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Abstract—Simulation is becoming more important for 
deploying new technologies or as a proof of concept of new 

protocols. This paper presents three routing extensions to the 

INET framework for OMNeT++. The first one is dynamic 

multicast routing with Protocol Independent Multicast support. 

The second case is Transparent Interconnection of Lots of 
Links, which is descendent of data-link layer loop prevention 

protocols. The third contribution is Locator/ID Split Separation 

Protocol implementation as currently widely accepted partial 

solution for Internet scaling crisis.  
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I.  INTRODUCTION 

The project ANSA (Automated Network Simulation and 

Analysis) running at the Faculty of Information Technology 
is dedicated to develop the variety of software tools that can 

create simulation models based on real networks and 
subsequently allow for formal analysis and verification of 

target network configurations. It might be used by public as  
the routing/switching baseline for further research initiatives 

using simulator for verification. This paper not only extends 

our previous work involving multicast routing [1], but also 
introduces our latest contributions regarding computer 

networks routing and switching. 
Multicast spares network resources, namely bandwidth. 

Sender and receivers communicate indirectly instead of many 
separate connections between them. Because of that, multicast 

traffic is carried across each link only once and the same data 

is replicated as close to receivers as possible. However, this 
effectiveness goes concurrently with increased signalization 

and additional routing information exchange. End-hosts and 
routers maintain multicast connectivity with the help of 

following protocols: 

 Internet Group Management Protocol  (IGMP) [2] / 

Multicast Listener Discovery (MLD) [3] – End-hosts 

and first hop multicast-enable routers are using 
IGMP and MLD protocols for querying, reporting 

and leaving multicast groups on local LAN segments 
– they announce their willingness to send or receive 

multicast data. IPv6 MLD is descendent of IPv4 
IGMP, but both protocols are identical in structure 

and message semantic. 

 Distance Vector Multicast Routing Protocol 

(DVMRP) [4], Multicast Open Shortest-Path First 

(MOSPF) [5], Protocol Independent Multicast (PIM) 
– All of them are examples of multicast routing 

protocols that build multicast topology in router 
control plane to distribute multicast data among 

networks. DVMRP and MOSPF are closely tight to 
the particular unicast routing protocol (RIP, OSPF), 

whereas variants of Protocol Independent Multicast 
(PIM) are independent by design and they are using 

information inside unicast routing table more 

generally. 
The growth of data-centers brings up several problems 

Data-centers most commonly use Ethernet based networks. 
Ethernet network provides Layer-2 flat-topology design and 

with Spanning Tree Protocol (STP) offers seamless plug-and-
play approach for connecting new nodes to existing network. 

The STP guarantees loop-free operation without additional 

configuration by blocking some ports. The STP was not 
designed for operation in modern virtualized data-centers and 

it underutilizes available resources, even though there might 
be redundant links to the same node or multiple paths to a 

destination over multiple hops. The STP creates single logical 
tree to forward unicast and multicast traffic. The 

RFC 6325 [6] introduced successor called TRILL 

(Transparent Interconnection of Lots of Links) that treats all 
these problems. The TRILL accomplishes this by combining 

functionality of Layer-2 (switching) and Layer-3 (routing). 
For Layer-3 operation, it takes advantage of slightly modified  

routing protocol Intermediate System to Intermediate System 
(IS-IS) [7]. The hardware implementation of TRILL is 

represented by device called Routing Bridge (RBridge). 
RBridge’s operation is backward compatible with Ethernet 

Bridging 802.1D and Virtual LAN 802.1Q. 

Locator/ID Split Protocol (LISP) development started 
after IAB Workshop in 2006 as the response dealing with 

major Internet architecture problems RFC 4984 [8] and 
follow-up RFC 6227 [9]. IP address functionality is nowadays 

overloaded; it serves both localization (where) and 
identification (what) purposes. The main idea behind LISP is 

to separate those two functions. Then LISP should reduce 

default-free zone routing table growth, stop prefix 
deaggregation, allow easier multihoming and mobility  

without the BGP and split locator and identifier namespaces. 
LISP supports both IPv4 and IPv6 seamlessly; moreover, it is 

agnostic to any network protocol. Transition mechanisms are 
part of the LISP protocol standard, thus it supports 

communication with legacy non-LISP world.  

This paper outlines four simulation modules, which create 
part of the ANSA project and which extend functionality of 

the INET framework in OMNeT++.  



This paper has the following structure. The next section 

covers a quick overview of existing OMNeT++ simulation 
modules relevant to the topic of this paper. Section III 

describes design of the relevant PIM, TRILL and LISP 
models. Section IV presents validation scenarios for our 

implementations. The paper is summarized in Section V 
together with unveiling our future plans. 

II. STATE OF THE ART  

The current status of support in OMNeT++ 4.5 and 

INET 2.4 framework is according to our knowledge as 
follows. We merged functionality of generic IPv4 Router 

and IPv6 Router6 nodes, so that we created the dual-stack 

capable router – ANSARouter. 

 
Figure 1. ANSARouter st ructure with highlighted contribution 

We have searched in scientific community around 
simulation and modeling for other PIM implementations prior 

to our work. Limited versions (e.g., without PIM State Refresh 
messages) exist for NS-2 [10] or OPNET [11]. However, none 

of them provides robust implementation (i.e., with finite-state 

machines implementing whole RFC behavior). Also, existing  
OMNeT++ multicast attempts proved to be depreciated [12]. 

