
Optimisation of Water Management Systems Using
a GPU-Accelerated Differential Evolution

Jiri Jaros
Department of Computer Systems

Faculty of Information Technology

Brno University of Technology

Bozetechova 2, 612 66 Brno

Czech Republic

Email: jarosjir@fit.vutbr.cz

Jan Marek
Department of Computer Systems

Faculty of Information Technology

Brno University of Technology

Bozetechova 2, 612 66 Brno

Czech Republic

Email: mrjmarek@gmail.com

Pavel Mensik
Institute of Landscape Water Management

Faculty of Civil Engineering

Brno University of Technology

Veveri 331/95, 662 00 Brno

Czech Republic

Email: mensik.p@fce.vutbr.cz

Abstract—The aim of this paper is to present a tool that
could optimise operation of multi-reservoir systems to provide
the inhabitants and industry with enough water during drought
periods. Since the multi-reservoir systems may be quite compli-
cated and the water outflow from reservoirs have to be precise, we
developed a GPU-accelerated algorithm based on the differential
evolution to solve this task. The experimental results show that
a twelve optimal average monthly water outflows from reservoir
can be obtained within a minute, almost 18 times faster than on
a hex-core CPU.

I. INTRODUCTION

The global warming and subsequent climate change has a
high impact on the hydrologic cycle. Changes in the hydrologic
cycle in different parts of the world can cause new water
management problems that we did not have to solve before. In
some areas of the world such changes may lead to the more
frequent occurrence of extreme floods, while other parts of the
world may be afflicted by the increased incidence of periods
of drought. One way of preventing or completely avoiding the
appearance of these problems is the re-evaluation of the size of
the storage and protective capacity of existing reservoirs [1].

The task, we want to solve, can be summarised as a task
of optimal control. We are looking for an optimum water flow
via an existing system with a defined structure composed of a
river system and a handful of water reservoirs such as dams,
ponds, lakes, etc [1]. The goal is to keep the water level in the
rivers and reservoirs at a convenient level during the whole
period (year). It means we use the strategic control of the
multi-reservoir system [2]. We can use the strategy control in
the future period if we have predictions of water inflow into the
system. The criteria used reflect the fact that in terms of water
reservoir operation it is much more convenient to introduce a
shallow and long failure in advance than to have even a single
but very deep failure (critical failure) when the reservoir is not
able to improve the outflow from the reservoir [3].

There are many ways this optimisation problem can be
addressed. Basic methods in the field of the control of water
management systems are summarised in [4]. The presented
methods cover mainly mathematical programming and simu-
lation modelling. The algorithm of seasonal water management
reservoir operation by means of the deterministic optimization

was derived by the authors of [5]. The algorithm of optimal
time water distribution depending on the priorities of water
users during the filling of reservoirs in the dispatcher graph of
reservoir system was solved by the authors [6]. The general
global model for development of the water resource used with
indirect optimization was deduced by the authors [7].

The gradual development of computer technology has
allowed creation of large and complex water reservoirs system
models. For solving these complex systems, it was required to
use appropriate modern software products. Unfortunately, none
of the existing programmes are designed specifically to solve
multi-reservoir system storage capacity. Current programmes
use the overcomplicated river network model, which needs
much more inputs than it is required by our own simplified
solution of multi-reservoir system storage capacity.

In [8] we introduced a novel algorithm that can be used
in practice to optimise the water flow in rivers and associated
water reservoirs. The algorithm is based on the differential
evolution and thus uses a bio-inspired stochastic optimisation
method to produce better results than both deterministic and
random algorithms. Although the algorithm has reached high
quality results, the main bottleneck remains its computational
requirements. To accelerate the evolution process, we decided
to use modern graphics processing units (GPUs) that offer up
to 20 times higher performance compared to classic servers
while maintaining low running cost. The description and
evaluation of this algorithm is the contribution of this paper.

II. PROBLEM DEFINITION

The goal of this work is the optimisation of the strategic
control of multi-reservoir system storage capacity. We will
solve systems of real reservoirs whose parameters have to meet
several restrictions such as (1) maximum and minimum volume
(water level) in the reservoir, (2) maximum and minimum
outflow and (3) maximum and minimum water supply taken
from the reservoir. The reservoirs have time varying inflows.
As an abstraction, let’s divide the whole year into a given
number of periods (months, weeks or days) and consider the
level of inflow/outflow/supply to be constant in these periods.
The goal is then to find such outflow and supply levels that do
not violate the restrictions in any time period. Let first define
a system with a single reservoir, and consequently a system
with multiple reservoirs, rivers and river confluences.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.266

1727

Fig. 1. A schema of a single water reservoir system with a single inflow,
outflow and water supply.

