
Evolutionary Approximation of Edge Detection
Circuits

Petr Dvoracek and Lukas Sekanina

Brno University of Technology, Faculty of Information Technology,
IT4Innovations Centre of Excellence

Božetěchova 2, 612 66 Brno, Czech Republic
idvoracek@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract. Approximate computing exploits the fact that many applica-
tions are inherently error resilient which means that some errors in their
outputs can safely be exchanged for improving other parameters such
as energy consumption or operation frequency. A new method based
on evolutionary computing is proposed in this paper which enables to
approximate edge detection circuits. Rather than evolving approximate
edge detectors from scratch, key components of existing edge detector
are replaced by their approximate versions obtained using Cartesian ge-
netic programming (CGP). Various approximate edge detectors are then
composed and their quality is evaluated using a database of images. The
paper reports interesting edge detectors showing a good tradeoff between
the quality of edge detection and implementation cost.

1 Introduction

Reduction of energy consumption is one of the key issues of current society. For
example, widely popular battery-powered personal electronics requires energy-
efficient computing to reduce the need for battery recharging and big data and
supercomputing centers require energy-efficient computing to minimize their op-
eration costs. In recent years, a new approach to reducing the energy consump-
tion has been adopted—approximate computing. It exploits the fact that some
applications are inherentlyerror resilient which means that the errors in their
outputs can safely be exchanged for energy consumption reduction. This is a typ-
ical feature of multimedia applications in which some errors are not recognizable
because human perception capabilities are limited.

Edge detection is an important pre-processing step in advanced image pro-
cessing applications such as feature detection and feature extraction. The goal of
edge detection is to find sharp changes in image brightness. As edge detection is
performed very often it makes sense to optimize its implementation. This paper
deals with efficient circuit implementations of edge detection based on the Sobel
edge detector.

Evolutionary computing has been employed to develop approximate imple-
mentations of existing circuits or to evolve approximate implementations from
scratch. The objective of this paper is to propose and evaluate a method based

on evolutionary computing which will enable to approximate edge detection cir-
cuits. Rather than evolving approximate edge detectors from scratch, we propose
to approximate key components of existing edge detectors. In particular, Carte-
sian genetic programming (CGP) is used to generate approximations of adders
which are basic components of Sobel edge detectors. Various approximate edge
detectors are then composed of the approximate adders and their quality is eval-
uated using a database of images. The implementation cost is measured as the
number of used gates. It has been shown in the literature that this measure
provides a good estimate of power consumption [1].

The rest of the paper is organized as follows. Section 2 surveys relevant
work. The proposed method is presented in Section 3. Experimental results are
reported in Section 4. Conclusions are given in Section 5.

2 Relevant work

2.1 Edge Detectors

The majority of edge detection methods is based on the computation of image
gradients. These gradients are often estimated to reduce the computation re-
quirements. The gradient magnitude is then compared with a predefined thresh-
old and used as an indicator whether edges are present or not at an image point.
Detailed description of various edge detection algorithms can be found in [2].

The Sobel operator is one of the most popular edge detectors. It uses two con-
volution kernels (each as a 3×3 pixel window) to estimate gradients in an image.
Let A be the input image. The horizontal and vertical derivative approximations
are computed as

X =

−1 0 +1
−2 0 +2
−1 0 +1

 ∗A, Y =

−1 −2 −1
0 0 0

+1 +2 +1

 ∗A,
where ∗ is the convolution operator. At each point of the image, the gradient
magnitude is given by

G =
√
X2 + Y 2. (1)

In order to reduce the computational requirements, the gradient magnitude com-
puted using the square root function is often replaced with a calculation of the
absolute value, i.e.

G′ = |X|+ |Y |. (2)

Edge detection algorithms have often been accelerated in hardware in order
to meet real time constrains of a given application, see, for example, a fast stereo
vision system in FPGA [3].

