
Impact of Optimization and Parallelism
on Factorization Speed of SIQS

Dominik Breitenbacher, Ivan Homoliak, Jiri Jaros, Petr Hanacek
Faculty of Information Technology, BUT,

Bozetechova 1/2, 612 66 Brno, Czech Republic
Email: {ibreiten, ihomoliak, jirijaros, hanacek}@fit.vutbr.cz

Abstract—This paper examines optimization possibilities of
Self-Initialization Quadratic Sieve (SIQS), which is enhanced ver-
sion of Quadratic Sieve factorization method. SIQS is considered
the second fastest factorization method at all and the fastest
one for numbers shorter than 100 decimal digits, respectively.
Although, SIQS is the fastest method up to 100 decimal digits,
it cannot be effectively utilized to work in polynomial time.
Therefore, it is desirable to look for options how to speed up
the method as much as possible. Two feasible ways of achieving
it are code optimization and parallelism. Both of them are utilized
in this paper. The goal of this paper is to show how it is possible
to take advantage of parallelism in SIQS as well as reach a
large speed-up thanks to detailed source code analysis with
optimization. Our implementation process consists of two phases.
In the first phase, the complete serial algorithm is implemented
in the simplest way which does not consider any requirements
for execution speed. The solution from the first phase serves
as the reference implementation for further experiments. An
improvement of factorization speed is performed in the second
phase of the SIQS implementation, where we use the method
of iterative modifications in order to examine contribution of
each proposed step. The final optimized version of the SIQS
implementation has achieved over 200x speed-up.

Index Terms—Factorization, SIQS, Parallelism, OpenMP, Pro-
filing, RSA cryptanalysis.

I. INTRODUCTION

A factorization is a process which aims at finding the
factors of a given composed number in reversible fashion. The
factorization is NP-hard computational problem which means
that it cannot be efficiently resolved in polynomial time. One
of the example areas, where factorization is being utilized, is
the RSA cipher cryptanalysis [16]. The RSA presumes that
for sufficiently long keys (2048 bits and longer), the attacker
is unable to compute this computational problem and decipher
an encrypted message.

Many factorization methods have been presented, while
SIQS is one of them. It is described for example by Contini
in [5]. SIQS is the most optimized version of QS which is
the fastest method for factorization of composite numbers
up to 100 decimal digits (332 bits) and the second fastest
in general [14], [15]. The drawback of SIQS is its difficult
comprehensibility. On the other hand, it is much more com-
prehensible in comparison to General Number Field Sieve [2].
The factorization speed of SIQS depends on many aspects. As
we will show later, it is possible to split SIQS into several
submodules. Each submodule has its own complexity and
issues which have to be considered and resolved separately

in order to make implementation efficient. In this paper, we
discuss common issues and present our approaches to deal
with them. Our approaches are primarily based on a code
profiling analysis and memory utilization analysis which are
accompanied by a parallelism.

The paper is organized as follows. Section II describes SIQS
in detail and splits it into logical submodules. Section III
proposes our approach and describes the methodology and
the process of SIQS implementation. The performance issues
and optimization process for achieving faster factorization are
covered in Section IV. Section V discusses SIQS demands
on a memory subsystem as well as a way of optimizing
them. Section VI presents the influence of parallelism on the
factorization speed. The comparison of our optimized SIQS
implementation with another one is covered in Section VII.
The conclusion summarizing the achieved results is presented
in Section VIII.

II. THE SIQS FACTORIZATION

The Quadratic Sieve (QS) is one of the most used methods
for factorization of large composite numbers. QS is described
by Pomerance in [14], [15], and it origins from the Fermat
factorization method, which is based on the fact that each odd
number can be expressed as a subtraction of two squares:

n = u2 − v2 = (u+ v)(u− v). (1)

Fermat factorization method sets u = d
√
ne, and if u2 − n 6=

v2, then a factor is not found, u is incremented by 1 and
the process is repeated again. Fermat factorization is very
time consuming, because this method is efficient only if the
composite number is composed of a product of two close
numbers.

Kraitchik proposed improvements of the Fermat factoriza-
tion method in [15]. He found out that we do not need to look
only for numbers where the equation n = u2 − v2 is true,
but it is enough to find number, where u2 − v2 is a multiple
of composite number n. It can be also written as

u2 ≡ v2 (mod n) . (2)

We can realize that using this method can lead to gaining
trivial factors as a result (i.e. n and 1) which does not pose
any value for factorization. If inequality u 6≡ ±v (mod n)
is true, then the result is non-trivial and each factor can be
computed as GCD(u− v, n) or GCD(u+ v, n), where GCD



means greatest common divisor. Kraitchik suggested that it is
efficient to find numbers ui for i ∈ {1, . . . , k}, which are
subject to:

u2 = u2
1 × . . .× u2

k

≡
(
u2
1 mod n

)
× . . .×

(
u2
k mod n

)
= v2.