A. Water Reservoir Definition

A water reservoir (dam) D can be defined as an n-tuple:

D = {V0, τ, Q,Qβ , V, Vmin, Vmax,

O,Omin, Omax, C, Cmin, Cmax} (1)

where

• V0 is an initial water volume in the reservoir.

• τ is the number of time periods we optimise for.

• Q = {Q0, .., Qτ−1} is a set of water inflows (from
rivers) in given time periods.

• Qβ = {Qβ0
, .., Qβτ−1

} is a set of water inflows from
neighbour water sources (other reservoirs) in given
time periods.

• V = {V0, .., Vτ−1} is a set of water volumes in the
reservoir in given time periods.

• Vmin = {Vmin0 , .., Vminτ−1} is a set of min allowed
water volumes in given time periods.

• Vmax = {Vmax0
, .., Vmaxτ−1

} is a set of max allowed
water volumes in given time periods.

• O = {O0, .., Oτ−1} is a set of water supplies taken
in given time periods.

• Omin = {Omin0
, .., Ominτ−1

} is a set of min allowed
water supplies in given time periods.

• Omax = {Omax0 , .., Omaxτ−1} is a set of max al-
lowed water supplies in given time periods.

• C = {C0, .., Cτ−1} a set of outflows in given time
periods.

• Cmin = {Cmin0
, .., Cminτ−1

} a set of min allowed
outflows in given time periods.

• Cmax = {Cmax0
, .., Cmaxτ−1

} a set of max allowed
outflows in given time periods.

A scheme of such a single water reservoir problem is
depicted in Fig 1. The goal is to find the best values for the
pair of parameters Ot ∈ O (actual water supply) and Ct ∈ C
(actual water outflow). The other parameters are the restrictions
for the system. The parameter Qβ does not have any use in
this simple situation, however, it will be necessary for systems
with multiple reservoirs.

Fig. 2. A schema of a system of four water reservoirs with their inflows,
outflows and water supplies.

B. System of Water Reservoirs Definition

We will model a system of water dams using an oriented
graph G = {V,E} where vertices represent reservoirs and
river confluences in the systems while edges do the connections
between these reservoirs. For each reservoir

∀v = {V v
0 , τ

v, Qv, Qv
β , V

v, V v
min, V

v
max,

Ov, Ov
min, O

v
max, C

v, Cv
min, C

v
max} ∈ V,

(2)

the following rules hold:

• τv = c where c is an integer constant.

• If {∀x, y|(x, y) ∈ E} holds that v �= y then
{∀qb ∈ Qv

β |qb = 0} and {∀q ∈ Qv|q is one of input
parameters of the system}.

• Otherwise {∀qb ∈ Qv
β |qb is one of the output param-

eters of the system} and {∀qi ∈ Qv|qi is a sum of all
outflows of reservoirs x such that ∃(x, y) ∈ E}.

Now, we can model a cascade of water reservoirs. However,
in order to be able to describe even more complicated systems
with realistic river tries, we have to model river confluences.
A river confluence can be modelled as a special reservoir with
a zero volume (capacity)

N = {V0, τ, Q,Qβ , V, Vmin, Vmax,

O,Omin, Omax, C, Cmin, Cmax} (3)

where V0 = 0 and also Vmin, Vmax, Omin, Omax, Cmin

hold zero in all time periods while Cmax holds ∞ in all time
periods.

Fig. 2 shows a realistic schema of a water reservoirs
system. Reservoirs D1 and D2 represent ordinary water dams
while D3 represents a river confluence. The reservoir D4 is
also a water dam, however with two inflows (one from the
confluence D3 and another side inflow Qβ4.

1728

III. OPTIMIZATION ALGORITHM

The optimisation algorithm is based on the Differential
Evolution (DE) [9] and [10]. DE is a stochastic bio-inspired
method that optimizes a problem by iteratively trying to
improve a candidate solution, referred to as vector, with regard
to a given measure of quality. DE is used for multidimensional
real-valued functions but does not use the gradient of the
problem being optimized, which means DE does not require
for the optimization problem to be differentiable as is required
by classic optimization methods such as gradient descent and
quasi-newton methods.