Figure 1 shows an example of a hardware implementation of Sobel edge
detector which operates according to formula 2. In total, this edge detector
consists of twenty NOT gates, twenty XOR gates, four 8-bit adders, four 9-bit

I0
I2

I1

I6
I8

I7

I0
I6

I3

I2
I8

I5G

v1

+

8..1

7..0

7..0

v2

+

8..0

v1

+

8..1

7..0

7..0

v2

+

8..0

9..0

ne
g

v3

+

9..0

10..0

ab
s11..0 10..0

v4 +

I0 I1 I2
I3 I4 I5
I6 I7 I8

v1

+

8..1

7..0

7..0

v2

+

8..0

v1

+

8..1

7..0

7..0

v2

+

8..0

9..0

ne
g

v3

+

9..0

10..0

ab
s 11..010..0

11..3

Fig. 1. A hardware implementation of Sobel edge detector. Symbols v denote the depth
of addition. I0, . . . , I8 are input pixels.

adders, and three 11-bit adders. It will be used as a reference implementation in
this paper.

However, hardware implementations are often optimized to save valuable re-
sources on a chip. In this case, the multiplication by two is implemented by
arithmetic shifting. Subtraction is composed of adders v3 and a set of inverters
(neg). The absolute value is obtained by an inversion controlled by the most
significant bit representing a negative sign. In other words, the inversion is im-
plemented by an array of XOR gates in which one input of each XOR gate is
connected to the most significant bit. The 9-bit and 11-bit adders were replaced
by 8-bit adders. Furthermore, the multiplication of one operand is replaced with
a division for the other operand, i.e. (i0+i2)+2i1 was replaced by (i0+i2)/2+i1.
The size of operands of v2 adders was decreased to 8 bits. For the other adders,
the size of the operands was reduced by excluding less significant bits. This op-
timized version of the Sobel edge detector produces an insignificant error with
respect to a solution operating exactly according to formula 2. In total, this
edge detector contains sixteen NOT gates, sixteen XOR gates, and eleven 8-bit
adders.

2.2 Evolutionary Computing in Edge Detector Design

Evolutionary computing has been utilized to design edge detectors since the
nineties [4]. The current research on evolutionary computing for edge detection
aims at evolving either edge detectors or edge features, where the features are
functions of pixel values used in the process of classifying pixels as edge points
or non-edge points [5]. Advanced concepts such as multi-objective methods [6]
and Bayesian programs for features definition [5] have been integrated in to
the EA-based design approaches. Evolutionary computing was also employed to
evolve other computational models that can subsequently be employed for edge
detection, for example, cellular automata [7].

Edge detectors and other image operators have been designed by Cartesian
genetic programming (CGP). The method and representative case studies are
surveyed in [8]. In the case of edge detector evolution, CGP evolves a solution
using elementary two-input functions such as minimum, maximum and addition

operating over pixel values. The objective is to minimize the error function which
is usually defined as a mean absolute error between the image generated by a
candidate solution and a ”golden image” in which all edges are ideally marked.
The golden image is in practice obtained by a suitable conventional edge detector
such as Canny or Sobel operator. The evolved circuit, in fact, approximates the
conventional solution using hardware-friendly components.

In order to develop low-cost and efficient hardware implementations, edge
detectors were evolved using gates and other hardware friendly components as
building blocks. For example, an evolvable hardware approach was taken for low
level edge detector design in [9] and genetic programming was used to search
for digital transfer function of image edge detector [10]. The image filter evolu-
tion has been accelerated using specialized hardware such as graphics processing
units [11] and field programmable gate arrays [12].

2.3 Approximate Computing in Image Processing

In recent years, approximate computing was established to investigate how com-
puter systems can be made better—more energy efficient, faster, and less complex—
by relaxing the requirement that they are exactly correct. One of the approxi-
mation techniques is functional approximation whose purpose is to implement a
slightly different function to the original one providing that the error is accept-
able and power consumption, performance or other parameters are improved.
The functional approximation can be conducted at the level of software as well
as hardware.

Image operators (including edge detectors) are good candidates for approxi-
mations because occasional errors (pixels showing undesired values) are not often
recognized by users. On the other hand, the approximate implementations can
lead to a reduction in power consumption or processing time.

In [13], a software module implementing the Sobel edge detector was re-
placed by trained neural network and the module has been later accelerated in
a specialized hardware.

Using Axilog, which is a set of language annotations that provide the neces-
sary syntax and semantics for approximate hardware design and reuse in Ver-
ilog [14], a conventional implementation of Sobel detector counting 143 lines of
code was manually annotated (details not provided in the paper) and an approxi-
mate implementation was obtained. In both cases, appropriate papers report the
quality of resulting images for a few target errors.

