
Multicast, TRILL and LISP Extensions for INET

Vladimír Veselý, Marcel Marek, Ondřej Ryšavý and Miroslav Švéda

Department of Information Systems

Faculty of Information Technology, Brno University of Technology (FIT BUT)

Brno, Czech Republic

e-mail: {ivesely, imarek, rysavy, sveda}@fit.vutbr.cz

Abstract—Simulation is becoming more important for
deploying new technologies or as a proof of concept of new

protocols. This paper presents three routing extensions to the

INET framework for OMNeT++. The first one is dynamic

multicast routing with Protocol Independent Multicast support.

The second case is Transparent Interconnection of Lots of
Links, which is descendent of data-link layer loop prevention

protocols. The third contribution is Locator/ID Split Separation

Protocol implementation as currently widely accepted partial

solution for Internet scaling crisis.

Keywords–Multicast; PIM-DM; PIM-SM; TRILL; LISP.

I. INTRODUCTION

The project ANSA (Automated Network Simulation and

Analysis) running at the Faculty of Information Technology
is dedicated to develop the variety of software tools that can

create simulation models based on real networks and
subsequently allow for formal analysis and verification of

target network configurations. It might be used by public as
the routing/switching baseline for further research initiatives

using simulator for verification. This paper not only extends

our previous work involving multicast routing [1], but also
introduces our latest contributions regarding computer

networks routing and switching.
Multicast spares network resources, namely bandwidth.

Sender and receivers communicate indirectly instead of many
separate connections between them. Because of that, multicast

traffic is carried across each link only once and the same data

is replicated as close to receivers as possible. However, this
effectiveness goes concurrently with increased signalization

and additional routing information exchange. End-hosts and
routers maintain multicast connectivity with the help of

following protocols:

 Internet Group Management Protocol (IGMP) [2] /

Multicast Listener Discovery (MLD) [3] – End-hosts

and first hop multicast-enable routers are using
IGMP and MLD protocols for querying, reporting

and leaving multicast groups on local LAN segments
– they announce their willingness to send or receive

multicast data. IPv6 MLD is descendent of IPv4
IGMP, but both protocols are identical in structure

and message semantic.

 Distance Vector Multicast Routing Protocol

(DVMRP) [4], Multicast Open Shortest-Path First

(MOSPF) [5], Protocol Independent Multicast (PIM)
– All of them are examples of multicast routing

protocols that build multicast topology in router
control plane to distribute multicast data among

networks. DVMRP and MOSPF are closely tight to
the particular unicast routing protocol (RIP, OSPF),

whereas variants of Protocol Independent Multicast
(PIM) are independent by design and they are using

information inside unicast routing table more

generally.
The growth of data-centers brings up several problems

Data-centers most commonly use Ethernet based networks.
Ethernet network provides Layer-2 flat-topology design and

with Spanning Tree Protocol (STP) offers seamless plug-and-
play approach for connecting new nodes to existing network.

The STP guarantees loop-free operation without additional

configuration by blocking some ports. The STP was not
designed for operation in modern virtualized data-centers and

it underutilizes available resources, even though there might
be redundant links to the same node or multiple paths to a

destination over multiple hops. The STP creates single logical
tree to forward unicast and multicast traffic. The

RFC 6325 [6] introduced successor called TRILL

(Transparent Interconnection of Lots of Links) that treats all
these problems. The TRILL accomplishes this by combining

functionality of Layer-2 (switching) and Layer-3 (routing).
For Layer-3 operation, it takes advantage of slightly modified

routing protocol Intermediate System to Intermediate System
(IS-IS) [7]. The hardware implementation of TRILL is

represented by device called Routing Bridge (RBridge).
RBridge’s operation is backward compatible with Ethernet

Bridging 802.1D and Virtual LAN 802.1Q.

Locator/ID Split Protocol (LISP) development started
after IAB Workshop in 2006 as the response dealing with

major Internet architecture problems RFC 4984 [8] and
follow-up RFC 6227 [9]. IP address functionality is nowadays

overloaded; it serves both localization (where) and
identification (what) purposes. The main idea behind LISP is

to separate those two functions. Then LISP should reduce

default-free zone routing table growth, stop prefix
deaggregation, allow easier multihoming and mobility

without the BGP and split locator and identifier namespaces.
LISP supports both IPv4 and IPv6 seamlessly; moreover, it is

agnostic to any network protocol. Transition mechanisms are
part of the LISP protocol standard, thus it supports

communication with legacy non-LISP world.

This paper outlines four simulation modules, which create
part of the ANSA project and which extend functionality of

the INET framework in OMNeT++.

This paper has the following structure. The next section

covers a quick overview of existing OMNeT++ simulation
modules relevant to the topic of this paper. Section III

describes design of the relevant PIM, TRILL and LISP
models. Section IV presents validation scenarios for our

implementations. The paper is summarized in Section V
together with unveiling our future plans.

II. STATE OF THE ART

The current status of support in OMNeT++ 4.5 and

INET 2.4 framework is according to our knowledge as
follows. We merged functionality of generic IPv4 Router

and IPv6 Router6 nodes, so that we created the dual-stack

capable router – ANSARouter.

Figure 1. ANSARouter st ructure with highlighted contribution

We have searched in scientific community around
simulation and modeling for other PIM implementations prior

to our work. Limited versions (e.g., without PIM State Refresh
messages) exist for NS-2 [10] or OPNET [11]. However, none

of them provides robust implementation (i.e., with finite-state

machines implementing whole RFC behavior). Also, existing
OMNeT++ multicast attempts proved to be depreciated [12].

We have similarly looked for TRILL, but did not find any

project trying to create TRILL simulation implementation .
Limited LISP implementation was created [13] to support

LISP MobileNode NAT traversal [14]. However, it is
intended for the INET-20100323 and OMNeT++ 4.0.

