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ABSTRACT

In the modern digital cinema production, extremely large vol-
umes (in order of 10s of TB) of footage data are captured
every day. The process of cataloging and reviewing such
footage is nowadays largely manual and time consuming pro-
cess. In our work, we aim at technical quality aspects, such as
correct exposure, color compatibility of adjacent shots, and
focusing. The main goal is to assist the reviewing process
by providing shot quality meta-data and possibly ordering or
even culling significant portion of the data from the review, as
better quality shot of the same scene exists. However, in or-
der to meaningfully compare technical quality, temporal shot
synchronization needs to be performed first.

We propose a fast and robust method for time synchro-
nization of video sequences, capturing similar scenes, which
arise naturally in digital cinema production. The method is
tested on an extensive library of sequences and its perfor-
mance is evaluated. We further present a preview of appli-
cation of the proposed method to detecting focusing errors.

Index Terms— large video databases, automatic quality
assurance, time synchronization

1. INTRODUCTION AND RELATED WORK

Video synchronization is an important task that can benefit
many contemporary video processing and quality assessment
applications. In quality assessment of film footage, video syn-
chronization may play an important role as well.

Results of functions used as quality metrics of video se-
quences and/or its individual frames are strongly dependent
on the content of the frames. Therefore, comparison of qual-
ity metric results of two different pieces of footage with dif-
ferent content does not often really tell much about the quality
but rather about the content. For the same reason, comparing
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quality metrics of two pieces of footage with the same con-
tent but with different timing of object and/or event occur-
rences often favors such piece in which some object occurs
longer rather the piece of footage which is better. The way to
overcome this problem is in synchronization of the pieces of
footage so that quality metrics can reflect the footage timing
and so that the comparison of quality metrics are applied on
pieces of footage with comparable content.

The video synchronization methods have been widely
researched in the past and quite many approaches have been
attempted. For example, Caspi and Irani [1, 2] present a
method for sequence alignment in both time and space, as-
suming static calibrated cameras related by a homography
and also a constant time displacement. A similar method
is also proposed by Tresadern and Reid [3]. Rao et al. [4]
propose a more general method, which can cope with more
general scenes and non-constant time delays. Tuytelaars and
Van Gool [5] further extend to allow fully general scenes
and independently moving cameras. These works employ
homography or epipolar geometry as constraints in 3D space.
Sivic and Zisserman [6] applied methods derived from text
retrieval. Whitehead et al. [7] used approach based on con-
sensus of feature motion in multiple videos. Further work
brought variety of new approaches. For example, Ushizaki et.
al. [8] introduced method that uses co-occurrence of match-
ing parts of image, Chum et al. [9] introduced similar method
even invariant to scale. Others, for example Yan and Polle-
feys [10], Le et al. [11], or Reznicek et al. [12] attempted also
feature based methods for detection of similarity of actions
in video, based on space-time features with bag of words
(BOW) and machine learning evaluation.

This work is partly based on the work of Beran et al.
[13] and Klicnar et al. [14] who applied similarity metrics
of the individual frames and processing of mutual similari-
ties of large sets of frames. In their approach, each frame is
processed by SURF feature extractor, the features are clus-
tered using a visual vocabulary and BOWs are assembled.
The BOWs obtained from different frames are then used as
a frame signature and is it assumed that the closer the signa-
tures the closer are also the frames.

The rest of this paper is organized as follows: the next
chapter describes the proposed approach and its mathemati-



cal formulation, chapter 3 describes the implementation used
in the evaluations, chapter 4 describes the datasets used and
presents the results achieved. Finally, 5 summarizes the paper
and describes possible future directions.

2. PROPOSED APPROACH

The proposed approach starts by extracting frame descriptors
for the two video sequences being matched. Note that this
step can be highly parallelized, and can be done for arbitrary
number of video sequences, which can be later synchronized
arbitrarily between each other. There is a wide variety of
suitable descriptors available in the literature, including color
and gradient histograms, SIFT, SURF, and bag of words ap-
proaches, see [13] for a comprehensive survey. In our im-
plementation, we use a simple tiled color histograms, in con-
junction with IO1O2 color transform [15]. It was empirically
determined, that it is sufficient to calculate a single frame de-
scriptor only every eight frames, making a trade-off between
processing speed and accuracy.