(3)

The fact that we can write every number m as a product of
all its prime factors

m =
∏

peii , (4)

where pi are primes and ei are their exponents, helps us to
solve the equation (3). Considering the exponents of the prime
factors of number m, we can make a vector

e (m) = (e1, e2, . . .) (5)

which is also called a relation. We are looking for a square,
however the vector of exponents provides us with higher
amount of information than we need. Thus, the vector of
exponents is usually reduced to modulo 2. The goal of this
method is to find vectors that produce a square. If the sum of
two or more vectors results in the null vector, then a square is
found. The precise amount of vectors needed to find the null
vector is described by Brillhart and Morrison in [12]. As we
are always limited by available memory, it is appropriate to
limit the length of the exponents in a vector.

As the next step, we have to determine how large factor
base should be used before performing a factorization by the
QS. The factor base is a set of the first F primes. The F -
th prime of the factor base is denoted as B. Every number
that has only prime factors smaller or equal to B is called
B-smooth number. Only B-smooth numbers are used to find
the null vector. In order to find the null vector, we have to
gather at least F + 1 vectors. If a linear dependency exists
among vectors, then at least one instance of the null vector
occurs in a set of vectors. Notice that squares gained by this
method may not lead to a non-trivial result, and therefore it is
always necessary to check whether u 6≡ ±v (mod n) is true.

The SIQS method is an improvement of QS which uses
polynomial for generating numbers:

Qa,b (x) = a(ax2 + 2bx+ c), (6)

instead of
Q (x) = x2 − n (7)

as QS does. The method of computing the coefficients a, b and
c is described in [5]. QS uses only one polynomial to find B-
smooth numbers, however, SIQS can use many polynomials to
find B-smooth numbers thanks to the coefficients represented
by the polynomials. Therefore, the SIQS uses variable x
only at a specified interval. The polynomial is changed after
depleting the whole interval, and thus searching for B-smooth
numbers is more efficient.

The SIQS algorithm can be divided into several submodules
and every submodule can be implemented in many different
ways. As we mentioned earlier, the factorization is NP-
hard computational problem, and therefore it is desirable to

implement it as efficiently as possible. This paper divides the
SIQS algorithm into the following parts:

A) SIQS parameters configuration,
B) polynomial generation,
C) sieving and
D) resolution of linear dependency,

which will be closer described in following rows.

A. SIQS Parameters Configuration

The SIQS parameters configuration part has significant
impact on the factorization speed because this part affects
the whole process of the factorization. The major parameters
that we configure in this phase are the size of the factor base
and the size of the sieving interval. Each parameter has its
own influence on the performance of SIQS. If the parameters
are chosen improperly, then the factorization fails or is not
efficient. It is necessary to make dedicated configuration of
parameters for every input composed number in order to make
the method more efficient.

B. Polynomial Generation

The implementation of polynomial generation influences the
speed and a quality of generated polynomials. The high quality
polynomials are desirable for speeding up the factorization,
because they cause higher likelihood of finding the relation and
also lower the likelihood of duplicate relations’ occurrence.
The process of polynomials generation and quality discussion
about them can be found in [3]. We experimentally found out,
that the logarithm of coefficient a of the given polynomial
should not differ by more than 0.01 from its optimal value.
According to [5], the optimal value of the coefficient a is
computed by solving the equation:

aoptimal =

√
2n

M
. (8)

It should be noted that coefficient a is created as a product of
s primes from factor base, and thus causes a being very close
to its optimal value (not equal to it).

C. Sieving

The sieving phase is the most time consuming phase of
SIQS and its objective is to gather the necessary amount of
unique relations. Sieving can be divided into three parts:

a) computation of polynomial roots,
b) candidate selection and
c) candidate verification.

Computation of polynomial roots has to be done for every
prime that we have in our factor base. If the sum of primes’
logarithms for a given x of the current polynomial exceeds
the threshold, then x is marked as a candidate. The threshold
is computed by solving the equation [5]:

log(2x
√
N). (9)

The candidates are verified after the candidate selection. If a
candidate is successfully verified, then a relation is created.
The candidate verification is performed by division using all



primes in the factor base. If the result of a division is equal to
1, then the candidate is successful. The candidate verification
part does not take a lot of time, as there are only few candidates
necessary to be verified.