Resulting structure of ANSARouter is in Figure 1 with
highlighted simulation modules that are described within this

paper.

III. IMPLEMENTATION

A. PIM – Theory of operation

All multicast routing protocols provide a function to
answer the question, “How to create routing path between

sender(s) and receivers?” Baselines for this functionality are

distribution trees of the following two types:
Source trees – The separate shortest path tree is built for

each source of multicast data. A sender is the root and
receivers are the leaves. However, memory and computation

overhead causes this type is not scalable in the case of a
network with many sources of multicast. In these situations

usually the Shared tree is used.

Shared trees – A router called Rendezvous Point (RP)
exists in a topology that serves as a meeting point for the

traffic from multiple sources to reach destinations. The shared
tree interconnects RP with all related receivers.

There are four PIM operational modes: PIM Dense Mode
(PIM-DM), PIM Sparse Mode (PIM-SM), Bidirectional PIM

(BiDir-PIM) and PIM Source-Specific Multicast (PIM-SSM).
All of them differ in signalization, employed distribution trees

and suitable applications.

Multicast routing support is performed by one dedicated
router on each LAN segment elected based on PIM Hello

messages. This router is called designated router (DR) and it
is the one with the highest priority or highest IP address.

PIM-DM is recommended for topologies with only one
multicast source and lots of receivers. PIM-DM can be easily

deployed without burdening configuration on active devices.

However, PIM-DM does not scale well when number of
sources increases. For this situation or for topologies with

sparsely connected receivers, PIM-SM is suggested to be
employed. Sparse mode scales much better in large topologies

comparing to Dense mode, but configuration and
administration is more complicated. PIM-SSM suits for

multicast groups containing multiple sources providing the

same content where client using IGMPv3 or MLDv2 may
specify from which particular source it wants to receive data.

BiDir-PIM is intended for topologies where many-to-many
communication occurs. Currently, PIM-DM and PIM-SM are

widely deployed PIM variants. Hence, we decided to
implement them as the first.

PIM-DM idea consists of initial data delivery to all
multicast-enable destinations (to flood multicast traffic

everywhere), where routers prune themselves explicitly from

the distribution tree if they are not a part of the multicast
group. PIM-DM is not taking advantage of RP; thus, it is using

source trees only.
PIM-DM routers exchange following messages during

operation:

 PIM Hello – Used for neighbor detection and

forming adjacencies. It contains all settings of shared
parameters used for DR election;

 PIM Prune/Join – Sent towards upstream router by
downstream device to either explicitly prune a source

tree, or to announce willingness to receive multicast
data by another downstream device in case of

previously solicited PIM Prune;

 PIM Graft – Sent from a downstream to an upstream

router to join previously pruned distribution tree;

 PIM Graft-Ack – Sent from an upstream to a
downstream router to acknowledge PIM Graft;

 PIM State Refresh – Pruned router refreshes prune
state upon receiving this message;

 PIM Assert – In case of multi-access segment with
multiple multicast-enabled routers one of them must

be elected as an authoritative spokesman. Mutual
exchange of PIM Asserts accomplishes this election.

On the contrary to PIM-DM, PIM-SM works with
different principle where initially no device wants to receive

multicast. Thus, all receivers must explicitly ask for multicast

delivery and then routers forward multicast data towards end-
hosts. PIM-SM employs both types of multicast distribution

trees. Sources of multicast are connected with RP by source
trees – source of multicast is the root of a source tree. RP is

connected with multicast receivers by shared trees – RP is the
root of shared tree. Multicast data is traversing from sources

down by source tree to RP and further down by shared tree to

receivers. PIM-SM cannot work properly until all PIM routers
in a network do not know exactly which router is RP for a

given multicast group.
PIM-SM exchanges subsequent message types:

 PIM Hello – same as PIM-DM.

 PIM Register – Sent by source’s DR towards RP

whenever new source of multicast is detected.

 PIM Register-Stop – Solicited confirmation of PIM

Register. It is sent by RP in reverse direction that

source’s DR can stop registering process of a new
source. RP is aware of multicast data and may send

them to receivers via shared tree.

 PIM Prune/Join – This message forms the shape of

source and shared distribution trees. Multiple sources
could provide data to the same multicast group –

each one of them sends data via own source tree
towards RP, from here data is reflected to receivers

via shared tree.

 PIM Assert – same as PIM-DM.
The thorough survey on PIM-DM and PIM-SM message

exchange scenarios are out of scope of this paper. More can
be found in RFC 3973 [15] and RFC 4601 [16]; let us state

that our implementations (i.e., finite-state machines, message
structure, etc.) fully comply with IETF’s standards.

B. PIM – Design

We have synthetized multiple finite-state machines that

describe behavior of PIM-DM and PIM-SM with reference to
used timers and exchanged PIM messages [17]. Figure 2

shows implemented architecture of the pim module.

Figure 2. Proposed PIM module design

Besides previous modules, there were also some minor
alternations to IPv4 networkLayer as well as to IPv4

routingTable module.

Implementation is done in NED (model design) and C++
(model behavior) languages. Brief description of implemented

components is summarized in Table I.

TABLE I. DESCRIPTION OF PIM SUBMODULES

Name Description

pimSplitter

This submodule is connected with INET

networkLayer. It inspects all PIM messages
and passes them to appropriate PIM
submodules.

pimDM
The main implementation and logic of PIM-DM
protocol is over here.

pimSM
The main implementation and logic of PIM-SM

protocol is over here.

pim

InterfaceTable

Stores all PIM relevant information for each

router’s interface.

pim

NeighborTable

Keeps state of formed PIM adjacencies and
information about neighbors (PIM version they
are using, priorities, neighbors IPs).

pimSSM,
pimBiDir

Prepared as a placeholder for upcoming
implementations of BiDir-PIM and PIM-SSM

variants.

