
hemispherical and omnidirectional light
sources. In In Proc. of Computer Graphics
International, pages 397–408, 2002.

[Cro77] Franklin C. Crow. Shadow algorithms
for computer graphics. In Proceedings
of the 4th annual conference on Computer
graphics and interactive techniques, SIG-
GRAPH ’77, pages 242–248, New York,
NY, USA, 1977. ACM.

[FFBG01] Randima Fernando, Sebastian Fernandez,
Kavita Bala, and Donald P. Greenberg.
Adaptive shadow maps. In Proceedings of
the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIG-
GRAPH ’01, pages 387–390, New York,
NY, USA, 2001. ACM.

[JLZ13] Nixiang Jia, Dening Luo, and Yanci Zhang.
Distorted shadow mapping. In Proceedings
of the 19th ACM Symposium on Virtual
Reality Software and Technology, VRST
’13, pages 209–214, New York, NY, USA,
2013. ACM.

[LSK+05] Aaron Lefohn, Shubhabrata Sengupta,
Joe M. Kniss, Robert Strzodka, and
John D. Owens. Dynamic adaptive shadow
maps on graphics hardware. In ACM SIG-
GRAPH 2005 Conference Abstracts and
Applications, August 2005.

[LSL11] Andrew Lauritzen, Marco Salvi, and
Aaron Lefohn. Sample distribution shadow

maps. In Symposium on Interactive 3D
Graphics and Games, I3D ’11, pages 97–
102, New York, NY, USA, 2011. ACM.

[MKZP14] Tomáš Milet, Jozef Kobrtek, Pavel
Zemčík, and Jan Pečiva. Fast and robust
tessellation-based silhouette shadows. In
WSCG 2014 - Poster papers proceedings,
pages 33–38. University of West Bohemia
in Pilsen, 2014.

[NZJP12] Jan Navrátil, Pavel Zemčík, Roman
Juránek, and Jan Pečiva. A skewed
paraboloid cut for better shadow render-
ing. In Proceedings of Computer Graphics
International 2012, page 4. Springer Ver-
lag, 2012.

[Ros12] Paul Rosen. Rectilinear texture warping for
fast adaptive shadow mapping. In Proceed-
ings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games,
I3D ’12, pages 151–158, New York, NY,
USA, 2012. ACM.

[SD02] Marc Stamminger and George Drettakis.
Perspective shadow maps. ACM Trans.
Graph., 21(3):557–562, July 2002.

[VNHZ11] Juraj Vanek, Jan Navrátil, Adam Herout,
and Pavel Zemčík. High-quality shadows
with improved paraboloid mapping. In
Advances in Visual Computing, Lecture
Notes in Computer Science 6938, pages
421–430. Faculty of Information Technol-
ogy BUT, 2011.

[Wil78] Lance Williams. Casting curved shadows
on curved surfaces. SIGGRAPH Comput.
Graph., 12(3):270–274, August 1978.

[ZSXL06] Fan Zhang, Hanqiu Sun, Leilei Xu, and
Lee Kit Lun. Parallel-split shadow maps
for large-scale virtual environments. In
Proceedings of the 2006 ACM Interna-
tional Conference on Virtual Reality Con-
tinuum and Its Applications, VRCIA ’06,
pages 311–318, New York, NY, USA,
2006. ACM.