D. Resolution of Linear Dependency

The last phase of the SIQS represents resolution of linear
dependency. This phase performs transformation of relations
to a matrix which is exploited for finding of linear dependent
rows. Usually, several linear dependencies are found. Each
linear dependency is then checked whether it leads to a factor
of the given composed number.

III. IMPLEMENTATION DETAILS

The SIQS method has been implemented in the C++ lan-
guage on x86-64 architecture. C++ has been chosen because
its standard libraries provide many data types that are often
used in the implementation as well as there are many C++
based profiling tools available. The next reason, why we have
chosen C++, is OpenMP [4] support which is employed for
our parallelism. Also, MPIR library (version 2.6.0) has been
employed because it is capable of holding very large numbers
and provides various operations with them. The Single Large
Prime Variation (SLPV) has been implemented in order to
speed up the SIQS algorithm [7], [8].

Our implementation consists of two phases. In the first
phase, the complete and functional algorithm is implemented
in the simplest way which does not consider the requirements
for execution speed. Then, the soundness of the implemen-
tation is verified on the smaller numbers that have up to
40 decimal digits. This version serves as the reference SIQS
implementation for further experiments.

The speed optimization is the second phase of our SIQS
implementation, where the method of iterative optimization
has been utilized. The SIQS algorithm is composed of several
steps which are logically connected. Each step has its own
time complexity ranging from the linear complexity to the
cubic one. With increasing length of the composite numbers,
each iteration of optimization reveals specific critical parts of
the algorithm. Every optimization phase is examined and the
influence on the execution time as well as the memory con-
sumption is measured. Also, the influence of the performance
on the initial settings is evaluated. The latest version of our
implementation has been compared to the MSieve1 which is
an open source implementation of SIQS.

A. Multiple Interpretations of SIQS Algorithm

Our implementation of SIQS follows theoretical and math-
ematical principles described in [5]. There are many ways
of implementing the SIQS method which is the reason why
different SIQS implementations exist. Therefore, each imple-
mentation of the SIQS algorithm may differ in its factorization
speed compared to the other ones. In the following sections
we closely describe the main principles which make our
implementation unique.

1https://sourceforge.net/projects/msieve/

B. NEXKSB and Binary Search Tree

To ensure that our polynomial generation submodule is able
to generate polynomials of high quality, the part for generation
of coefficient a has been implemented according to [3]. The
NEXKSB algorithm has been implemented for lexicographical
prime selection [13] which enables us to ensure that the
coefficient a always differs at least in one prime. Using the
NEXKSB algorithm, we select the first s − 2 primes for
generating of the coefficient a. Our reference implementation
utilizes NEXKSB with selection of s− 3 primes.

Binary Search Tree (BST) is implemented in order to
provide us the remaining primes [6]. BST aims at ensuring
that the logarithm of the coefficient a is as close as possible
to its optimal value. Each node of BST contains a pair of
primes from the selected subset of the factor base together
with a logarithm of their product. The floating point data
type is used as a key in the BST implementation. First, the
optimal value of the coefficient a is computed. Then, s − 2
primes are selected by the NEXKSB algorithm followed by
the logarithm computation of the product of these primes. The
key for searching in BST is the difference between the optimal
value of the coefficient a and the previous logarithm value. The
algorithm enables us to traverse in BST until the closest key
is found. The difference between the input key and the closest
one represents the difference between the generated coefficient
a and its optimal value. As we mentioned in Section II-B, the
difference should not be higher than 0.01 which is achieved
by appropriate selection of primes in a subset of the factor
base.

C. Gaussian Elimination Method

When the required amount of the relations is gathered,
we need to find the relations which produce the null vector.
Thus, we create the matrix of relations. Then, the Gaussian
Elimination (GE) method is utilized in order to find the null
vector among rows in the matrix of relations [10]. Sieving
process usually gathers more than enough amount of relations.
Thanks to this, more than one null vector may exist among
the gathered relations. The GE method finds all null vectors
that exist in the matrix. Referring to Section II, it may happen
that an instance of the null vector will result into trivial factor
– which is not desired. As we have more than one null vector
available, it is very unlikely that all of them will lead to trivial
factors.2

D. The Utilization of Parallelism

This section describes how the parallelism is implemented
in our SIQS algorithm. As was previously mentioned, the
SIQS algorithm can be divided into logically separated parts.
The first of them is parameters configuration of the SIQS
which performs adjustments of many parameters before the
sieving process can start. There is no possibility of any
efficient parallelism, as the parameters are being adjusted as
a complex unit.