C. TRILL – Theory of operation

TRILL provides loop-less topology for Layer-2. It
replaces obsolescent STP protocol. Devices that actually run

TRILL are called RBridges. The work of RBridge can be

divided into two separate components – routing and
switching.

The first component is based on link state approach and
employs so called IS-IS Layer-2 implementation. All

RBridges run instance of this altered IS-IS to exchange link-
state statuses (LSPs) for the whole topology. The IS-IS Layer-

2 instance uses single IS-IS Level-1 area with zero-length

Area-ID, which contains all RBridges as if they are in one
large flat Layer-2 network. Designated RBridge (DRB) is

elected from the set of RBridges on shared link and it chooses
Appointed Forwarder (AF) for this link. DRB informs others

about chosen AF via TRILL Hello messages. Appointed
Forwarder acts as ingress and egress gate to the campus

(area covered by single TRILL instance). Designated VLAN

carries all TRILL-encapsulated traffic between RBridges.

DRB is in charge of appointing Designated VLAN.

Encapsulated frame format is depicted in Figure 3.
The second component is TRILL itself. The TRILL

distinguishes five classes of traffic:

 TRILL L2 Control – Frames of low level Layer-2

protocols like STP (e.g., BPDUs). TRILL control
frames are processed locally.

 Native – Non-TRILL traffic from/to hosts. Only AF
sends and receives native traffic on shared segment.

 TRILL Data – TRILL encapsulated frames with

Ethernet’s header field Ethertype set to 0x22F3.

 TRILL Control – Frames that belongs to Layer-2 IS-

IS protocol. They have Ethertype set to 0x22F4
value.

 TRILL other – Other frames, which do not match any
of the previous types, are dropped without

acknowledgment.
RBridge distinguishes between three port types:

 Access Port – handles native non-TRILL traffic from
hosts and delimits campus edges.

 Trunk Port – handles TRILL Data frames. These

ports are located inside campus.

 Hybrid Port – handles both previous traffic types.

This port interconnects partitioned campus across
non-TRILL area.

New outer
Ethernet header

TRILL
header

Original unchanged
Ethernet header

Ethernet Payload FCS

Figure 3. TRILL frame encapsulation

Native frame is equipped with TRILL header (see Figure
4) as soon as it passes first RBridge. Additionally, outer

Ethernet header is also prepended. Subsequently, either whole
encapsulated frame is sent towards egress RBridge that has

destination host connected, or native frame is forwarded on
local port. Multi-destination frame is used when destination

is unknown. RBridge sends this kind of frame: a) in native

form on all links where this RBridge acts as an AF; b) as
TRILL encapsulated to its neighbors according to given

distribution tree. RBridge learns the source MAC address
each time it receives frame in native form on the port for

which this RBridge is AF.

Version (2b) Reserved (2b) M (1b)

Op-Length (5b) Hop Count (6b)
Egress RBridge Nickname (16b)
Ingress RBridge Nickname (16b)

Options...

Figure 4. TRILL header format
When RBridge receives TRILL encapsulated frame, it

either sends it toward egress RBridge according to

RBMACTable (unicast case), or to all connected branches of

a given distribution tree (multi-destination case). If the

receiving RBridge is also the egress RBridge then the frame

is decapsulated and sent to the local port.

Distribution Trees are used when sending multi-

destination frames. RBridge with the highest priority in
campus decides about the number of distribution trees and

their roots.
Complete description of TRILL protocol is out of scope of

this document.

D. TRILL – Design

We created a new RBridge simulation model. This model
comprises existing IS-IS module that has been extended by

IS-IS Layer-2 design and plug-and-play configuration-less
functionality. The complete structure is shown in Figure 5.

Figure 5. Proposed RBridge module design

The overview of each submodule is given in Table II.

T ABLE II. DESCRIPTION OF RBRIDGE SUBMODULES

Name Description

RBEthInterface

This module handles MAC part of the INET

EthernetInterface module without
de/encapsulation.

RBridgeSplitter
This submodule acts as a placeholder for future

integration with other modules.

ISIS

Submodule contains L2/L3 version of IS-IS
routing protocol. An appropriate version is
chosen based on device type.

TRILL The main implementation and logic.

RBMACTable

It plays similar role as does routing table for
Layer-3 protocols. It resolves destination to a

set of output ports.

RBVLANTable
It stores information about active VLANs (i.e.,

name, VLAN ID and associated ports).

clnsTable

Submodule stores next-hop addresses to all
accessible destinations via routes with the best
metric. It supports load balancing for routes
with equal metric.

As a first step, we needed to change behavior of
RBEthInterface module to use only the MAC part, but

leave the de/encapsulation to TRILL. After the incoming

frame passes through RBEthInterface, it is delivered to

TRILL module. Then the frame is classified and processed

based on previously mentioned traffic class. For unicast
frames, the sender is learned and put into RBMACTable.

Every RBridge generates Distribution trees independently

based on its link-state database content.

E. LISP – Theory of operation

LISP accomplishes loc/id separation by splitting the IP

address into two namespaces:

 Routing Locator (RLOC) namespace with
addresses fulfilling their localization purposes by

telling where device is connected in the network.

 Endpoint Identifier (EID) namespace where each

device has unique name that distinct it from each
other.

There is (and probably always will be) a non-LISP
namespace where direct LISP communication is (even

intentionally) not supported. Apart from namespaces exist

also: a) specialized routers performing map-and-encap that
interconnects different namespaces; b) dedicated devices

maintaining mapping system; c) proxy routers allowing
communication between LISP and non-LISP world.