We have similarly looked for TRILL, but did not find any 

project trying to create TRILL simulation implementation .  
Limited LISP implementation was created [13] to support 

LISP MobileNode NAT traversal [14]. However, it is 
intended for the INET-20100323 and OMNeT++ 4.0.  

Resulting structure of ANSARouter is in Figure 1 with 
highlighted simulation modules that are described within this 

paper. 

III. IMPLEMENTATION 

A. PIM – Theory of operation 

All multicast routing protocols provide a function to 
answer the question, “How to create routing path between 

sender(s) and receivers?” Baselines for this functionality are 

distribution trees of the following two types: 
Source trees  – The separate shortest path tree is built for 

each source of multicast data. A sender is the root and 
receivers are the leaves. However, memory and computation 

overhead causes this type is not scalable in the case of a 
network with many sources of multicast. In these situations 

usually the Shared tree is used. 

Shared trees  – A router called Rendezvous Point (RP) 
exists in a topology that serves as a meeting point for the 

traffic from multiple sources to reach destinations. The shared 
tree interconnects RP with all related receivers. 

There are four PIM operational modes: PIM Dense Mode 
(PIM-DM), PIM Sparse Mode (PIM-SM), Bidirectional PIM 

(BiDir-PIM) and PIM Source-Specific Multicast (PIM-SSM). 
All of them differ in signalization, employed distribution trees 

and suitable applications. 

Multicast routing support is performed by one dedicated  
router on each LAN segment elected based on PIM Hello 

messages. This router is called designated router (DR) and it 
is the one with the highest priority or highest IP address. 

PIM-DM is recommended for topologies with only one 
multicast source and lots of receivers. PIM-DM can be easily 

deployed without burdening configuration on active devices. 

However, PIM-DM does not scale well when number of 
sources increases. For this situation or for topologies with 

sparsely connected receivers, PIM-SM is suggested to be 
employed. Sparse mode scales much better in large topologies 

comparing to Dense mode, but configuration and 
administration is more complicated. PIM-SSM suits for 

multicast groups containing multiple sources providing the 

same content where client using IGMPv3 or MLDv2 may  
specify from which particular source it wants to receive data. 

BiDir-PIM is intended for topologies where many-to-many  
communication occurs. Currently, PIM-DM and PIM-SM are 

widely deployed PIM variants. Hence, we decided to 
implement them as the first.  

PIM-DM idea consists of initial data delivery to all 
multicast-enable destinations (to flood multicast traffic 

everywhere), where routers prune themselves explicitly from 

the distribution tree if they are not a part of the multicast 
group. PIM-DM is not taking advantage of RP; thus, it is using 

source trees only.  
PIM-DM routers exchange following messages during 

operation: 



 PIM Hello – Used for neighbor detection and 

forming adjacencies. It contains all settings of shared 
parameters used for DR election; 

 PIM Prune/Join – Sent towards upstream router by 
downstream device to either explicitly prune a source 

tree, or to announce willingness to receive multicast 
data by another downstream device in case of 

previously solicited PIM Prune; 

 PIM Graft – Sent from a downstream to an upstream 

router to join previously pruned distribution tree; 

 PIM Graft-Ack  – Sent from an upstream to a 
downstream router to acknowledge PIM Graft; 

 PIM State Refresh – Pruned router refreshes prune 
state upon receiving this message; 

 PIM Assert – In case of multi-access segment with  
multiple multicast-enabled routers one of them must 

be elected as an authoritative spokesman. Mutual 
exchange of PIM Asserts accomplishes this election. 

On the contrary to PIM-DM, PIM-SM works with 
different principle where initially no device wants to receive 

multicast. Thus, all receivers must explicitly ask for multicast 

delivery and then routers forward multicast data towards end-
hosts. PIM-SM employs both types of multicast distribution 

trees. Sources of multicast are connected with RP by source 
trees – source of multicast is the root of a source tree. RP is 

connected with multicast receivers by shared trees – RP is the 
root of shared tree. Multicast data is traversing from sources 

down by source tree to RP and further down by shared tree to 

receivers. PIM-SM cannot work properly until all PIM routers 
in a network do not know exactly which router is RP for a 

given multicast group. 
PIM-SM exchanges subsequent message types: 

 PIM Hello – same as PIM-DM. 

 PIM Register – Sent by source’s DR towards RP 

whenever new source of multicast is detected. 

 PIM Register-Stop – Solicited confirmation of PIM 

Register. It is sent by RP in reverse direction that 

source’s DR can stop registering process of a new 
source. RP is aware of multicast data and may send 

them to receivers via shared tree. 

 PIM Prune/Join – This message forms the shape of 

source and shared distribution trees. Multiple sources 
could provide data to the same multicast group – 

each one of them sends data via own source tree 
towards RP, from here data is reflected to receivers 

via shared tree. 

 PIM Assert – same as PIM-DM. 
The thorough survey on PIM-DM and PIM-SM message 

exchange scenarios are out of scope of this paper. More can 
be found in RFC 3973 [15] and RFC 4601 [16]; let us state 

that our implementations (i.e., finite-state machines, message 
structure, etc.) fully comply with IETF’s standards. 

B. PIM – Design 

We have synthetized multiple finite-state machines that 

describe behavior of PIM-DM and PIM-SM with reference to 
used timers and exchanged PIM messages [17]. Figure 2 

shows implemented architecture of the pim module. 

 
Figure 2. Proposed PIM module design 

Besides previous modules, there were also some minor 
alternations to IPv4 networkLayer as well as to IPv4 

routingTable module. 