The subsequent stages of the algorithm take place on pairs
of feature vectors, corresponding to a pair of video sequences
x, y to be synchronized. For each pair of the feature vectors
Fx, Fy we calculate their cross-covariance matrix:

γxy =
(Fx − Fy)T (Fx − Fy)

||(Fx − Fy)T (Fx − Fy)||
(1)

We can directly use this matrix to calculate the synchroniza-
tion of the two shots using dynamic programming. We will
drop the sequence indices x, y in the following equation, in
order to reduce the notation clutter. Let us define a cost func-
tion q(i, j) which denotes the cost of frames i (in sequence x)
and j (in sequence y) being associated with each other:

Γi,j = −log(γi,j) (2)

q(i, j) =


0 if i = j = 1

min(q(i− 1, j − 1) + Γi−1,j−1,

q(i, j − 1) + Γi,j−1,

q(i− 1, j) + Γi,j) otherwise

(3)

We then declare the minimum-cost sequence of frame asso-
ciations, which connects the first frames q(1, 1) with the last
frames q(rows(Fx),rows(Fy)) of both respective shots,
and is evaluated using dynamic programming. The result of
this operation is depicted in Fig. 1 a). We can notice a slight
discrepancy of the calculated frame association curve in the
bottom right part of the image. This is likely due to self-
similarity of one of the shots, which can be seen as prominent
block-like patterns, spanning entire rows or columns of the
γxy matrix.

This can be partially reduced by taking this self-similarity
into account. This quantity is easily evaluated as auto-
covariance γxx and γyy (calculated using (1)), as follows:

γ̂xy = γ−1
xx γxyγ

−1
yy (4)

Fig. 1. The cross-covariance matrices and time synchroniza-
tion curves for a sample from the Hollywood dataset [16],
ground truth in green, the obtained results in red. a) results
for simple γ (left), b) results with auto-correlations (right).
Best viewed in color.

This can lead to some numerical issues if one of γxx or γyy is
near to singular, which would happen for a sequence contain-
ing no motion. In practice, however, even the slight noise in
the video is sufficient to keep the computation stable. In any
case, the singularity is easily detected by calculating deter-
minants of the two matrices and comparing it to a threshold.
Note that the determinant calculation is essentially free, as we
have already calculated LU decomposition of both matrices in
order to perform the inverse. If a singularity is detected, the
method falls back to using the original γxy . An example result
using this method is depicted at Fig. 1 b).

3. IMPLEMENTATION

The implementation was written in C++. For the calculations
of covariance matrices and their inverse, an OpenCL GPU im-
plementation was used. For calculating (1), a similar method
to the one described in [17] was used: the whole operation
can be seen as many batched operations with small vectors
(the individual descriptors). This is actually beneficial from
the memory traffic point of view, as the individual vectors can
be better cached in the shared memory, and most of the opera-
tions are performed in registers, rather than forming interme-
diate matrices, as would happen in the dense case. The matrix
is copied back to the CPU side for the dynamic programming
algorithm. All the times of memory transfers between CPU
and GPU are included in the timing evaluations.

4. EXPERIMENTAL EVALUATION

The proposed methods were tested on a subset of TRECVID
2008 dataset [18], especially the BBC rushes. Additional
evaluations were made using sequences from the Hollywood
dataset, which were artificially modified to provide ground
truth for the evaluation.

The Hollywood dataset [16] only contains one version of
each shot (as opposed to the BBC rushes), and so several



Fig. 2. Three different time skew profiles for the ground truth
data, used in the evaluation. Top row: relative speed pro-
files; the horizontal axis is time, the vertical axis is playback
speed. Bottom row: corresponding relative time profiles; the
horizontal axis is time of the original shot, vertical axis is the
time of the perturbed shot

different versions of each shot were created by artificially
changing the playback speed of the video, to provide anno-
tated ground truth data. Three different curves were used,
as depicted in Fig. 2. These curves give the relative play-
back speed, and their normalized cumulative sum gives rela-
tive playback time, which is for all three cases a smooth curve.

All the tests were performed on a computer with NVIDIA
Tesla K40 (12 GB RAM), a pair of AMD Opteron 2360
SE CPUs running at 2.5 GHz and 16 GB of RAM. The
program was compiled as x64, and CUDA was set to use
64-bit pointers. The latest GPU drivers (version 344.48) were
used. CUDA implementations were linked against CUDA
6.5 SDK libraries. During the tests, the computer was not
running any time-consuming processes in the background.
Each test was run at least ten times until cumulative time
of at least 5 seconds was reached, and the average time was
calculated in order to avoid measurement errors. Explicit
CPU - GPU synchronization was always performed, using
cuCtxSynchronize(). ECC memory protection was
disabled on the Tesla GPU.