LISP mapping system performs lookups where a set of
RLOCs is retrieved for a given EID. Following map-and-

encap principle, original (inner) header is encapsulated by a
new (outer) header, which is appended when crossing borders

from EID to RLOC namespace. Whenever packet is crossing

back from RLOC to EID namespace, packet is decapsulated
by stripping off outer header. LISP places additional UDP

header succeeded by LISP header between inner and outer
header. LISP uses reserved port numbers – 4341 for data and

4342 for signalization traffic. Currently any combination of
IPv4/v6 headers is supported.

Basic components are Ingress Tunnel Router (ITR) and

Egress Tunnel Router (ETR). Both are border devices
between EID and RLOC space, the only difference is in which

direction they are operated. The single device could be either
ITR only, or ETR only, or ITR and ETR at the same time.

Usually, the functionality is dual and we denote this kind of
device with abbreviation xTR.

ITR is the exit point from EID space (a.k.a. LISP site) to

RLOC space, which encapsulates original packet. This
process may consist of querying mapping system followed by

updating local map cache where EID-to-RLOC mapping
pairs are stored for limited time to reduce signalization

overhead.
ETR is the exit from RLOC space to EID space, which

decapsulates original header. This means that outer header
plus auxiliary UDP and LISP headers are stripped off. ETR is

also announcing all LISP sites (their EID addresses) and by

which RLOCs they are accessible.
LISP mapping system is primary employing two

components – Map Resolver (MR) and Map Server (MS).
Looking for RLOC to EID is analogous process as DNS name

resolution. In case of DNS, host asks its DNS resolver
(configured within OS) which IP address belongs to a given

fully qualified domain name. DNS server responds with

cached answer or delegates the question recursively or
iteratively to another DNS server according to the name

hierarchy. In case of LISP, the querier is ITR that needs to find

out, which RLOCs could be used to reach a given EID. ITR
has preconfigured MR, which is bothered each time mapping

is needed. Mapping queries are data-driven. This means that
data transfer between LISP sites initiates mapping process and

data itself is postponed until mapping is discovered. Map
cache on each ITR holds only those records that are actively

needed by ongoing traffic.

Following list contains all LISP mapping signalization
messages with their brief description. LISP control traffic are

LISP packets without inner header – just outer header + UDP
header with source and destination ports set on 4342 +

appropriate LISP message header. Structural details of each
message can be found in RFC 6830 [18].

 LISP Map-Register – Each ETR announces as
authority one or more LISP sites to the MS

employing this message. Each registration contains a

list of RLOCs to a given EID with properties.

 LISP Map-Request – ITR generates this request

whenever it needs to discover current EID-to-RLOC
mapping and sends it into mapping system.

 LISP Map-Reply – This is solicited response from the
mapping system to a previous request and contains

all RLOCs to a certain EID together with their
attributes. Each ITR has its own map cache where

information from replies are stored for a limited time

and used locally to reduce signalization overhead of
mapping system.

 LISP Negative Map-Reply – Mapping system
generates this message as a response whenever given

identifier is not the EID and thus proxy routing for
non-native LISP communication must occur.

MR accepts LISP Map-Requests sent by ITR. Message is
either delegated further into mapping system (namely to

appropriate MS), or MR responds with LISP Negative Map-

Reply if questioned EID is address from non-LISP world.
Every MS maintains mapping database of LISP sites that

are advertised by LISP Map-Register messages. If MS
receives LISP Map-Request then: a) either MS responds

directly to querying ITR – it is allowed to do that because MS
has all the necessary information in its mapping database; b)

or MS forwards request towards designated ETR that is

successfully registered to MS for target EID.
Each RLOC record to a given EID has two attributes –

priority and weight. Priority (one byte long value in range
from 0 to 255) expresses each RLOC preference. The locator

with the lowest priority is used by ITR when creating outer
header. Communication may be load-balance based on weight

(in range from 0 to 100) between multiple RLOCs sharing the

same priority. Priority value 255 means that locator must not
be used for traffic forwarding. Zero weight means that RLOC

may be used for load-balancing according to ITR wishes.

F. LISP – Design

LISP xTR, MR and MS functionality is currently
implemented within LISPRouting compound module that

is interconnected with both (IPv4) networkLayer and

(IPv6) networkLayer6. It consists of three submodules

that are depicted in the Figure 6 and described in Table below

the figure.

Figure 6. Proposed LISPRouting module design

T ABLE III. DESCRIPTION OF LISPROUTING SUBMODULES

Name Description

lispCore

The heart that is responsible for handling LISP
control and data traffic. It independently
combines functionality of ITR, ETR, MR and

MS. In case of ITR, this involves encapsulation
and active maintenance of map cache. In case
of ETR, it is responsible for decapsulation
process and site registration. In case of MR, it

simply delegates map queries. In case of MS,
it maintains mapping database.

lispMapCache

Local LISP map cache that is populated on
demand by routing data traffic between LISP
sites. Each record (EID-to-RLOC mapping)

has its own separate handling (i.e., expiration,
refreshment, availability of RLOCs).

lispMapDatabase

MS’s mapping database that maintains LISP
site registration by ETRs. It contains site
specific information (e.g., shared key, statistics

of registrars and times of registration). Each
site also contains known EID-to-RLOC
mappings.

Minor changes were done also to both
networkLayer/6 submodules in order to divert LISP data

traffic intended for encapsulation/decapsulation towards

LISPRouting module (UDP port 4341). LISPRouting

is also registered with UDPSocket on local port 4342 to

handle LISP control messages coming from UDP submodule.

IV. TESTING

In this section, we provide information on testing and
validation of our implementations using several test scenarios.

We have built exactly the same topologies for both simulation
and real network and observed (using transparent switchport

analyzers and packet sniffers) relevant messages exchange

between devices.
For multicast operation, we compared the results with the

behavior of referential implementation running at Cisco
routers (Cisco 2811 routers with IOS operating system version

c2800nm-advipservicesk9-mz.124-25f) and host stations

(with FreeBSD 8.2 OS).
For TRILL, we did a comparison only with specifications.