Implementation is done in NED (model design) and C++ 
(model behavior) languages. Brief description of implemented  

components is summarized in Table I. 

TABLE I. DESCRIPTION OF PIM SUBMODULES 

Name  Description  

pimSplitter 

This submodule is connected with INET 

networkLayer. It inspects all PIM messages 
and passes them to appropriate PIM 
submodules. 

pimDM 
The main implementation and logic of PIM-DM 
protocol is over here. 

pimSM 
The main implementation and logic of PIM-SM 

protocol is over here. 

pim 

InterfaceTable 

Stores all PIM relevant information for each 

router’s interface. 

pim 

NeighborTable 

Keeps state of formed PIM adjacencies and 
information about neighbors (PIM version they 
are using, priorities, neighbors IPs). 

pimSSM, 
pimBiDir 

Prepared as a placeholder for upcoming 
implementations of BiDir-PIM and PIM-SSM 

variants. 

C. TRILL – Theory of operation 

TRILL provides loop-less topology for Layer-2. It 
replaces obsolescent STP protocol. Devices that actually run 

TRILL are called RBridges. The work of RBridge can be 

divided into two separate components – routing and 
switching.  

The first component is based on link state approach and 
employs so called IS-IS Layer-2 implementation. All 

RBridges run instance of this altered IS-IS to exchange link-
state statuses (LSPs) for the whole topology. The IS-IS Layer-

2 instance uses single IS-IS Level-1 area with zero-length 

Area-ID, which contains all RBridges as if they are in one 
large flat Layer-2 network. Designated RBridge (DRB) is 

elected from the set of RBridges on shared link and it chooses 
Appointed Forwarder (AF) for this link. DRB informs others 

about chosen AF via TRILL Hello messages. Appointed 
Forwarder acts as ingress and egress gate to the campus  

(area covered by single TRILL instance). Designated VLAN 

carries all TRILL-encapsulated traffic between RBridges. 



DRB is in charge of appointing Designated VLAN. 

Encapsulated frame format is depicted in Figure 3. 
The second component is TRILL itself. The TRILL 

distinguishes five classes of traffic: 

 TRILL L2 Control – Frames of low level Layer-2 

protocols like STP (e.g., BPDUs). TRILL control 
frames are processed locally. 

 Native – Non-TRILL traffic from/to hosts. Only AF 
sends and receives native traffic on shared segment. 

 TRILL Data – TRILL encapsulated frames with  

Ethernet’s header field Ethertype set to 0x22F3. 

 TRILL Control – Frames that belongs to Layer-2 IS-

IS protocol. They have Ethertype set to 0x22F4 
value. 

 TRILL other – Other frames, which do not match any 
of the previous types, are dropped without 

acknowledgment. 
RBridge distinguishes between three port types: 

 Access Port – handles native non-TRILL traffic from 
hosts and delimits campus edges. 

 Trunk Port – handles TRILL Data frames. These 

ports are located inside campus. 

 Hybrid Port – handles both previous traffic types. 

This port interconnects partitioned campus across 
non-TRILL area. 

 

New outer 
Ethernet header 

TRILL 
header 

Original unchanged 
Ethernet header 

Ethernet Payload FCS 

Figure 3. TRILL frame encapsulation 

Native frame is equipped with TRILL header (see Figure 
4) as soon as it passes first RBridge. Additionally, outer 

Ethernet header is also prepended. Subsequently, either whole 
encapsulated frame is sent towards egress RBridge that has 

destination host connected, or native frame is forwarded on 
local port. Multi-destination frame is used when destination 

is unknown. RBridge sends this kind of frame: a) in native 

form on all links where this RBridge acts  as an AF; b) as 
TRILL encapsulated to its neighbors according to given 

distribution tree. RBridge learns the source MAC address 
each time it receives frame in native form on the port for 

which this RBridge is AF. 

Version (2b) Reserved (2b) M (1b) 

Op-Length (5b) Hop Count (6b) 
Egress RBridge Nickname (16b) 
Ingress RBridge Nickname (16b) 

Options... 

Figure 4. TRILL header format 
When RBridge receives TRILL encapsulated frame, it 

either sends it toward egress RBridge according to 

RBMACTable (unicast case), or to all connected branches of 

a given distribution tree (multi-destination case). If the 

receiving RBridge is also the egress RBridge then the frame 

is decapsulated and sent to the local port. 

Distribution Trees are used when sending multi-

destination frames. RBridge with the highest priority in 
campus decides about the number of distribution trees and 

their roots. 
Complete description of TRILL protocol is out of scope of 

this document. 

D. TRILL – Design 

We created a new RBridge simulation model. This model 
comprises existing IS-IS module that has been extended by 

IS-IS Layer-2 design and plug-and-play configuration-less 
functionality. The complete structure is shown in Figure 5. 

 
Figure 5. Proposed RBridge module design 

The overview of each submodule is given in Table II. 

T ABLE II. DESCRIPTION OF RBRIDGE SUBMODULES 

Name  Description  

RBEthInterface 

This module handles MAC part of the INET 

EthernetInterface module without 
de/encapsulation. 

RBridgeSplitter 
This submodule acts as a placeholder for future 

integration with other modules. 

ISIS 

Submodule contains L2/L3 version of IS-IS 
routing protocol. An appropriate version is 
chosen based on device type. 

TRILL The main implementation and logic. 