Precision of the calculated time synchronization was eval-
uated, using the mean square error of the ground truth and the
calculated frame time value, summed over the frames which
had a frame descriptor associated with them. In addition to the
mean, a maximum error (the distance of the worst matched
corresponding frames) is also reported. The results of this
evaluation are showin in Fig. 3. There were no noticeable
precision differences between the shots from the TRECVID
and from the Hollywood dataset.

In case of the algorithm using the auto-covariances, all the
failure cases were detected using a threshold of 0.01 relative
to the norm of the matrix. An illustration of one such failure
case can be seen in Fig. 6.
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Fig. 3. Precision comparison for all the tested sequences.
On top without auto-covariances, bottom the same sequences
with auto-covariances.

The presented results are qualitatively different from the
ones in previous works of Beran et. al. [13] and Klicnar et. al.
[14], who aimed at detection of similar shots within a longer
video programmes, such as TV news broadcast, with the aim
of identifying scenes which were cut or added. In contrast,
the sequences used in this paper are each a single shot, and
we strive to match the individual frames, rather than longer
blocks.

Time of the processing was also evaluated on several
randomly chosen sequences, as reporting times for all the
sequences would be rather chaotic. The processing time is
dominated by the extraction of the frame description vectors,
which is currently implemented using the OpenCV library 1,
but could be also easily accelerated by the GPU. The relative
times are reported in Fig. 4. The absolute times are reported
in Fig. 5, and indicate superlinear scaling, which is due to
efficient implementation. Please note that the time of video
decoding, which was done using the FFmpeg library 2, was
included in the feature extraction stage.

1http://opencv.org/
2http://ffmpeg.org/
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Fig. 4. Timing comparison on a few randomly chosen pairs
of sequences. On top without auto-covariances, bottom the
same sequences with auto-covariances. Please note that the
feature extraction takes a vast majority of the time (see the
vertical axis labels).

5. CONCLUSIONS AND FUTURE WORK

In this paper, we described a fast and robust method for low-
level activity description and time synchronization of video
sequences. This is highly applicable in digital cinema pro-
duction, where many takes of the same scene are captured
with slightly different timing of actor actions. The proposed
method allows for time synchronization of such shots, so that
technical quality indicators can be evaluated on a per-frame
basis and compared, e.g. to rank the takes by quality. One
such indicator is in-focus detection, which is meant to help
the filmmakers to quickly discard out-of-focus footage. This
method will be presented in a separate paper.

The proposed method was tested on two suitable datasets,
where it performed admirably. As demonstrated by the syn-
thetic data, even abrupt changes in speed of actions in the
video lead to only gradual changes in the time synchroniza-
tion curves. The dynamic algorithm could be thus regularized
to recover smooth curves, to further improve the precision.

Although the algorithm is precise, its computational per-
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Fig. 5. Scaling of the runtime of the proposed algorithm, with
respect to sequence duration (times with and without auto-
covariances are practically identical).

Fig. 6. The cross-covariance matrices and time synchroniza-
tion curves, ground truth in green, the obtained results in red.
a) results with auto-correlations (a failure case) on the left, b)
results for simple γ (fallback) on the right. Best viewed in
color.

formance is currently limited by the extraction of the frame
descriptors. This extraction would be suitable for GPU accel-
eration.

Additionally, with the very large data in mind, a slightly
different approach could be devised, with a different perfor-
mance scaling. The proposed method incurs one cost for
the preprocessing step (feature extraction), which can be per-
formed independently for each shot, and then the pairwise
matching incurs a second cost, which is performed pairwise.
This is not generally a problem in the movie industry, where
only a limited number of takes of each particular shot exists.
But when matching a large set, the cost of the pairwise pro-
cessing will grow exponentially. For the means of the tech-
nical quality evaluation, the video synchronization is not en-
tirely needed. It should be possible to evaluate an (approxi-
mate) function which gives quality sampling density over the
shot, so the (scalar) qualities of any two shots would be com-
parable. This would yield completely independent processing
of each shot, and thus perfect linear scaling.
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