At each iteration, also called a generation, new vectors are
generated by the combination of vectors randomly chosen from
the current population (selection). The outcoming vectors are
then mixed with a predetermined target vector. This operation
is called recombination and produces a trial vector. Finally, the
trial vector is accepted for the next generation if and only if it
yields a reduction in the value of the objective function. This
last operator is referred to as replacement.

In order to be able to employ DE in the optimisation
process, a suitable solution encoding and fitness function have
to be developed.

A. Design of the Optimisation Algorithm

A candidate solution for a single reservoir problem is
represented by a vector of structures, each of which holding the
state of the water system in a given time period (outflow, water
supply and volume). Although the volume can be calculated for
each time period from the previous values of inflow, outflow
and water supply, for the sake of performance, it is suitable
to store it along with the inflow and outflow. The values of
inflow are the simulation parameters that are not stored in the
candidate solution.

The algorithm starts with a random set of candidate so-
lutions (initial population). The values of outflow and water
supply are generated using a uniform random generator from
intervals 〈Cmin, Cmax〉 and 〈Omin, Omax〉, respectively. The
current water volume is calculated based on the inflow, outflow
and supply, however the values are not checked against the
limit here - it’s up to the evolution process to eliminate
solutions that violate any restriction.

The evolution starts by generating trial vectors. With a
predefined probability CF , a trial vector for an individual is
created based on two parents and itself, and their contents are
recombined using the formulae

vt = xr1 + F ∗ (xr2 − xr3) (4)

where xr1 is the actual individual whereas xr2 and xr3 are two
distinct parents. F is a parameter allowing for the variance
control. Every trial vector is evaluated by the fitness function.
The better trial vectors finally replace the original individuals.

The critical part of the algorithm is the fitness function. The
fitness function, based on the work by Mensik [11], is divided
into two parts. The first part is the penalisation Y which is
applied on individuals violating the prescribed restrictions. The
penalisation can be tuned for every lower and upper limit of
all three restrictions (outflow, supply, volume) by choosing

a different penalisation factor PF. The penalisation follows
formulas

Yx =

{
(x−max) ∗ PF if x > max

0 otherwise
(5)

Yx =

{
(min− x) ∗ PF if x < min

0 otherwise
(6)

Y =
τ−1∑
t=0

∑
a∈{V,O,C}

Ya,t (7)

The overall value of the penalisation is the sum over all
restrictions and time periods, see eq. (7).

The second step of the fitness function is the quality
assessment of X . Here, we only work with the outflow and
water supply measuring how close we are to the desired values
of ZC and ZO in all time periods. The precise formulae is
shown in eq. (8).

X =
τ−1∑
i=0

((Ci − Zc)
2 + (Oi − Zo)

2) (8)

The final fitness function value is the sum of the quality X
and penalisation Y .

The simulation is guided by a list of control parameters:

• Zc is a desired value of outflow.

• Zo is a desired value of water supply.

• PFVmin is the low volume penalisation factor.

• PFVmax is the high volume penalisation factor.

• PFOmin is the low supply penalisation factor.

• PFOmax
is the high supply penalisation factor.

• PFCmin
is the low outflow penalisation factor.

• PFCmax
is the high outflow penalisation factor.

The evolutionary process is controlled by several other
parameters:

• NP is population size.

• CF is recombination probability.

• F is variance coefficient.

• i is number of generations.

When solving a system of water reservoirs, we have to
extend the list of parameters. First of all, we have to define
the number of water reservoirs, second we specify penalisation
factors for lower and upper restrictions on all reservoirs. The
penalisation function Y and quality function X then read

Y =
D−1∑
v=0

τv−1∑
t=0

∑
a∈{V,O,C}

Y v
a,t (9)

X =

D−1∑
v=0

τv−1∑
i=0

((Cv
i − Zv

c)
2 + (Ov

i − Zv
o)

2) (10)

1729

Fig. 3. Implementation of the CPU multi-threaded DE.

B. CPU Implementation of the DE Algorithm

In the paper, we present two different implementations of
differential evolution. First, we created a multi-threaded C++
code using OpenMP pragmas1, and then, we ported the code
in the CUDA language2 to employ current GPUs.

The structure of the CPU code is shown in Fig 3. After
launch, a parallel OpenMP region with a predefined number
of threads is created. These threads then work almost inde-
pendently, synchronising only twice per generation at barrier
synchronisation points, which yields high parallel efficacy.