RBMACTable 

It  plays similar role as does routing table for 
Layer-3 protocols. It resolves destination to a 

set of output ports. 

RBVLANTable 
It  stores information about active VLANs (i.e., 

name, VLAN ID and associated ports). 

clnsTable 

Submodule stores next-hop addresses to all 
accessible destinations via routes with the best 
metric. It  supports load balancing for routes 
with equal metric. 

 

As a first step, we needed to change behavior of 
RBEthInterface module to use only the MAC part, but 

leave the de/encapsulation to TRILL. After the incoming  

frame passes through RBEthInterface, it is delivered to 



TRILL module. Then the frame is classified and processed 

based on previously mentioned traffic class. For unicast 
frames, the sender is learned and put into RBMACTable. 

Every RBridge generates Distribution trees independently 

based on its link-state database content. 

E. LISP – Theory of operation 

LISP accomplishes loc/id separation by splitting the IP 

address into two namespaces: 

 Routing Locator (RLOC) namespace with  
addresses fulfilling their localization purposes by 

telling where device is connected in the network. 

 Endpoint Identifier (EID) namespace where each 

device has unique name that distinct it from each 
other. 

There is (and probably always will be) a non-LISP 
namespace where direct LISP communication is (even 

intentionally) not supported. Apart from namespaces exist  

also: a) specialized routers performing map-and-encap that 
interconnects different namespaces; b) dedicated devices 

maintaining mapping system; c) proxy routers allowing  
communication between LISP and non-LISP world. 

LISP mapping system performs lookups where a set of 
RLOCs is retrieved for a given EID. Following map-and-

encap principle, original (inner) header is encapsulated by a 
new (outer) header, which is appended when crossing borders 

from EID to RLOC namespace. Whenever packet is crossing 

back from RLOC to EID namespace, packet is decapsulated 
by stripping off outer header. LISP places additional UDP 

header succeeded by LISP header between inner and outer 
header. LISP uses reserved port numbers – 4341 for data and 

4342 for signalization traffic. Currently any combination of 
IPv4/v6 headers is supported. 

Basic components are Ingress Tunnel Router (ITR) and 

Egress Tunnel Router (ETR). Both are border devices 
between EID and RLOC space, the only difference is in which 

direction they are operated. The single device could be either 
ITR only, or ETR only, or ITR and ETR at the same time. 

Usually, the functionality is dual and we denote this kind of 
device with abbreviation xTR. 

ITR is the exit point from EID space (a.k.a. LISP site) to 

RLOC space, which encapsulates original packet. This 
process may consist of querying mapping system followed by 

updating local map cache where EID-to-RLOC mapping 
pairs are stored for limited time to reduce signalization 

overhead.  
ETR is the exit from RLOC space to EID space, which 

decapsulates original header. This means that outer header 
plus auxiliary UDP and LISP headers are stripped off. ETR is 

also announcing all LISP sites (their EID addresses) and by 

which RLOCs they are accessible. 
LISP mapping system is primary employing two 

components – Map Resolver (MR) and Map Server (MS). 
Looking for RLOC to EID is analogous process as DNS name 

resolution. In case of DNS, host asks its DNS resolver 
(configured within OS) which IP address belongs to a given 

fully qualified domain name. DNS server responds with 

cached answer or delegates the question recursively or 
iteratively to another DNS server according to the name 

hierarchy. In case of LISP, the querier is ITR that needs to find 

out, which RLOCs could be used to reach a given EID. ITR 
has preconfigured MR, which is bothered each time mapping 

is needed. Mapping queries are data-driven. This means that 
data transfer between LISP sites initiates mapping process and 

data itself is postponed until mapping is discovered. Map 
cache on each ITR holds only those records that are actively 

needed by ongoing traffic. 

Following list contains all LISP mapping signalization 
messages with their brief description. LISP control traffic are 

LISP packets without inner header – just outer header + UDP 
header with source and destination ports set on 4342 + 

appropriate LISP message header. Structural details of each 
message can be found in RFC 6830 [18].  

 LISP Map-Register – Each ETR announces as 
authority one or more LISP sites to the MS 

employing this message. Each registration contains a 

list of RLOCs to a given EID with properties. 

 LISP Map-Request – ITR generates this request 

whenever it needs to discover current EID-to-RLOC 
mapping and sends it into mapping system. 

 LISP Map-Reply – This is solicited response from the 
mapping system to a previous request and contains 

all RLOCs to a certain EID together with their 
attributes. Each ITR has its own map cache where 

information from replies are stored for a limited time 

and used locally to reduce signalization overhead of 
mapping system. 

 LISP Negative Map-Reply – Mapping system 
generates this message as a response whenever given 

identifier is not the EID and thus proxy routing for 
non-native LISP communication must occur. 

MR accepts LISP Map-Requests sent by ITR. Message is 
either delegated further into mapping system (namely to 

appropriate MS), or MR responds with LISP Negative Map-

Reply if questioned EID is address from non-LISP world. 
Every MS maintains mapping database of LISP sites that 

are advertised by LISP Map-Register messages. If MS 
receives LISP Map-Request then: a) either MS responds 

directly to querying ITR – it is allowed to do that because MS 
has all the necessary information in its mapping database; b) 

or MS forwards request towards designated ETR that is 

successfully registered to MS for target EID.  
Each RLOC record to a given EID has two attributes – 

priority and weight. Priority (one byte long value in range 
from 0 to 255) expresses each RLOC preference. The locator 

with the lowest priority is used by ITR when creating outer 
header. Communication may be load-balance based on weight 

(in range from 0 to 100) between multiple RLOCs sharing the 

same priority. Priority value 255 means that locator must not 
be used for traffic forwarding. Zero weight means that RLOC 

may be used for load-balancing according to ITR wishes. 