As for LISP, we conducted tests and compared them to a
referential behavior of Cisco routers (C7200 routers with IOS

c7200-adventerprisek9-mz.152-4.M2) and host stations (with
Windows 7 OS).

A. PIM-DM

We had considered multiple different topologies and

decided for one which is just enough large to test every
multicast aspect and still with scenario easy to follow. In this

testing network (topology is shown in Figure 7), we have three

routers (R1, R2 and R3), two sources of multicast (Source1

and Source2) and three receivers (Host1, Host2 and

Host3).

Figure 7. PIM-DM testing topology

We scheduled actions covering all phases of multicast

communication (i.e., sources start and stop sending and hosts
start and stop receiving of multicast data). Scheduled scenario

is summarized in Table IV.

TABLE IV. PIM-DM EVENTS SCENARIO

Phase Time [s] Device Multicast action Group
#1 0 Host1 Starts receiving 226.2.2.2

#2 87 Source1 Starts sending 226.1.1.1

#3 144 Host2 Starts receiving 226.1.1.1
#4 215 Source2 Starts sending 226.2.2.2

#5 364 Host2 Stops receiving 226.1.1.1

#6 399 Source2 Stops sending 226.2.2.2

Hosts sign themselves to receive data from particular
multicast group via IGMP Membership Report message

during phases #1 and #3. Similarly, the host uses IGMP Leave

226.2.2.2

226.1.1.1

226.1.1.1

226.2.2.2

Group message to stop receiving data during phases #5 and

#6.
#1) There are no multicast data transferred. Only PIM

Hellos are sent between neighbors.
#2) First multicast data appears but, because of no

receivers, routers prune themselves from source
distribution tree after initial flooding.

#3) Host2 starts to receive data from group 226.1.1.1 at

the beginning of #3. This means that R2 reconnects to

source tree with help of PIM Graft, which is

subsequently acknowledged by PIM Graft-Ack .
#4) The new source starts to send multicast data. All

routers are part of the source distribution tree with R3

as the root. R3 acts as RP that is illustrated in Figure 8.

Figure 8. R3 multicast routing table after phase #4

#5) Host2 is no longer willing to receive multicast from

226.1.1.1 and, because Host2 is also the only listener

to this group, R2 disconnects itself from distribution

tree with PIM Prune/Join.
#6) Finally Source2 stops sending data to the group

226.2.2.2 at the beginning of #6. Subsequent to this, no
PIM message is generated. Routers just wait for 180

seconds and then wipe out an affected source tree from
the multicast routing table.

The message confluence proved correctness of our PIM-

DM implementation by simulation as well as by real network
monitoring, which can be observed in Table V.

TABLE V.T IMESTAMP COMPARISON OF PIM-DM MESSAGES

Phase Message Sender Simul. [s] Real [s]
#1 PIM Hello R1 30.435 25.461

#2 PIM Prune/Join R3 87.000 87.664

#3
PIM Graft R2 144.000 144.406

PIM Graft-Ack R1 144.000 144.440

#5 PIM Prune/Join R2 366.000 364.496

B. PIM-SM

For testing purposes of PIM-SM, topology is more

complex. We have two designated routers (DR_R1, DR_R2)

for receivers (Receiver1, Receiver2), two DRs

(DR_S1, DR_S2) for sources (Source1, Source2) and

one rendezvous point (RP). The scenario is depicted in

Figure 9.

Figure 9. PIM-SM testing topology

A scenario for PIM-SM is summarized in Table VI and
additional description of actions follows bellow.

TABLE VI. PIM-SM EVENTS SCENARIO

Phase Time [s] Device Multicast action Group
#1 10 Source1 Starts sending 239.0.0.11

#2 20 Receiver1 Starts receiving 239.0.0.11

#3 25 Receiver2 Starts receiving 239.0.0.11

#4 40 Receiver2 Starts receiving 239.0.0.22

#5 60 Source2 Starts sending 239.0.0.22

#6 90 Receiver1 Stops receiving 239.0.0.11

#7 120 Receiver2 Stops receiving 239.0.0.11

#8 220 Receiver2 Stops receiving 239.0.0.22

#9 310 Source1 Stops sending 239.0.0.11

#10 360 Source2 Stops sending 239.0.0.22

Just as in PIM-DM scenario, receivers send IGMP

Membership Report and IGMP Leave Group messages to sign
on and off the multicast groups during phases #2, #3 and #6-

#8.
#1) Source1 starts to send multicast data. Those data is

encapsulated into PIM Register message sent by

DR_S1 via DR_S2 towards RP. Following next RP

responds with PIM Register-Stop back to DR_S1,

thus registration of new source is finished.

#2) IGMP Membership Report for multicast group
239.0.0.11 by Receiver1 turns on joining process

of DR_R1 and DR_R2 to shared tree and joining of

RP and DR_S2 to source tree by sending PIM

Join/Prune.

#3) DR_R2 is already connected to a shared tree, thus

IGMP Membership Report only adds another

outgoing interface to shared tree as could be seen in

Figure 10.

239.0.0.22
239.0.0.11
239.0.0.22

239.0.0.11

239.0.0.11

lo

10.2.2.2

Figure 10. DR_R2 multicast routing table after phase #3

#4) Whenever Receiver2 starts receiving multicast

group 239.0.0.22, new multicast route is added on
DR_R2 (see Figure 11). Subsequently DR_S2 joins

to shared tree via PIM Join/Prune sent towards RP.

Figure 11. DR_R2 multicast routing table after phase #4

#5) Source2 starts sending multicast data to 239.0.0.22

after Receiver1 already joined the shared tree.

DR_S2 registers source with PIM Register that

contains also multicast data. These data is

decapsulated and sent down via shared tree to
receivers. As a next step, RP joins the source tree via

PIM Prune/Join message and a moment later it

confirms registration via PIM Register-Stop sent
towards DR_S2. Multicast routes on RP converged

and they could be observed in Figure 12.