The CPU algorithm first initialises the population by
random individuals and then waits at a barrier. As soon as
all threads are done with the initialisation, the trial vector
generation process starts. Each thread receives a portion of
individuals to perform genetic manipulation on and evaluate
the fitness. As the genetic manipulation only takes place with a
given probability and the fitness function evaluation may take a
variable time, we used dynamic workload balancing to improve
the efficacy. After a barrier synchronisation, the replacement
process starts. This process brings better individuals into cur-
rent population. After the replacement has finished, all threads
wait at a barrier and a new generation starts. This process
repeats until a given number of generations is evaluated.

Finally, C++ STL vectors maintain populations and the
standard C++ random engine generates random numbers.

1http://openmp.org/wp/
2https://developer.nvidia.com/cuda-zone

Fig. 4. Implementation of the GPU-accelerated DE in the CUDA language.

C. GPU Implementation of the DE Algorithm

The GPU implementation was realized in the CUDA lan-
guage and can thus be used with Nvidia GPU cards. The design
of the GPU accelerated DE was inspired by work of Qin [12],
however, not all principles were applicable in our case. From
the CPU flat profile (see sec IV-B1) we had known that the
fitness evaluation run time is comparable with the rest of the
DE algorithm. From Fig 3, we had also learnt that only two
synchronization points are necessary for the whole algorithm.
This led to the design of a DE algorithm that entirely runs
on the GPU and is structured into only two main kernels.
Kernel (M) performs genetic manipulation while kernel (E)
carries out evaluation and replacement. In order to collect
statistical information about the evolution process, Kernel (S)
is occasionally executed. The CPU only helps with reading
input files, preprocessing data and controlling the progress of
the evolution, see details in Fig 4.

At the beginning, the CPU populates the GPU’s constant
memory with simulation parameters, restrictions and penali-
sation factors for a given water system complemented by the
parameters necessary for the run of DE. Consequently, several
data structures are allocated in the GPU global memory to
maintain the population of candidate solutions, the population
of trial vectors and some scratch place.

1) Kernel configurations: In CUDA, all kernels (GPU rou-
tines) are executed by a bunch of lightweight threads grouped
into thread blocks and organised into a grid, which is called
kernel configuration. In order to fully exploit GPU potential,
tens of thousands of threads must run concurrently. The threads
within a single thread block can communicate and collaborate
via shared on-chip memory while the communication and
synchronisation of thread blocks is not possible (only by
stopping the kernel and invoke it again).

Our kernel configuration tries to maximize the amount of
work that could be done in parallel by maximizing the number

1730

of threads. The first source of parallelism comes from the
individuals which can be processed independently. Moreover, a
lot of computation within an individual can be done in parallel
for particular water reservoirs (graph vertices) and a subset of
operations is also time independent (multiple time periods can
be processed concurrently). This altogether allows a creation
of up to thousands of CUDA threads even for small systems.

However, both the GPU architecture and the CUDA lan-
guage introduce a few restrictions on how the threads may be
packed and what number of threads can be associated with a
thread block. Thus, a simple heuristics to create an appropriate
kernel configuration was developed taking into account the
current water system being solved. The rules are as follows:

• The number of individuals per block is at least 1.

• An individual cannot be processed by multiple thread
blocks due to the use of shared memory.

• The smallest number of threads per block is 32.

• The number of threads cannot exceed the maximum
number given by the GPU architecture, usually be-
tween 1024 and 2048.

2) Kernel (M) - generation of new individual: This kernel
caries out the generation of new trial vectors. The kernel first
generates random numbers using the well known Random123
CUDA generator [13] and then applies genetic manipulation
according to eq. (4). The random seed is a combination of
processor time and the individual index in the population.
The random numbers are shared among CUDA threads via
shared memory. The advantage is that the kernel can employ
all CUDA threads during the generation of new individuals.
The performance limitation of this kernel is uncoalesced access
to the global memory due to memory accesses controlled by
random numbers.

3) Kernel (E) - evaluation and replacement: The kernel
starts with the evaluation of current individuals. In order to
save memory bandwidth, we do not store the actual water
volume in the individual, but instead, calculate them on the fly.
Thus, the kernel first calculates the actual water volumes for
all water reservoirs at all time periods. Although a significant
portion of this calculation (summing up all inflows, outflows
and supplies) could be done in parallel, there are data de-
pendencies between subsequent time periods. This means that
it is not possible to start the calculation for the time period
t+1 until the calculation for t has finished. Thus, the level of
parallelism per individual is limited by the number of vertices
in the graph (number of water dams). In practice, only a subset
of CUDA threads is employed while the rest remains idle.