F. LISP – Design  

LISP xTR, MR and MS functionality is currently 
implemented within LISPRouting compound module that 

is interconnected with both (IPv4) networkLayer and 

(IPv6) networkLayer6. It consists of three submodules  



that are depicted in the Figure 6 and described in Table  below 

the figure. 

 
Figure 6. Proposed LISPRouting module design 

T ABLE III. DESCRIPTION OF LISPROUTING SUBMODULES 

Name  Description  

lispCore 

The heart that is responsible for handling LISP 
control and data traffic. It  independently 
combines functionality of ITR, ETR, MR and 

MS. In case of ITR, this involves encapsulation 
and active maintenance of map cache. In case 
of ETR, it  is responsible for decapsulation 
process and site registration. In case of MR, it  

simply delegates map queries. In case of MS, 
it  maintains mapping database. 

lispMapCache 

Local LISP map cache that is populated on 
demand by routing data traffic between LISP 
sites. Each record (EID-to-RLOC mapping) 

has its own separate handling (i.e., expiration, 
refreshment, availability of RLOCs). 

lispMapDatabase 

MS’s mapping database that maintains LISP 
site registration by ETRs. It  contains site 
specific information (e.g., shared key, statistics 

of registrars and times of registration). Each 
site also contains known EID-to-RLOC 
mappings. 

 

Minor changes were done also to both 
networkLayer/6 submodules in order to divert LISP data 

traffic intended for encapsulation/decapsulation towards 

LISPRouting module (UDP port 4341). LISPRouting 

is also registered with UDPSocket on local port 4342 to 

handle LISP control messages  coming from UDP submodule. 

IV. TESTING 

In this section, we provide information on testing and 
validation of our implementations using several test scenarios. 

We have built exactly the same topologies for both simulation 
and real network and observed (using transparent switchport 

analyzers and packet sniffers) relevant messages exchange 

between devices. 
For multicast operation, we compared the results with the 

behavior of referential implementation running at Cisco 
routers (Cisco 2811 routers with IOS operating system version 

c2800nm-advipservicesk9-mz.124-25f) and host stations 

(with FreeBSD 8.2 OS). 
For TRILL, we did a comparison only with specifications. 

As for LISP, we conducted tests and compared them to a 
referential behavior of Cisco routers (C7200 routers with IOS 

c7200-adventerprisek9-mz.152-4.M2) and host stations (with 
Windows 7 OS). 

A. PIM-DM 

We had considered multiple different topologies and 

decided for one which is just enough large to test every 
multicast aspect and still with scenario easy to follow. In this 

testing network (topology is  shown in Figure 7), we have three 

routers (R1, R2 and R3), two sources of multicast (Source1 

and Source2) and three receivers (Host1, Host2 and 

Host3). 

 
Figure 7. PIM-DM testing topology 

We scheduled actions covering all phases of multicast 

communication (i.e., sources start and stop sending and hosts 
start and stop receiving of multicast data). Scheduled scenario 

is summarized in Table IV.  

TABLE IV. PIM-DM EVENTS SCENARIO 

Phase  Time [s] Device  Multicast action  Group 
#1 0 Host1 Starts receiving 226.2.2.2 

#2 87 Source1 Starts sending 226.1.1.1 

#3 144 Host2 Starts receiving 226.1.1.1 
#4 215 Source2 Starts sending 226.2.2.2 

#5 364 Host2 Stops receiving 226.1.1.1 

#6 399 Source2 Stops sending 226.2.2.2 

 

Hosts sign themselves to receive data from particular 
multicast group via IGMP Membership Report message 

during phases #1 and #3. Similarly, the host uses IGMP Leave 

226.2.2.2 

226.1.1.1 

226.1.1.1 

226.2.2.2 



Group message to stop receiving data during phases #5 and 

#6. 
#1) There are no multicast data transferred. Only PIM 

Hellos are sent between neighbors. 
#2) First multicast data appears but, because of no 

receivers, routers prune themselves from source 
distribution tree after initial flooding. 

#3) Host2 starts to receive data from group 226.1.1.1 at 

the beginning of #3. This means that R2 reconnects to 

source tree with help of PIM Graft, which is 

subsequently acknowledged by PIM Graft-Ack . 
#4) The new source starts to send multicast data. All 

routers are part of the source distribution tree with R3 

as the root. R3 acts as RP that is illustrated in Figure 8. 

 
Figure 8. R3 multicast routing table after phase #4 

#5) Host2 is no longer willing to receive multicast from 

226.1.1.1 and, because Host2 is also the only listener 

to this group, R2 disconnects itself from distribution 

tree with PIM Prune/Join. 
#6) Finally Source2 stops sending data to the group 

226.2.2.2 at the beginning of #6. Subsequent to this, no 
PIM message is generated. Routers just wait for 180 

seconds and then wipe out an affected source tree from 
the multicast routing table. 

The message confluence proved correctness of our PIM-

DM implementation by simulation as well as by real network 
monitoring, which can be observed in Table V. 