2If it happens, then we need to repeat the whole process of factorization.



When the parameters are adjusted, we can generate the
polynomials and start sieving. We are able to generate many
polynomials which are independent to each other, and thus
they can also independently contribute to the factorization
itself. This fact enables us to exploit many program threads,
whereas each of them generates one polynomial. Each program
thread can perform the sieving process independently to the
other threads, as it has its own polynomial generated. When
polynomials are depleted, gathered relations are stored in
the shared array of the relations. If there is not enough
relations gathered yet, the thread can continue in generating
new polynomial and repeats the process of sieving with new
polynomial.

Notice, that in practice, it is not possible to sieve fully
independently because of two reasons. The first reason is that
a situation, where two threads generate the same polynomial
leading to the acquirement of the same relations, may occur.
To avoid this situation, we have to control the access to the
NEXKSB by using a critical section provided by OpenMP
directive #pragma omp critical. The second reason is
the fact that two threads may find a relation at the same time.
Therefore, the storage of gathered relations has to be controlled
by other critical section. Except of these two situations, each
thread runs independently to the others.

With growing length of a factorized number, these situa-
tions occur more rarely which also contribute to parallelism
efficiency. Only the sieving process and polynomial generation
are parallelized in the first phase of our implementation. The
pseudo-code of the parallel algorithm is shown in Algorithm 1.

Algorithm 1: Proposed parallelism of the SIQS
Input: Composed number
Output: Factor

1: ConfigureSIQS();
2: begin #pragma omp parallel
3: while (num of relations < desired num) do
4: GeneratePolynom();
5: Sieve();
6: end while
7: end
8: SolveMatrix();
9: ComputeResult();

IV. EXPERIMENTS AND RESULTS

The speed measurements were performed and examined
after the implementation and validation of our reference ver-
sion. The first measurement was executed on 30 numbers with
40 decimal digits and 30 numbers with 50 decimal digits.
Later, we chose one number for each length (60, 70, 80
and 90 decimal digits) as the representative demonstrating
the behavior of our implementation. Each number in our
testing dataset was a semi-prime, which means that it was
a product of two prime numbers. The reference version of our
implementation was executed both in serial and parallel mode.

TABLE I
PERFORMANCE OF REFERENCE VERSION

Task Serial Mode Parallel Mode Speed-up

40 dec 72.68s 22.71s 3.20
50 dec 984.07s 307.96s 3.20
60 dec 9144.23s 3217.55s 2.84

TABLE II
IMPACT OF OPTIMIZATION – SERIAL MODE

Task Reference Version Optimized Version Speed-up

40 dec 72.68s 2.12s 34.28
50 dec 984.07s 12.49s 78.79
60 dec 9144.23s 102.19s 89.48

Development and measurements were performed on a machine
equipped with Intel i7 4700MQ having 4 physical cores.
The Hyper-Threading and the TurboBoost technologies were
enabled during our experiments. The goal of the performed
measurements was to evaluate the speed of the SIQS algorithm
and its behavior depending on increasing size of a factorized
number. The results are depicted in Table I. The column Task
represents the size of a factorized number expressed in decimal
digits. As the performance of the reference version was not
sufficient enough, the code profiling was executed in order
to find and examine the most time consuming parts of the
code. The Intel VTune Amplifier XE 20133 was employed for
profiling purposes.

A. Profiling and Optimization

We identified the critical parts of the code by using the
profiling tool. The profiling was performed in iterations, where
each iteration revealed the most critical part of the algorithm.
After each iteration, the solution for the actual issue was
proposed and implemented. Thanks to this approach, we
achieved a significant speed-up. The overall influence of the
proposed modifications are shown in Table II. The essential
modifications were applied to the sieving process and the
resolution of linear dependency part. Also, optimized memory
management brought significant contribution to the speed-up
of the algorithm. All data objects were allocated at the time
they were required, and de-allocated when they had no longer
been needed.

The way of storing the relations was changed as well. Before
the modifications, the relations were stored as an array of
boolean data type, where each item held information about
one prime. This approach allowed a programmer to easily
work with the relations and perform required operations with
the relations, however operations with boolean data type were
very time consuming. Therefore, we proposed the modification
which substituted the boolean data type to the integer one. The
relations were then stored as an array of integers, where each

3https://software.intel.com/en-us/intel-vtune-amplifier-xe



of them held information about multiple primes. Thus, the
operations performed on the relations were applied on multiple
primes at the same time.