The second part of the kernel is the evaluation of individu-
als. Here, the level of parallelism is not limited and the number
of concurrent operations (exploitable CUDA threads) can scale
up to the product of the water dams and the time periods. This
means that particular threads calculate penalisation for a single
graph vertex at one time period. The partial results are stored
in on-chip shared memory and summed up using a custom
parallel reduction.

Finally, the replacement is performed. If a generated trial
vector is better than the original individual, it replaces the
original one.

IV. EXPERIMENTAL RESULTS

This section investigates the quality and performance of the
proposed CPU and GPU DE algorithms applied on the multi-
reservoir system storage capacity problem. First, we describe
the benchmark, the investigated hardware and the parameters
of DE. Then, we show the performance compassion of both
CPU and GPU implementation on a few different processors
and graphics cards. Finally, we show the quality of evolved
solutions and compare the implementations against each other.

A. Experimental Setup

1) Benchmark water systems: In order to investigate the the
quality of the proposed algorithm, we created two benchmark
water systems. This benchmarks were inspired by real water
systems located in the south-east part of the Czech Republic.

The water system I, shown on the left hand side in Fig.
5, represents a simplified model with two water reservoirs
called Vir (D1) and Brno (D2), and a confluence of two rivers
(D3). The water reservoir Vir has also a water supply function
while the water reservoir Brno only serves as a protective and
recreation water dam. The systems also contains three rivers
(Q1, Q2 and Q3).

The water system II, shown on the right hand side in
Fig. 5, represents a much complicated water system with four
reservoirs Vir (D1), Brno (D2), Letovice (D3) and Boskovice
(D4), four river confluences (D4, D6, D7, D8) and several
rivers. We can also see that only the water reservoir D1 has
the water supply function while the others have the protective
and regulatory function only.

2) Parameters of differential evolution: In order to set the
suitable parameters of the differential evolution, we performed
a deep investigation of the evolution convergence and sta-
tistically evaluated multiple parameter configurations over 50
independent runs. However, for the sake of brevity, we are
only going to summarize the best parameter setup.

The DE population size NP was investigated on the
interval 〈100, 50000〉. The convergence tests showed that a
reasonable population size still producing high quality results

(a) (b)

Fig. 5. Optimised water systems (a) Water system I with two reservoirs and a
confluence and (b) Water system II with four reservoirs and four confluences.

1731

TABLE I. INVESTIGATED PROCESSORS AND THEIR PARAMETERS.

Name edesign1 edesign2 edesign3

Model X5650 X5355 E5-2630

Architecture Westmere Clovertown Sandy Bridge

Cores/Threads 6/12 8/8 6/12

Frequency [GHz] 2.66 2.66 2.3

Performance [GFLOPS] 64 85.2 110

Memory BW [GB/s] 32 44 42.6

TABLE II. INVESTIGATED GRAPHICS CARDS AND THEIR

PARAMETERS.

Name GTX660M GTX580 Tesla C2070 Tesla K20s

Architecture Kepler Fermi Fermi Kepler

CUDA Cores 384 512 448 2496

Freqequency [MHz] 835 772 575 706

Performance [GFLOPS] 641 1581 1030 3524

Memory BW [GB/s] 64 192 144 208

while saving computation resources lies close to 1000 and
30,000 individuals for water system I and II, respectively.
Higher population sizes do not bring significant improvement,
while smaller populations tend to premature convergence.

The probability a trial vector is generated for a given
individual CF was investigated on the interval 〈0.2, 1.0〉 with a
step size of 0.2. The convergence tests found the most suitable
value close to 0.6. Higher values do not bring significant
improvements but linearly increase the number of evaluations
and the execution time.

The variance coefficient F was investigated on the interval
〈0.2, 2.0〉. The convergence tests showed that for values higher
than 1 the quality of individuals rapidly decreases. The quality
of the individuals reaches its maximum for F approaching 0.5.

Finally, the necessary number of iterations/generations to
reach a suitable solution was investigated. For both water
systems, 10,000 iterations proved to be enough time for the
algorithm to converge.

3) Hardware definition: Table I and II show the CPU and
GPUs hardware investigated in this papers. We used three
different servers based on different CPU architectures featuring
4 and 6 cores. Edesign1 and edesign3 represent a single socket
hex-core machines while edesign2 is a dual-socket quad-core
machine. We can see that the performance in terms of GFLOPS
(Billion floating point operations per seconds) varies between
64 and 110 GFLOPS. The memory bandwidth ranges between
32 and 44 GB/s. However, in the case of edesign2, this is the
sum of two processors connected by a slow front side bus.