Figure 12. RP multicast routing table after phase #5

#X) Every 60 second after successful source registration,

the given DR and RP exchange empty PIM Register
and PIM Register-Stop messages to confirm

presence of multicast source. Also every 60 seconds
after last receiver joined multicast group, PIM router

refreshes upstream connectivity to any tree via PIM
Prune/Join message. This phase cannot be planned

or scheduled; it is default behavior of PIM-SM

protocol finite-state machine. It is illustrated only
once for Source1 distribution trees but the same

message exchange happens also for Source2.

#6) Upon receiving IGMP Leave Group, DR_R1 prunes

itself from shared tree via PIM Prune/Join message

sent upstream to DR_R1. DR_R1 then removes

interface eth0 as outgoing interface for multicast

group 239.0.0.11.

#7) Receiver2 decides not to receive multicast from

Source1. Its IGMP Leave Group starts pruning

process that goes from DR_R2 up to DR_S1. On

each interim PIM router, multicast route for
239.0.0.11 is removed via PIM Prune/Join message.

#8) Later Receiver2 signs off from receiving

239.0.0.22, which causes similar exchange of PIM
Prune/Join as in case of #7.

#9) Whenever Source1 stops sending multicast,

elimination process starts for a given multicast route.

As time goes by, ExpireTimer times out on every
PIM router and multicast distribution tree for

239.0.0.11 is wiped out from routing table. The same

approach applies for #10.
Validation testing against the real-life topology shows just

reasonable time variations (around ±3 seconds). This variation
observable on real Cisco devices is caused by two factors: a)

control-plane processing delay; b) stochastic message jitter to
avoid potential race conditions in similar processes . Table VII

outlines results.

TABLE VII. T IMESTAMP COMPARISON OF PIM-SM MESSAGES

Phase Message Sender Simul. [s] Real [s]

#1
PIM Register DR_R1 10.005 10.127

PIM Register-Stop RP 10.006 10.380

#2

PIM Prune/Join DR_R1 20.001 20.422

PIM Prune/Join DR_R2 20.002 20.813
PIM Prune/Join RP 20.003 21.117

PIM Prune/Join DR_S2 20.005 21.320

#4 PIM Prune/Join DR_R2 40.001 43.524

#5

PIM Register DR_S2 60.000 61.459

PIM Prune/Join RP 60.003 61.970

PIM Register-Stop RP 60.004 62.758

#X

PIM Register DR_S1 70.008 74.304

PIM Register-Stop RP 70.009 75.671

PIM Prune/Join DR_R1 80.000 83.041

PIM Prune/Join DR_R2 80.001 83.647

PIM Prune/Join RP 80.003 83.950

PIM Prune/Join DR_S2 80.003 84.004

#6 PIM Prune/Join DR_R1 90.000 92.909

#7

PIM Prune/Join DR_R2 120.001 122.311

PIM Prune/Join RP 120.002 122.704
PIM Prune/Join DR_S2 120.003 123.296

C. TRILL

TRILL testing topology consists of six RBridges and two

stations (Host1 with IP 172.16.30.100 and Host2 with

172.16.3.0.101) as depicted in Figure 14. Both stations belong
to VLAN 1. CLNS address plan is in Table IX.

TRILL scenario includes network convergence to stable
state and sending ICMP Echo Request/Reply messages (ping)

between two hosts . Each RBridge gradually builds up its
routing table (clnsTable) via IS-IS process and generates

distribution trees for each RBridge in topology.

T ABLE VIII. TRILL EVENTS SCENARIO

Phase Time [s] Device Action
#1 0 RB* Start sending TRILL Hello

#2 5 RB* Start generating and sending LSPs

#3 10 Host1 Sends ARP Request

#4 10 Host2 Sends ARP Reply

#5 10 Host1 Sends ICMP Echo Request

#6 10 Host2 Sends ICMP Echo Reply

T ABLE IX. DEVICE CONFIGURATION

Device Address
RB1 0100.0000.0001

RB2 0100.0000.0002

RB3 0100.0000.0003

RB4 0100.0000.0004

RB5 0100.0000.0005

RB6 0100.0000.0006

The list of important phases (summarized in Table VIII)
for TRILL verification scenario follows down below:

#1) All RBridges start sending TRILL hello messages in

simulation time t=0s to discover their neighbors.

All neighborships converge to Report state after 2.8

seconds.
#2) At time t=5s RBridges generate and send LSPs to

neighbors. Topology is completely converged at a

time t=5.9s and each RBridge initiate shortest-

path first algorithm to fill up clnsTable. The

content of this table for RB4 is depicted in Figure 13.

Highlighted line shows two equal cost paths to RB1

with metric 20.

Figure 13. RB4’s clnsTable

#3) In simulation time t=10s, Host1 sends ARP

Request with broadcast MAC address. RB1 learns

Host1’s MAC address from received frame and

store it in RBMACTable. RB1 encapsulates ARP

Request frame with TRILL header and sends on all
interfaces in its distribution tree. RB1’s distribution

tree includes interfaces to RB2 and RB6. Every

RBridge, which received this frame, learns source
MAC address of the inner frame. The frame similarly

propagates through the rest of the network until it is
decapsulated and sent to Host2, because RB5 is AF

on that link.

#4) Host2 replies with ARP Reply to Host1’s MAC

address. RB5 looks up this MAC address in its

RBMACTable for egress RBridge address. Then the

RB5 queries his clnsTable to get next-hop

RBridge address and output interface. Encapsulated

ARP Reply frame is now handled as a unicast frame
throughout the network. This response travels

through RB5, RB4, and RB6 to RB1, where it is

decapsulated and send to Host1. This process is

illustrated in Figure 14.