At the beginning of the sieving process, the roots of the
polynomial are being computed for each prime in the factor
base. The roots determine values of variable x in which the
polynomial is divisible by the given prime. It means that
we are able to identify all the factors of the given value
considering the polynomial with specified x. Factors of each
x value are stored during the sieving process considering
specified polynomial. This immediately allowed us to check
whether the candidate is a B-smooth number by dividing it by
the factors of the candidate. Moreover, the profiling revealed
that the storing of factors was inefficient, and therefore it
was better to ignore previous proposal and just use the Trial
Division method [7] for validation of the candidate.

B. Expanding the Parallelism

The next goal of our optimization phase was to parallelize
the sieving process and resolution of linear dependency in
order to achieve the maximum utilization of the CPU. We
analyzed the possibilities and performed appropriate modifi-
cations. We proposed removal of unacceptable relations after
sieving as one of the possibilities for further optimization. As
unacceptable relations are threat relations which are singletons,
duplicates and null vectors. Singleton is a relation that contains
a prime which is not present in any other relation. Therefore
the singleton will never be part of a set of relations forming the
null vector. Duplicate relations have more than one occurrence
in the array of gathered relations, and thus naturally form null
vectors leading to the trivial factor. Also, the situation leading
to trivial factor is similar in the null vector but in this case it
is necessary to check whether one of them does not lead to
a non-trivial result. If so, the resolution of linear dependency
can be skipped and the result can be immediately displayed.
The removal of unacceptable relations always requires to go
through the whole array of gathered relations in order to check
whether any unacceptable relation is present.

During this process, the iterations are independent of each
other which means this part can also be parallelized. We
utilized the OpenMP directive #pragma omp parallel
for in this case.

Regarding the resolution of linear dependency accomplished
by GE method, we realized that its iterations are independent
of each other too, therefore this part can be also parallelized
using the same directive as in previous case.

The results achieved by the mentioned optimization and
the code parallelism are depicted in Table III and Table IV.
It can be seen that the modifications caused large speed-up,
e.g. number with 60 decimal digits (198 bits) was factorized
100 times faster compared to the reference version. This also
shows that although SIQS is considered as the second fastest
factorization method in general, the speed of two individual
implementations may differ in significant scale.

TABLE III
PERFORMANCE AFTER OPTIMIZATION – PARALLEL MODE

Task Reference Version Optimized Version Speed-up

40 dec 22.71s 1.32s 17.20
50 dec 307.96s 3.87s 79.58
60 dec 3217.55s 32.23s 99.83

TABLE IV
PERFORMANCE OF OPTIMIZED VERSION

Task Serial Mode Parallel Mode Speed-up

40 dec 2.12s 1.32s 1.61
50 dec 12.49s 3.87s 3.22
60 dec 102.19s 32.23s 3.17

V. OPTIMIZATION OF MEMORY ACCESS

During the profiling process, we reached a state where
further modifications led to factorization speed-up of numbers
up to 60 decimal digits, but on the other hand, factorization of
numbers with more than 70 decimal digits (235 bits) became
slower than before. Therefore, we performed code profiling of
factorization of numbers with 60 and 70 decimal digits. The
results of the profiling are depicted in Figure 1 and Figure 2. It
can be seen that distribution of time consumption significantly
differs in both cases. Profiling of memory demands of factor-
ization was performed using number with 70 decimal digits.
The requested memory bandwidth is depicted in Figure 3 by
orange (light) color. It shows that memory requirements were
such a high that the memory subsystem was not capable of
transferring the requested amount of data which further led
to CPU stall. Average memory latency equaled to 76 cycles
and Cycles Per Instruction (CPI) equaled to 4.707 which is
far away from the optimal state. It was even faster to perform
some computations again instead of storing them in memory
and fetching them later. The section of the code which had the
highest requirements on memory bandwidth was a part of the
sieving process – see Algorithm 2. For each prime, we update
the array of the roots by adding the logarithm of the current

	0

	10

	20

	30

	40

SieveValues

_gmpn_divrem

TrialDivision

_qmpz_tdiv

_qmpn_tdiv

El
ap

se
d	
Ti
m
e	
[s
]

Function	Name

Fig. 1. Code profiling of the factorization of number with 60 decimal digits



	0

	1000

	2000

	3000

	4000

	5000

SieveValues

_gmpn_divrem

TrialDivision

std::basic_filebuf

_qmpn_tdiv

El
ap
se
d	
Ti
m
e	
[s
]

Function	Name

Fig. 2. Code profiling of the factorization of number with 70 decimal digits

prime in the index where the prime is a root of the polynomial.
Then, we need to check the array whether the threshold of