The list of GPU cards investigated in this paper includes
a laptop GTX660M, a desktop GTX580 and two server cards
Tesla C2070 and Tesla K20s. The performance varies between
641 GLFOPS and 3524 GFLOPS. The memory bandwidth
reaches its peak between 64 and 208 GB/s.

Comparing the theoretical parameters of the CPUs and
GPUs, we can anticipate the speed-up provided by particular
GPUs. Compared to the fastest CPU server (edesign3), the
speed-up provided by the GPU version might sit between 6
and 32 int the case the evolution was compute bound, or
between 1.5 and 4.9 in the case the memory bandwidth was
the bottleneck. The actual results can be seen in sect IV-B3.

B. Performance evaluation

Two water systems presented in Fig. 5 were used for per-
formance comparisons of the CPU and GPU implementations.
While developing both codes we profiled on edesing3 (Table
III) and GPU GTX580 (Table IV) to find out where the most
time is spent. These routines were subsequently tuned and the
final comparisons is shown in sections IV-B3 and IV-B2.

1) CPU profile: Table III lists the most significant routines
of the proposed multi-threaded differential evolution obtained
by the Linux tool gprof. From the table, we can see that
the genetic manipulation and fitness function evaluation are
comparable, 55% vs 42%. This observation suggests that both
part of DE must be implemented and optimised with same care.
Looking more closely at the fitness function evaluation, we can
conclude that the penalisation routine is more time consuming.
This is caused by checking the list of restrictions that has to
be satisfied. This leads to a lot of branches which are virtually
unpredictable. The CPU thus loses significant performance
on the branch miss-prediction penalty. On the contrary, the
evaluation of how close we are to the desired solution (the
level of outflow and supply) is purely mathematical (sum of
error squares). This kind of calculation can be performed with
high efficacy using the processor vector units (SSE or AVX).

The genetic manipulation process comprises of the trial
vector generation (routine Manipulate) and the calculation of
the total inflow. Here, the genetic manipulation routine is the
dominant part due to random number generation and random
memory accesses causing high percentage of cache misses.

Finally, we can conclude that there is not a significant
difference between water system I and system II.

2) GPU profile: The GPU profile was taken by the Nvidia
visual profiler. Since there are only two CUDA kernels imple-
menting whole DE, we also present detail information on the
execution in Table IV. First, we should mention that the kernel
(M) took about 41% of the execution time while the kernel (E)
took about 59%. Second, let us examine the global memory
efficiency that tells how much is the memory bandwidth used.
For kernel (M), we reached 81% and 84% efficiency for water
system I and II, respectively. These values represent relatively
good results, slightly deteriorated by the need of uncoalesced
memory accesses during the parent selection. In the case of
kernel (E), we can see that the efficiency is even higher than
100% (actually 126% and 131%). How is this possible? It is
caused by the presence of L1 and L2 cache that are very helpful
when temporal and/or spatial data locality is preserved. This
is confirmed by the third row, where the cache hit is almost
88%. On the other hand, kernel (M) has quite a low cache hit,
especially for the bigger water system.

TABLE III. THE FLAT PROFILE OF THE CPU VERSION ON EDESIGN3.

wall clock time[%]

Routine System I System II

Penalisation 38.21 36.66

Evaluation 16.84 15.24

Manipulate 30.9 32.65

TotalInflow 12.03 12.96

Fitness function 55.05 53.22

Genetic manipulation 42.93 45.61

Grand total 97.98 98.83

1732

TABLE IV. THE PERFORMANCE METRICS FOR THE GPU
IMPLEMENTATION RUNNING ON NVIDIA GTX580 GPU.

kernel(M) kernel(E)

System I System II System I System II

Global mem load efficiency 81.60% 83.70% 126.00% 131.00%

Global mem store efficiency 78.60% 86.70% 78.00% 79.20%

L2 hit rare (L1 reads) 56.70% 11.21% 86.80% 88.70%

Achieved occupancy 86.00% 48.80% 93.00% 89.60%

MP activity 96.50% 99.80% 96.80% 99.90%

Branch efficiency 96.80% 90.30% 99.80% 100.00%

The achieved occupancy is a measure of how much par-
allelism can be exposited by the code while the MP activity
shows the how much the CUDA cores are being utilised. In
our case, the occupancy is very high. The only exception is the
kernel (M) creating individuals for the water system II. Here, a
lot of hardware resources are necessary (registers and on-chip
shared memory). Looking, at the MP activity we reached over
96% utilisation of the CUDA cores. That signals that the GPU
is being kept busy not idling when waiting for memory.