Figure 14. ARP messages propagation

#5) Host1 finally sends ICMP Echo Request with

resolved Host2 MAC address. RB1 already knows

egress RBridge for Host2’s MAC address from

received ARP Reply. The ICMP Echo Request is
prepended with TRILL header across campus. RB5

acts as an egress RBridge and therefore decapsulates

received frame and sends it to Host2.

#6) Host2 generates ICMP Echo Reply. It is again

encapsulated. However, it travels through different

path on the way back to Host1 as shown in Figure

15.

TRILL testing topology was verified against proposed
behavior of RFC 6325 specifications. Its conformation with

other existing implementations (for instance on Cisco or HP

routers) is subject of further verification process.

Figure 15. ICMP messages propagation

D. LISP

We have verified LISP implementation on the topology
depicted in Figure 16. It contains two sites (bordered by XTRs

xTR_A and xTR_B). The topology contains router MRMS,

which acts as MR and MS for both sites. IPv4 only capable
core is simulated by a single Core router. Static routing is

employed to achieve mutual connectivity across core.

Figure 16. LISP testing topology

For this test, we configured xTR_* to register EID-to -

RLOC mappings by its MS (which is MRMS). We scheduled

ICMP Request/Reply between IPv4 only hosts Hv4_A and

Hv4_B and same for IPv6 only Hv6_A and Hv6_B. Scenario

beginning (phase #1 at t=0s) is aligned at the time of the first

ICMP Echo Request from Hv4_A. Start of Phase #1 is aligned

with successful site registration in phase #0.

Test goes through following phases:

#0) First xTR_A and xTR_B must register their EID-to -

RLOC mappings to its MS (MRMS). This means that

for each mapping is generated LISP Map-Register

message (with destination 10.0.0.10) and it is
periodically resent every 60 seconds in order to keep

mapping liveliness. Correctly populated MRMS’s

mapping database is depicted in Figure 17.

Figure 17. MRMS's mapping database

#1) Hv4_A initiates ICMP Echo Request with Hv4_B’s

IPv4 address as destination. Packet is received by

xTR_A and the destination is treated as EID from

other LISP site. Hence, xTR_A generates LISP Map-

Request for 192.168.2.1/32 that is sent to MRMS.

#2) MRMS receives xTR_A’s mapping query from.

Subsequently, MRMS checks its mapping database in

order to find proper ETR for requested address. EID

is part of registered “Site B”. The query is forwarded
to xTR_B because of that.

#3) xTR_B receives LISP Map-Request and responds

with LISP Map-Reply that tells the xTR_A that

available RLOC is 10.0.0.6.

#4) xTR_A receives reply and cache the answer into the

local map cache (see Figure 18). This mapping has

default expiration time of 1440 minutes.

Figure 18. xTR_A's map cache after #4

#5) Due to the fact that mapping is known, xTR_A wraps

a new outer IPv4 header (10.0.0.2 as the source and

10.0.0.6 as the destination RLOCs) around any
ICMP Echo Request and forwards it out through

eth1. Core routes the packet to xTR_B where it is

eth0
192.168.1.0/24
2001:db8:a::1/64

eth0
192.168.2.0/24

2001:db8:b::1/64

eth0
2001:db8:a::99

eth0
2001:db8:b::99

EID space
Site A

EID space
Site B

RLOC space

decapsulated and forwarded to its destination

(Hv4_B). Hv4_B responds with ICMP Echo Reply.

#6) Whenever xTR_B receives xTR_A’s query, xTR_B

starts its own reverse-mapping process to determine

EID-to-RLOC mapping for requesting EID
192.168.1.1/32. xTR_B generates LISP Map-

Request that is sent to MRMS and from here passed

to xTR_A, which answers with LISP Map-Reply.

The result is inserted as a new record into xTR_B’s

map cache.
#7) Later Hv6_A initiates ICMPv6 Echo Request

towards Hv6_B. xTR_A receives packet, which

starts LISP Map-Request for EID 2001:db8:b::9/128.
From this point, behavior is same as in phases #2-6 with

slight difference that now IPv6 traffic (ICMP replaced by
ICMPv6) is carried across (IPv4 only) core. The final content

of xTR_A map cache is shown in Figure 19.

Figure 19. xTR_A's map cache after #13

We have compared behavior of simulated and real
network just as in the case of PIM testing process. The results

for phases from #1 to #6 are summarized in Table X.

T ABLE X. T IMESTAMP COMPARISON OF LISP MESSAGES

Phase Message Sender Simul. [s] Real [s]

#1
ICMP Echo Request Hv4_A 0.000 drop 0.000 drop

LISP Map-Request xTR_A 0.000 0.249

#2 LISP Map-Request xTR_A 0.002 0.278

#3 LISP Map-Request MRMS 0.004 0.318

#4 LISP Map-Reply xTR_B 0.005 0.459

#5

ICMP Echo Request Hv4_A
1.000
2.000

1.113 drop
2.478

ICMP Echo Reply Hv4_B
1.003

2.003
2.527

#6

LISP Map-Request xTR_B 0.005 1.301

LISP Map-Request MRMS 0.007 1.528

LISP Map-Reply xTR_A 0.009 1.542

ICMP Echo Requests are dropped due to the missing EID-
to-RLOC mapping that becomes available after LISP Map-

Reply in phase #6. Therefore, there is one (resp. two) ICMP

packet drop(s) in case of simulated (resp. real) network.
There are slight variations due to the same reasons as in

case of PIM validation. Messages in the simulator are emitted
based on atomic event scheduler. However, events in real

router are dispatched according to CPU interrupts and
availability of hardware resources, which may create

additional delays comparing to processing in simulator.

However, overall routing outcome (i.e., LISP sites

connectivity, local map cache content) is the same comparing
simulation and real hardware when applying timescale

perspective with second’s precision.