TABLE V.T IMESTAMP COMPARISON OF PIM-DM MESSAGES 

Phase Message  Sender Simul. [s] Real [s] 
#1 PIM Hello R1 30.435 25.461 

#2 PIM Prune/Join R3 87.000 87.664 

#3 
PIM Graft R2 144.000 144.406 

PIM Graft-Ack R1 144.000 144.440 

#5 PIM Prune/Join R2 366.000 364.496 

B. PIM-SM 

For testing purposes of PIM-SM, topology is more 

complex. We have two designated routers (DR_R1, DR_R2) 

for receivers (Receiver1, Receiver2), two DRs 

(DR_S1, DR_S2) for sources (Source1, Source2) and 

one rendezvous point (RP). The scenario is depicted in  

Figure 9. 

 
 

Figure 9. PIM-SM testing topology 

A scenario for PIM-SM is summarized in Table VI and 
additional description of actions follows bellow. 

TABLE VI. PIM-SM EVENTS SCENARIO 

Phase  Time [s] Device  Multicast action Group 
#1 10 Source1 Starts sending 239.0.0.11 

#2 20 Receiver1 Starts receiving  239.0.0.11 

#3 25 Receiver2 Starts receiving 239.0.0.11 

#4 40 Receiver2 Starts receiving 239.0.0.22 

#5 60 Source2 Starts sending 239.0.0.22 

#6 90 Receiver1 Stops receiving 239.0.0.11 

#7 120 Receiver2 Stops receiving 239.0.0.11 

#8 220 Receiver2 Stops receiving 239.0.0.22 

#9 310 Source1 Stops sending 239.0.0.11 

#10 360 Source2 Stops sending 239.0.0.22 

 
Just as in PIM-DM scenario, receivers send IGMP 

Membership Report and IGMP Leave Group messages to sign 
on and off the multicast groups during phases #2, #3 and #6-

#8.  
#1) Source1 starts to send multicast data. Those data is 

encapsulated into PIM Register message sent by 

DR_S1 via DR_S2 towards RP. Following next RP 

responds with PIM Register-Stop back to DR_S1, 

thus registration of new source is finished. 

#2) IGMP Membership Report for multicast group 
239.0.0.11 by Receiver1 turns on joining process 

of DR_R1 and DR_R2 to shared tree and joining of 

RP and DR_S2 to source tree by sending PIM 

Join/Prune. 

#3) DR_R2 is already connected to a shared tree, thus 

IGMP Membership Report only adds another 

outgoing interface to shared tree as could be seen in 

Figure 10. 

239.0.0.22 
239.0.0.11 
239.0.0.22 

239.0.0.11 

239.0.0.11 

lo 

10.2.2.2 



 
Figure 10. DR_R2 multicast  routing table after phase #3 

#4) Whenever Receiver2 starts receiving multicast 

group 239.0.0.22, new multicast route is added on 
DR_R2 (see Figure 11). Subsequently DR_S2 joins 

to shared tree via PIM Join/Prune sent towards RP. 

 
Figure 11. DR_R2 multicast routing table after phase #4 

#5) Source2 starts sending multicast data to 239.0.0.22 

after Receiver1 already joined the shared tree. 

DR_S2 registers source with PIM Register that 

contains also multicast data. These data is 

decapsulated and sent down via shared tree to 
receivers. As a next step, RP joins the source tree via 

PIM Prune/Join message and a moment later it 

confirms registration via PIM Register-Stop sent 
towards DR_S2. Multicast routes on RP converged 

and they could be observed in Figure 12. 

 
Figure 12. RP multicast  routing table after phase #5 

#X) Every 60 second after successful source registration, 

the given DR and RP exchange empty PIM Register 
and PIM Register-Stop messages to confirm 

presence of multicast source. Also every 60 seconds 
after last receiver joined multicast group, PIM router 

refreshes upstream connectivity to any tree via PIM 
Prune/Join message. This phase cannot be planned 

or scheduled; it is default behavior of PIM-SM 

protocol finite-state machine. It is illustrated only 
once for Source1 distribution trees but the same 

message exchange happens also for Source2. 

#6) Upon receiving IGMP Leave Group, DR_R1 prunes 

itself from shared tree via PIM Prune/Join message 

sent upstream to DR_R1. DR_R1 then removes 

interface eth0 as outgoing interface for multicast 

group 239.0.0.11. 

#7) Receiver2 decides not to receive multicast from 

Source1. Its IGMP Leave Group starts pruning 

process that goes from DR_R2 up to DR_S1. On 

each interim PIM router, multicast route for 
239.0.0.11 is removed via PIM Prune/Join message. 

#8) Later Receiver2 signs off from receiving 

239.0.0.22, which causes similar exchange of PIM 
Prune/Join as in case of #7. 

#9) Whenever Source1 stops sending multicast, 

elimination process starts for a given multicast route. 

As time goes by, ExpireTimer times out on every 
PIM router and multicast distribution tree for 

239.0.0.11 is wiped out from routing table. The same 

approach applies for #10. 
Validation testing against the real-life topology shows just 

reasonable time variations (around ±3 seconds). This  variation 
observable on real Cisco devices is caused by two factors: a) 

control-plane processing delay; b) stochastic message jitter to 
avoid potential race conditions in similar processes . Table VII 

outlines results. 