The last very important performance measure is the branch
efficiency. Since GPU architectures are based on very long
vector units, they are very sensitive to branch divergence (at
least two threads taking a different branch of the if statement).
Here, we can see that the code achieves a very high branch
efficiency above 90 % for the kernel (M), although there are
quite a lot decisions depending on random numbers here. The
branch efficiency for the kernel (E) is excellent.

3) Execution time: This subsection evaluates the execution
time needed to find an acceptable solution and compares the
speed-up reached by the GPUs to multi-core CPUs. Fig. 6
shows the execution time for the water system I. First, we
can see that the edesign2 is significantly slower than other
CPU machines, although the paper values promise a good
performance. Of course, we don’t have to forget that it is a
dual socket system with quite outdated CPUs interconnected
with slow front side bus. The newer CPUs based on Westmere
and Sandy Bridge architectures outperform the Clavertown by
a factor of 2.1.

The investigated GPUs perform significantly better. The
fastest is the GTX 580. This GPU was able to produce an
acceptable solution 12 times faster than edesing2 and almost
5 times faster than other hex-core servers. The C2070 is a
bit slower than GTX580, but the performance drop is pro-
portions to the reduced performance. Interestingly, the laptop
GTX660M achieves a very good performance considering its
performance, reaching up to 3 times execution time reduction.
What was on the other hand a disappointment, was the
performance of K20s GPU. It seems that the GPU was not fully
utilised by the small benchmark, or tuning the code for Fermi
architecture (GTX580 and C2070) had caused ill-optimised
code for the more recent Kepler architecture. Although, the
Kepler architecture almost triples the number of CUDA cores,
the chip clock was slightly decreased and the hot clock (CUDA
cores and on chip memory running at double frequency) was
removed.

Figure 7 shows the same performance comparison for the
water system II. Since the optimisation problem is significantly
harder, it offers more opportunities for the parallel calculation.
And really, the fastest GPU GTX580 outperforms the slowest
CPU by almost a factor of 42 and the fastest CPU by a factor

Fig. 6. Execution time of DE for water system I on different architectures.

of 18. This is believed to be an excellent results taking into
account that the theoretical maximum acceleration factor of
the GTX580 compared to edesing1 is 24. The code thus tends
to be compute bound. Interestingly, edesing3 is on the par with
the edesing1, although paper parameters would suggest that a
newer Sandy Bridge offers almost twice as high performance.
The reason is that this performance is delivered by the AVX
instruction and our code could not exploit all opportunities to
use these vector units.

When we compare the other GPUs we can see that their
speed is proportional to the theoretical performance, but the
Kepler K20s. Here, we can see a significant improvement in
the evolution speed compared to the previous benchmark. It
is believed that running even more complicated benchmark
would show the true potential of this GPU. For now, we can
conclude that the K20 is on par with GTX580.

C. Quality of the evolution process

Finally, we compared the quality of the evolutionary pro-
cess in the search for an acceptable solution, see Figures 8 and
9. The x-axis represents the iteration and the y-axis represents
the fitness value. The plots show the development of the best
and average individuals over 10,000 iterations collected and
aggregated over 20 independent runs.

Fig. 8 shows that the CPU and GPU implementations
behave similarly. Both algorithms converge after about 2000
generations after an optimal solution has been found.

From Fig. 9, we can see two phenomenons. First, both
implementations have problems in finding an optimal solution.
Although none of the restrictions was violated, the evolved

Fig. 7. Execution time of DE for water system II on different architectures.

1733

values of outflows and supplies seem to be far from the desired
levels. We have to admit that these values were set to be very
restrictive and made the evolution run for a very long time. The
second phenomenon deserving an explanation is the different
convergence of both algorithm. This can be attributed to differ-
ent random number generators for CPU and GPU and small
deviations in the code for different architectures. The GPU
implementation produces significantly better solutions, which
is great success considering the evolution time reduction.