Algorithm 2: The part of code with the highest require-
ments on memory bandwidth

1 for (i = 0; i < number of primes; i++) do
2 for (root = roots[i].root1;
3 root < positive endpoint of interval;
4 root += roots[i].prime) do
5 xValues[root] += logPrime[i];
6 end for
7 for (root = roots[i].root2;
8 root < positive endpoint of interval;
9 root += roots[i].prime) do

10 xValues[root] += logPrime[i];
11 end for
12 for (root = roots[i].root1 neg;
13 root < negative endpoint of interval;
14 root += roots[i].prime) do
15 xNegValues[root] += logPrime[i];
16 end for
17 for (root = roots[i].root2 neg;
18 root < negative endpoint of interval;
19 root += roots[i].prime) do
20 xNegValues[root] += logPrime[i];
21 end for
22 end for

overall sum of logarithms is not exceeded in the examined
index. If the threshold is exceeded, then the current index is
marked as the candidate. Every prime has two roots4 on the
positive side of the given interval and two roots on the negative
one. Therefore, we have to store the information about these
cases in two arrays. For example, we store circa 5000 primes
for factorization of number with 70 decimal digits. Also, we
have to store the information about the sums of logarithms for
the whole interval. When number with 70 decimal digits is be-
ing factorized, the interval is set to [−196608; 196608] in that

4Exception is the prime 2 which has only one root.

	0

	10

	20

	30

	40

	50

	60

	0 	5 	10 	15 	20 	25 	30 	35

El
ap

se
d	

Ti
m

e	
[s

]

Bandwidth	Utilization	[GB/s]

Before	Memory	Access	Modification
After	Memory	Access	Modification

Fig. 3. Memory demands when factoring number with 70 decimal digits

TABLE V
INFLUENCE OF MEMORY MODIFICATION – PARALLEL MODE

Task Before After Speed-up

40 dec 1.32s 0.25s 5.28
50 dec 3.87s 2.95s 1.31
60 dec 32.23s 14.77s 2.18
70 dec 583.67s 143.67s 4.06

case. Furthermore, as the logarithms of primes are frequently
used during the factorization, their values are computed in the
phase of the SIQS configuration and stored in the arrays for
further usage. These arrays have to be available for read and
write operations during the sieving. The size of the arrays
increases with every bigger number we try to factorize, and
thus it puts higher and higher demands on memory subsystem.

The critical part of the code was modified in the following
way. We divided the interval into blocks and the sums of
logarithms were updated for each prime within the current
block. When the block was updated, the algorithm proceeded
to the next block. This approach significantly reduced demands
on the memory subsystem because only a part of the interval
was processed in a specific time. This increased the likelihood
of storing required data in the cache memory of the CPU
which provided data faster. The new requirements on the
memory bandwidth of the factorization of number with 70
decimal digits are depicted in Figure 3 by green (dark) color.
We can see that our memory access modification decreased
requirements on the memory bandwidth by approximately 50
percent.

Also, we measured the influence of our memory access
modification on the factorization speed. The results are shown
in Table V. It should be noted that beside the mentioned mod-
ification we also slightly changed the approach to polynomial
generation. In the actual version of our implementation, the
coefficient a was created by using NEXKSB algorithm for
selecting the first s − 2 primes. The last two primes were
chosen using BST. This modification significantly reduced
factorization time for smaller numbers than 50 decimal digits
but has negligible impact on speed-up of large numbers.
Thanks to our memory modification, the factorization time



TABLE VI
PERFORMANCE AFTER MEMORY OPTIMIZATION – PARALLEL MODE

Task Reference Version Optimized Version Speed-up

40 dec 22.71s 0.25s 90.84
50 dec 307.96s 2.95s 104.39
60 dec 3217.55s 14.77s 217.84

TABLE VII
PARALLELISM EFFICIENCY – INTEL I7 4700MQ

Task Serial Mode Parallel Mode Speed-up

40 dec 0.82s 0.25s 3.28
50 dec 9.76s 2.95s 3.31
60 dec 51.83s 14.77s 3.51
70 dec 464.98s 143.67s 3.24

of numbers with 70 decimal digits was 4× shorter than in the
case where modification was not utilized. The average memory
latency had been reduced from 76 to 14 cycles and the CPI had
been reduced from 4.707 to 1.023. Table VI depicts achieved
speed-up of the current SIQS version in comparison with the
reference one. We achieved more than 200 times speed-up in
the case of numbers with 60 decimal digits. We also performed
factorization of larger numbers than 70 decimal digits. Number
with 80 decimal digits (266 bits) was successfully factorized in
50 minutes and 30 seconds as well as number with 90 decimal
digits (299 bits) which was successfully factorized in 6 hours
and 32 minutes.