V. CONCLUSION AND FUTURE WORK

In this paper, we discussed options for dynamic multicast
routing, loc/id split and data-link loop-prevention. We

presented an overview of currently existing modules relevant
to above topics in OMNeT++. The main contributions are

simulation models for PIM-DM, PIM-SM, TRILL and LISP
that extend functionality of our ANSARouter and overall

INET framework. Also, we introduce simulation scenarios

and their results, which show that our implementations
comply with relevant RFCs.

We plan to wrap up our native multicast implementation
by adding IPv6 support. For TRILL, we intend to include

dynamic nickname negotiation together with MTU discovery
and VLAN mapping detection. Furthermore, we plan to

simulate proposed LISP improvement, which should

synchronize map caches. This may lead to shortening of
lookup times and better performance in high availability

scenarios.
More information about ANSA project is available on

webpage [19]. Source codes of simulation modules could be
downloaded via GitHub repository [20].

ACKNOWLEDGMENT

This work was supported by the Brno University of

Technology organization and by the research grants:

 FIT-S-14-2299 supported by Brno University of
Technology;

 VG20102015022 supported by Ministry of the
Interior of the Czech Republic;

 IT4Innovation ED1.1.00/02.0070 supported by
Czech Ministry of Education Youth and Sports.

REFERENCES

[1] V. Veselý, O. Ryšavý , and M. Švéda, "Protocol Independent

Multicast in OMNeT++," The Tenth International

Conference on Networking and Services, pp. 132-137

Chamonix, France, 2014.

[2] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A.

Thyagarajan, "RFC 3376: Internet Group Management

Protocol, Version 3," October 2002. [Online]. Available:

https://tools.ietf.org/html/rfc3376. [Accessed: February

2014].

[3] R. Vida and K. Costa, "RFC 3810: Multicast Listener

Discovery Version 2 (MLDv2) for IPv6," June 2004.

[Online]. Available: http://tools.ietf.org/html/rfc3810.

[Accessed: February 2014].

[4] D. Waitzman, C. Partridge, and S. Deering, "RFC 1075:
Distance Vector Multicast Routing Protocol," November

1988. [Online]. Available: http://tools.ietf.org/html/rfc1075

[Accessed: February 2014].

[5] J. Moy, "RFC 1584: Multicast Extensions to OSPF," March

1994. [Online]. Available: http://tools.ietf.org/html/rfc1584.

[Accessed: February 2014].

[6] R. Perlman, "RFC 6325: Routing Bridges (RBridges): Base

Protocol Specification," July 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6325.

[7] ISO/IEC 10589:2002, "Information technology -

Telecommunications and information exchange between
systems - Intermediate System to Intermediate System intra-

domain routeing information exchange protocol for use in

conjunction with the protocol for providing the CLNS,"

October 2002. [Online]. Available:

http://standards.iso.org/ittf/PubliclyAvailableStandards/c03
0932_ISO_IEC_10589_2002(E).zip.

[8] D. Meyer, L. Zhang, and K. Fall, "RFC 4984: Report from

the IAB Workshop on Routing and Addressing," September

2007. [Online]. Available: http://tools.ietf.org/html/rfc4984.

[9] T. Li, "RFC 6227: Design Goals for Scalable Internet
Routing," May 2011. [Online]. Available:

http://tools.ietf.org/html/rfc6227.

[10] T. Henderson, "31. Multicast Routing,"

November 2011. [Online]. Available:

http://www.isi.edu/nsnam/ns/doc/node338.html. [Accessed:
November 2014].

[11] C. Adam and Y. Chien, "Implementing the Protocol

Independent Multicast (Sparse Mode) on the Opnet

Simulation Platform," May 1998. [Online]. Available:

http://www.cs.columbia.edu/~hgs/teaching/ais/1998/project
s/pim/report.html. [Accessed: November 2014].

[12] R. Leal, J. Cacinero, and E. Martin, "New Approach to Inter-

domain Multicast Protocols," ETRI Journal, vol. 33, no. 3,

pp. 355-365, June 2011.

[13] D. Klein, M. Hoefling, M. Hartmann, and M. Menth,

"Integration of LISP and LISP-MN into INET," in

Proceedings of the IEEE 5th International ICST Conference
on Simulation Tools and Techniques, Desenzano del Garda,

Italia, 2012.

[14] D. Klein, M. Hartmann, and M. Menth, "NAT Traversal for

LISP Mobile Node," July 2010. [Online]. Available:

http://tools.ietf.org/html/draft-klein-lisp-mn-nat-traversal.

[15] A. Adams, J. Nichols, and W. Siadak, "RFC 3973: Protocol

Independent Multicast - Dense Mode (PIM-DM): Protocol

Specification (Revised)," January 2005. [Online]. Available:

http://tools.ietf.org/html/rfc3973.

[16] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas, "RFC
4601: Protocol Independent Multicast - Sparse Mode (PIM-

SM): Protocol Specification (Revised)," August 2006.

[Online]. Available: http://tools.ietf.org/html/rfc4601.

[17] V. Rybová and T. Procházka, "Protocol Independent

Multicast: Finite-state machines for Dense and Sparse
Mode," Brno University of Technology, October 2013.

[Online]. Available:

https://nes.fit.vutbr.cz/ansa/uploads/Main/pim-fsm.pdf.

[Accessed: January 2014].

[18] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, "RFC 6830:
The Locator/ID Separation Protocol (LISP)," January 2013.

[Online]. Available: http://tools.ietf.org/html/rfc6830.

[19] Brno University of Technology, ANSAWiki | Main /

HomePage, January 2014. [Online]. Available:

http://nes.fit.vutbr.cz/ansa/pmwiki.php. [Accessed:
November 2014].

[20] GitHub, December 2013. [Online]. Available:

https://github.com/kvetak/ANSA. [Accessed: November

2014].