V. CONCLUSIONS

The paper has presented an innovative algorithm for op-
timisation of multi-reservoir system storage capacity. Such
systems are getting significant importance with the growing
population density and climate changes. The proposed algo-
rithm allows us careful strategic control of the multi-reservoir
system storage capacity for population and industry supplies
during twelve months. In practise, we can use the proposed
algorithm in case that we have predictions of monthly inflows
into the system. Our algorithm was tested on realistic water
systems built on rivers in the Czech republic and shown the
ability to plan the outflows and supplies in monthly time steps.

The optimisation algorithm was carefully tuned for current
processors and graphics cards. The deployment of GPUs
allows us to optimise moderate systems within a minute,
almost 18 times faster than a hex-core processor. Moreover, the
GPU implementation produces a significantly better solutions
(outflow plans).

In the future we would like to test the optimisation algo-
rithm on large water systems and try to strategy control multi-

Fig. 8. Solution quality development for the water system I.

Fig. 9. Solution quality development for the water system II.

reservoir systems with predictive model of mean monthly
inflows into the system. We also could modify the algorithm
to the adaptive control for testing of strategic control of multi-
reservoir system storage capacity and hydropower in the long
time period.

ACKNOWLEDGMENT

This work was supported by the research project ”Archi-
tecture of parallel and embedded computer systems”, Brno
University of Technology, FIT-S-14-2297, 2014-2016, and the
research project ”Operation control of storage function of large
open reservoirs system by using optimization model”, Brno
University of Technology, FAST-S-14-2454, 2014-2015.

This work also was supported by the IT4Innovations Centre
of Excellence project (CZ.1.05/1.1.00/02.0070), funded by the
European Regional Development Fund and the national budget
of the Czech Republic via the Research and Development for
Innovations Operational Programme, as well as Czech Ministry
of Education, Youth and Sports via the project Large Research,
Development and Innovations Infrastructures (LM2011033).

REFERENCES

[1] M. Stary, Nadrze a vodohospodarske soustavy. Brno University of
Tehchnology, Brno Czech republic, 1986.

[2] D. Marton, P. Mensik and S. Stary, Using Predictive Model for Strategic
Control of Multi-reservoir System Storage Capacity, Procedia Engineer-
ing, 2015, vol. 2015, no. 119, pp. 994–1002, ISSN: 1877-7058.

[3] P. Mensik, M. Stary and D. Marton, Using Predictive Models of Mean
Monthly Flows for Operative Outflows Control from Large Open Reser-
voirs, Proceedings ITISE 2014, International work- conference on Time
Series, Spain, Granada, 2014, ISBN 978-84-15814-97-9, pp. 382–395.

[4] W.W.G. Yeh, Reservoir management and operations models: a state-of-
the-art review, Water Resour. Res.,1985, vol. 21, no. 12, pp. 17971818.

[5] M. Karamouz and M.H. Houckm, Annual and monthly reservoir oper-
ating rules generated by deterministic optimization, Water Resour. Res.,
1982, vol. 18, no. 5, pp. 1337–1344.

[6] A.L. Velikanov and J.C. Oziranskij, Compiling perspective water man-
agement balances considering water resources management, Vodn. Resur.,
1985, no. 2, p. 514.

[7] M.A. Kornjuchin, K.K. Mosevi and A.I. Safonov, Water balance model
of the operation regime of combined water management systems, Vodn.
Resur., 1985, no. 2, pp. 15–19.

[8] P. Mensik, M. Star and D. Marton, Water Management Software for Con-
trolling the Water Supply Function of Many Reservoirs in a Watershed.
Water Resources, 2015, vol. 42, no. 1, p. 133–145. ISSN: 0097-8078.

[9] V. Feoktistov, Differential Evolution: In Search of Solutions. Springer.
2006, ISBN 978-0-387-36895-5.

[10] R. Storn and K. Price, ”Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces.Journal of
Global Optimization 11: 341–359. 1997. doi:10.1023/A:1008202821328.

[11] P. Mensik, Automatizace reseni zsobn funkce vodohospodarske soustavy.
PhD Thesis, Brno University of technology, Brno, Czech Republic, 2012.

[12] A. K. Qin, F. Raimondo and F. Forbes, An improved CUDA-based
implementation of differential evolution on GPU. 2012 GECCO Genetic
and evolutionary Compuation Conference, editace T. Soule; J. H. Moore,
ACM, 2012, ISBN 978-1-4503-1177-9, pp. 991–998.

[13] J.K. Salmon, M.A. Moraes and R.O. Dror and D.E. Shaw, Parallel
Random Numbers: As Easy as 1, 2, 3, Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis on - SC11, 2011, pp. 16:1-16:12.

1734