VI. PARALLELISM EFFICIENCY

The current section performs measurements of parallelism
efficiency which evaluates the speed-up of parallelism consid-
ering the final optimized version of the SIQS implementation.
The results obtained by experiments on Intel i7 are shown
in Table VII. It can be seen that the performance had been
improved from this point of view as well. The factorization is
at least 3× faster for each size of measured number which is
the outcome of the parallelism only.

In order to show how CPU can affect the factorization
speed, our implementation was later tested on more powerful
CPU, Intel Xeon E5 1650v2 having 6 physical cores. Hyper-
Threading and TurboBoost were enabled on the Intel Xeon
during the tests as well as it was enabled in the case of Intel
i7. The factorization speed of our implementation executed on
the Intel Xeon is shown in Table VIII. It can be seen that
the performance of our implementation in parallel mode was
significantly faster on Intel Xeon than on Intel i7, which was
primarily caused by the fact that Intel Xeon provided more
logical threads than Intel i7 (12 vs 8). Furthermore, the Intel
Xeon had higher ratio of available cache memory per logical
thread. Therefore, it was more likely that required data were
stored in the cache, and thus available much faster than in
the case of Intel i7 having smaller cache per logical thread.
On the other hand, the factorization speed of Intel Xeon was

TABLE VIII
PARALLELISM EFFICIENCY – INTEL XEON E5 1650 V2

Task Serial Mode Parallel Mode Speed-up

40 dec 0.83s 0.20s 4.15
50 dec 9.29s 1.58s 5.88
60 dec 52.07s 7.83s 6.65
70 dec 459.40s 71.16s 6.46

TABLE IX
PARALLELISM EFFICIENCY – INTEL I7 4700MQ

(DISABLED TURBOBOOST)

Task Serial Mode Parallel Mode Speed-up

40 dec 1.11s 0.32s 3.47
50 dec 13.51s 3.00s 4.50
60 dec 72.01s 16.05s 4.49
70 dec 641.98s 143.67s 4.47

very similar to the Intel i7 in serial mode. We can see that the
high frequency base of Intel Xeon did not provide significant
difference of speed in serial mode comparing to Intel i7.

The previous results showed that chosen CPU can have
significant influence on the factorization speed. Also, the high
base frequency does not guarantee that the factorization will
be fast because its speed depends on many other factors.

A. TurboBoost & Factorization Speed

We measured the factorization speed of our implementation
in serial mode with the TurboBoost technology enabled on
Intel i7. Thus, the factorization in serial mode run on higher
frequency compared to the parallel mode. Precisely, the factor-
ization ran on 3.4GHz in serial mode and 2.4GHz in parallel
mode, respectively. As the next step, we disabled TurboBoost
and watched raw contribution of the parallelism employed
in the factorization implementation. The results are depicted
in Table IX. Comparing the current results with those from
Table VII, we can conclude that there is only little difference
in parallel mode which does not harvest from TurboBoost,
however, the impact is much more significant in the case of
serial mode. Therefore, disabling TurboBoost caused paral-
lelism being more efficient and achieved factorization speed-
up of more than 4×.

It should be noted that TurboBoost was controlled by the
actual power consumption, therefore TurboBoost was activated
only if the power consumption was low during the start of the
factorization in parallel mode. However, TurboBoost was deac-
tivated after a short time due to high utilization of all available
logical threads causing high power consumption. Nevertheless,
it causes only a little differences in the factorization time of
parallel mode.

We also evaluated the scalability which is depicted in
Figure 4. We can see that the speed-up significantly increased
with each added logical thread up to four which correspond
to the physical threads of the CPU in this case. When more



	1
	1.5
	2

	2.5
	3

	3.5
	4

	4.5
	5

	1 	2 	3 	4 	5 	6 	7 	8

Sp
ee
d-
up

The	Number	of	Threads

40dec
50dec
60dec
70dec

Fig. 4. Profiling - Scalability

TABLE X
COMPARISON OF OUR IMPLEMENTATION WITH MSIEVE – SERIAL MODE

Task SIQS MSieve

40 dec 0.82s 0.15s
50 dec 9.76s 0.56s
60 dec 51.83s 3.55s
70 dec 459.40s 39.03s

than four logical threads were utilized, Hyper-Threading was
enabled, and therefore further speed-up was not increased in a
such significant scale as in the case of utilizing only physical
threads.