TABLE VII. T IMESTAMP COMPARISON OF PIM-SM MESSAGES 

Phase Message  Sender Simul. [s] Real [s] 

#1 
PIM Register DR_R1 10.005 10.127 

PIM Register-Stop RP 10.006 10.380 

#2 

PIM Prune/Join DR_R1 20.001 20.422 

PIM Prune/Join DR_R2 20.002 20.813 
PIM Prune/Join RP 20.003 21.117 

PIM Prune/Join DR_S2 20.005 21.320 

#4 PIM Prune/Join DR_R2 40.001 43.524 

#5 

PIM Register DR_S2 60.000 61.459 

PIM Prune/Join RP 60.003 61.970 

PIM Register-Stop RP 60.004 62.758 

#X 

PIM Register DR_S1 70.008 74.304 

PIM Register-Stop RP 70.009 75.671 

PIM Prune/Join DR_R1 80.000 83.041 

PIM Prune/Join DR_R2 80.001 83.647 

PIM Prune/Join RP 80.003 83.950 

PIM Prune/Join DR_S2 80.003 84.004 

#6 PIM Prune/Join DR_R1 90.000 92.909 

#7 

PIM Prune/Join DR_R2 120.001 122.311 

PIM Prune/Join RP 120.002 122.704 
PIM Prune/Join DR_S2 120.003 123.296 

 



C. TRILL 

TRILL testing topology consists of six RBridges and two 

stations (Host1 with IP 172.16.30.100 and Host2 with 

172.16.3.0.101) as depicted in Figure 14. Both stations belong 
to VLAN 1. CLNS address plan is in Table IX. 

TRILL scenario includes network convergence to stable 
state and sending ICMP Echo Request/Reply messages (ping) 

between two hosts . Each RBridge gradually builds up its 
routing table (clnsTable) via IS-IS process and generates 

distribution trees for each RBridge in topology. 

T ABLE VIII. TRILL EVENTS SCENARIO 

Phase  Time [s] Device Action  
#1 0 RB* Start  sending TRILL Hello 

#2 5 RB* Start generating and sending LSPs 

#3 10 Host1 Sends ARP Request 

#4 10 Host2 Sends ARP Reply 

#5 10 Host1 Sends ICMP Echo Request 

#6 10 Host2 Sends ICMP Echo Reply 

T ABLE IX. DEVICE CONFIGURATION 

Device Address 
RB1 0100.0000.0001 

RB2 0100.0000.0002 

RB3 0100.0000.0003 

RB4 0100.0000.0004 

RB5 0100.0000.0005 

RB6 0100.0000.0006 

 

The list of important phases  (summarized in Table VIII) 
for TRILL verification scenario follows down below: 

#1) All RBridges start sending TRILL hello messages in 

simulation time t=0s to discover their neighbors. 

All neighborships converge to Report state after 2.8 

seconds. 
#2) At time t=5s RBridges generate and send LSPs to 

neighbors. Topology is completely converged at a 

time t=5.9s and each RBridge initiate shortest-

path first algorithm to fill up clnsTable. The 

content of this table for RB4 is depicted in Figure 13. 

Highlighted line shows two equal cost paths to RB1 

with metric 20. 

 
Figure 13. RB4’s clnsTable 

#3) In simulation time t=10s, Host1 sends ARP 

Request with broadcast MAC address. RB1 learns 

Host1’s MAC address from received frame and 

store it in RBMACTable. RB1 encapsulates ARP 

Request frame with TRILL header and sends on all 
interfaces in its distribution tree. RB1’s distribution 

tree includes interfaces to RB2 and RB6. Every 

RBridge, which received this frame, learns source 
MAC address of the inner frame. The frame similarly  

propagates through the rest of the network until it is 
decapsulated and sent to Host2, because RB5 is AF 

on that link. 

#4) Host2 replies with ARP Reply to Host1’s MAC 

address. RB5 looks up this MAC address in its 

RBMACTable for egress RBridge address. Then the 

RB5 queries his clnsTable to get next-hop 

RBridge address and output interface. Encapsulated 

ARP Reply frame is now handled as a unicast frame 
throughout the network. This response travels 

through RB5, RB4, and RB6 to RB1, where it is 

decapsulated and send to Host1. This process is 

illustrated in Figure 14. 

 
Figure 14. ARP messages propagation 

#5) Host1 finally sends ICMP Echo Request with 

resolved Host2 MAC address. RB1 already knows 

egress RBridge for Host2’s MAC address from 

received ARP Reply. The ICMP Echo Request is 
prepended with TRILL header across campus. RB5 

acts as an egress RBridge and therefore decapsulates 

received frame and sends it to Host2.  

#6) Host2 generates ICMP Echo Reply. It is again 

encapsulated. However, it travels through different 

path on the way back to Host1 as shown in Figure 

15. 

TRILL testing topology was verified against proposed 
behavior of RFC 6325 specifications. Its conformation with 

other existing implementations  (for instance on Cisco or HP 

routers) is subject of further verification process. 
 



 
Figure 15. ICMP messages propagation 

D. LISP 

We have verified LISP implementation on the topology 
depicted in Figure 16. It contains two sites (bordered by XTRs 

xTR_A and xTR_B). The topology contains router MRMS, 

which acts as MR and MS for both sites. IPv4 only capable 
core is simulated by a single Core router. Static routing is 

employed to achieve mutual connectivity across core. 

 
Figure 16. LISP testing topology 

For this test, we configured xTR_* to register EID-to -

RLOC mappings by its MS (which is MRMS). We scheduled 

ICMP Request/Reply between IPv4 only hosts Hv4_A and 

Hv4_B and same for IPv6 only Hv6_A and Hv6_B. Scenario 

beginning (phase #1 at t=0s) is aligned at the time of the first 

ICMP Echo Request from Hv4_A. Start of Phase #1 is aligned 

with successful site registration in phase #0. 