VII. COMPARISON WITH MSIEVE

We compared our latest version of SISQ with public open
source implementation of SIQS called MSieve. Both imple-
mentations were compared in serial mode. The reason of such
comparison is to show differences in the raw performance
and to omit diversity between OpenMP which is utilized in
our work and MPI which is utilized by MSieve. The results
of the comparison are shown in Table X. Notice that our
implementation is referred as SIQS. There can be seen that
our implementation was not as fast as MSieve but our goal
was not to make the fastest implementation of SIQS ever but
rather to analyze implementation and performance issues as
well as explain the ways of resolving them, and thus improve
efficiency of the raw SIQS algorithm.

VIII. CONCLUSION

The paper presents the process of iterative performance
optimization of the SIQS factorization method. In the first
phase, the complete and functional plain SIQS algorithm is
implemented which serves as the reference implementation
for our further experiments. In the second phase, a speed op-
timization of the reference implementation is being performed
by iterative application of various optimization techniques,
while new critical parts of the code are being identified and
optimized in each iteration. 200× speed-up has been achieved
in comparison to the reference version. We also performed
efficiency evaluation of a parallelism on the latest optimized

version of SIQS running on the two CPUs with enabled
TurboBoost. 3× speed-up has been achieved on the CPU with
4 physical cores while the speed-up of more than 6× has been
achieved on the CPU with 6 physical cores. The speed-up has
been even better when TurboBoost has been disabled.

In the future work we plan to implement modification based
on [1] which may reduce the sieving time. We also plan to
replace the SLPV by Double Large Prime Variation method
which makes the sieving process more efficient [11]. Next, we
plan to employ OpenMPI library which allows the utilization
of cluster of computers [9].

ACKNOWLEDGEMENT

This article was created within the project Reliability and
Security in IT (FIT-S-14-2486) and supported by The Ministry
of Education, Youth and Sports from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science - LQ1602.

REFERENCES

[1] AOKI, Kazumaro; UEDA, Hiroki. Sieving using bucket sort. In: Ad-
vances in Cryptology-ASIACRYPT 2004. Springer Berlin Heidelberg,
2004. p. 92-102.

[2] BERNSTEIN, Daniel J.; LENSTRA, Arjen K. A general number
field sieve implementation. In: The development of number field sieve.
Springer Berlin Heidelberg, 1993. p. 103-126.

[3] CARRIER, Brian; WAGSTAFF JR, Samuel S. Implementing the hyper-
cube quadratic sieve with two large primes. In: International Conference
on Number Theory for Secure Communications. 2003. p. 51-64.

[4] CHAPMAN, Barbara; JOST, Gabriele; VAN DER PAS, Ruud. Using
OpenMP: portable shared memory parallel programming. MIT press,
2008.

[5] CONTINI, Scott Patrick. Factoring integers with the self-initializing
quadratic sieve. 1997.

[6] CORMEN, Thomas H. Introduction to algorithms. 3rd ed. Cambridge,
Mass.: MIT Press, c2009. ISBN 0262533057.

[7] CRANDALL, Richard; POMERANCE, Carl B. Prime numbers: a com-
putational perspective. Springer Science & Business Media, 2006.

[8] GERVER, Joseph L. Factoring large numbers with a quadratic sieve.
Mathematics of Computation, 1983, 41.163: 287-294.

[9] GROPP, William; LUSK, Ewing; SKJELLUM, Anthony. Using MPI:
portable parallel programming with the message-passing interface. MIT
press, 1999.

[10] KOÇ, Çetin K.; ARACHCHIGE, Sarath N. A Fast Algorithm for
Gaussian Elimination over GF (2) and its Implementation on the GAPP.
Journal of Parallel and Distributed Computing, 1991, 13.1: 118-122.

[11] LENSTRA, Arjen K.; MANASSE, Mark S. Factoring with two large
primes. Mathematics of Computation, 1994, 63.208: 785-798.

[12] MORRISON, Michael A.; BRILLHART, John. A method of factoring
and the factorization of F7. Mathematics of computation, 1975, 29.129:
183-205.

[13] NIJENHUIS, Albert; WILF, Herbert S. Combinatorial algorithms: for
computers and calculators. Elsevier, 2014.

[14] POMERANCE, Carl. The quadratic sieve factoring algorithm. In: Ad-
vances in cryptology. Springer Berlin Heidelberg, 1985. p. 169-182.

[15] POMERANCE, Carl. A tale of two sieves. Biscuits of Number Theory,
2008, 85.

[16] RIVEST, Ronald L.; SHAMIR, Adi; ADLEMAN, Len. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 1978, 21.2: 120-126.