Test goes through following phases: 

#0) First xTR_A and xTR_B must register their EID-to -

RLOC mappings to its MS (MRMS). This means that 

for each mapping is generated LISP Map-Register 

message (with destination 10.0.0.10) and it is 
periodically resent every 60 seconds in order to keep 

mapping liveliness. Correctly populated MRMS’s 

mapping database is depicted in Figure 17. 

 
Figure 17. MRMS's mapping database 

#1) Hv4_A initiates ICMP Echo Request with Hv4_B’s 

IPv4 address as destination. Packet is received by 

xTR_A and the destination is treated as EID from 

other LISP site. Hence, xTR_A generates LISP Map-

Request for 192.168.2.1/32 that is sent to MRMS. 

#2) MRMS receives xTR_A’s mapping query from. 

Subsequently, MRMS checks its mapping database in 

order to find proper ETR for requested address. EID 

is part of registered “Site B”. The query is forwarded 
to xTR_B because of that. 

#3) xTR_B receives LISP Map-Request and responds 

with LISP Map-Reply that tells the xTR_A that 

available RLOC is 10.0.0.6. 

#4) xTR_A receives reply and cache the answer into the 

local map cache (see Figure 18). This mapping has 

default expiration time of 1440 minutes. 

 
Figure 18. xTR_A's map cache after #4 

#5) Due to the fact that mapping is known, xTR_A wraps 

a new outer IPv4 header (10.0.0.2 as the source and 

10.0.0.6 as the destination RLOCs) around any 
ICMP Echo Request and forwards it out through 

eth1. Core routes the packet to xTR_B where it is 

eth0
192.168.1.0/24
2001:db8:a::1/64

eth0
192.168.2.0/24

2001:db8:b::1/64

eth0
2001:db8:a::99
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2001:db8:b::99

EID space
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EID space
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RLOC space



decapsulated and forwarded to its destination 

(Hv4_B). Hv4_B responds with ICMP Echo Reply. 

#6) Whenever xTR_B receives xTR_A’s query, xTR_B 

starts its own reverse-mapping process to determine 

EID-to-RLOC mapping for requesting EID 
192.168.1.1/32. xTR_B generates LISP Map-

Request that is sent to MRMS and from here passed 

to xTR_A, which answers with LISP Map-Reply. 

The result is inserted as a new record into xTR_B’s 

map cache. 
#7) Later Hv6_A initiates ICMPv6 Echo Request 

towards Hv6_B. xTR_A receives packet, which 

starts LISP Map-Request for EID 2001:db8:b::9/128. 
From this point, behavior is same as in phases #2-6 with 

slight difference that now IPv6 traffic (ICMP replaced by 
ICMPv6) is carried across (IPv4 only) core. The final content 

of xTR_A map cache is shown in Figure 19. 

 
Figure 19. xTR_A's map cache after #13 

We have compared behavior of simulated and real 
network just as in the case of PIM testing process. The results 

for phases from #1 to #6 are summarized in Table X. 

T ABLE X. T IMESTAMP COMPARISON OF LISP  MESSAGES 

Phase Message  Sender Simul. [s] Real [s] 

#1 
ICMP Echo Request Hv4_A 0.000 drop 0.000 drop 

LISP Map-Request xTR_A 0.000 0.249 

#2 LISP Map-Request xTR_A 0.002 0.278 

#3 LISP Map-Request MRMS 0.004 0.318 

#4 LISP Map-Reply xTR_B 0.005 0.459 

#5 

ICMP Echo Request Hv4_A 
1.000 
2.000 

1.113 drop 
2.478 

ICMP Echo Reply Hv4_B 
1.003 

2.003 
2.527 

#6 

LISP Map-Request xTR_B 0.005 1.301 

LISP Map-Request MRMS 0.007 1.528 

LISP Map-Reply xTR_A 0.009 1.542 

 

ICMP Echo Requests are dropped due to the missing EID-
to-RLOC mapping that becomes available after LISP Map-

Reply in phase #6. Therefore, there is one (resp. two) ICMP 

packet drop(s) in case of simulated (resp. real) network. 
There are slight variations due to the same reasons as in 

case of PIM validation. Messages in the simulator are emitted 
based on atomic event scheduler. However, events in real 

router are dispatched according to CPU interrupts and 
availability of hardware resources, which may create 

additional delays comparing to processing in simulator. 

However, overall routing outcome (i.e., LISP sites 

connectivity, local map cache content) is  the same comparing 
simulation and real hardware when applying timescale 

perspective with second’s precision. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we discussed options for dynamic multicast 
routing, loc/id split and data-link loop-prevention. We 

presented an overview of currently existing modules relevant 
to above topics in OMNeT++. The main contributions are 

simulation models for PIM-DM, PIM-SM, TRILL and LISP 
that extend functionality of our ANSARouter and overall 

INET framework. Also, we introduce simulation scenarios 

and their results, which show that our implementations 
comply with relevant RFCs. 

We plan to wrap up our native multicast implementation  
by adding IPv6 support. For TRILL, we intend to include 

dynamic nickname negotiation together with MTU discovery 
and VLAN mapping detection. Furthermore, we plan to 

simulate proposed LISP improvement, which should 

synchronize map caches. This may lead to shortening of 
lookup times and better performance in high availability  

scenarios. 
More information about ANSA project is available on 

webpage [19]. Source codes of simulation modules could be 
downloaded via GitHub repository [20]. 
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