Image operators can also be approximated by approximating selected arith-
metic components (adders or multipliers) that are present in conventional im-
plementations, see denoising filters [15, 16]. Finally, approximations of median-
outputting filters based on simplifying of the compare and swap components can
be found in [17].

2.4 Evolutionary Circuit Design

After publishing a seminal paper introducing the field of evolvable hardware [18],
new methods based on EAs have been proposed for circuit design. A considerable
success have been achieved by Cartesian genetic programming which enabled to
improve results of conventional circuit synthesis and optimization algorithms
for small combinational circuits and discover new implementations of important
circuit components such as filters, classifiers and predictors [19]. More complex
circuits were then evolved by means of decomposition techniques [20], functional
level evolution, developmental encodings, and advanced fitness evaluation meth-
ods utilizing the principles of formal verification [21].

Digital circuits can naturally be approximated by means of CGP. The meth-
ods can be classified as

– Error-oriented: In the first phase, CGP tries to evolve a circuit showing a
predefined error. In the second phase, the resources are optimized.

– Resources-oriented: Resources (e.g. the number of gates) are constrained and
CGP is used to minimize the circuit error with available resources.

– Multi-objective: All criteria are optimized together using a multi-objective
EA such as NSGA-II.

Examples of approximate circuits obtained by CGP are approximate medi-
ans, 8-bit adders and 8-bit multipliers [1, 22]. All these circuits were approx-
imated without any decomposition. In this work, we propose to approximate
selected components of the whole circuit and analyze the impact of the approx-
imation on the circuit behavior.

3 Adopting CGP for Circuit Approximation

CGP will be used to approximate selected components of conventional or evolved
edge detection circuits. This section deals with the principles of CGP when
applied to circuit evolution and approximation.

3.1 Cartesian Genetic Programming

Circuit Representation in the Chromosome: A candidate circuit is mod-
eled as a grid of processing nodes arranged in nc columns and nr rows. Each
processing node performs specific operation g from the set of functions Γ . In
evolutionary circuit design, this function set usually contains logic gates or el-
ementary arithmetic functions. The number of circuit inputs ni and outputs
no are fixed. Parameter l-back defines a degree of interconnection between the
columns. For example, if l = 1 the interconnection is minimal because only
neighboring columns may be connected; if l = nc the circuit interconnection is
maximal. Nodes of the same column can not be connected.

The circuit connection is encoded into a chromosome. Each gate (processing
node) is represented by a triplet (i1, i2, α), where α is a code of operation taken

from the function set Γ . Symbols i1 and i2 are pointers to nodes (or primary
inputs) to which a given gate is connected to, providing that primary inputs are
labeled 0 . . . ni − 1 and the nodes are labeled ni − 1 . . . ni + ncnr − 1. Finally,
the chromosome contains no genes determining the nodes or logic constants (0
or 1) where the primary outputs are connected to.

in0

in1

in2

3

XOR
in2

in0

4

AND
in1

in0

5

XOR
3

in1

6

AND
in2

3

7

NOT
6

5

8

OR
6

4

out0 (5)

out1 (8)

Fig. 2. Full adder represented by CGP with parameters: ni = 3, no = 2, nc = 3,
nr = 2, l = 3, Γ = {0AND, 1OR, 2XOR, 3NOT }. Chromosome: (0, 2, 2) (0, 1, 0) (1, 3, 2)
(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8)

Figure 2 provides an example of the CGP encoding. One important feature
of CGP is that not all the nodes have to be included in the phenotype. In this
case, NOT (node 7) is disconnected.

Fitness Function: As our goal is to approximate arithmetic circuits using the
resources-oriented method, the fitness function is defined as a sum of absolute
differences (SAD)

fSAD =

K∑
j=1

|y(j)− t(j)|,

where y is candidate circuit’s response, t is target response and K is the number
of fitness cases. Because target circuits are arithmetic circuits, we have to eval-
uate circuit responses for all possible combinations of operands, i.e. K = 2ni .
This definition of the fitness function is preferred over the Hamming distance as
suggested in [23].

The proposed approximation method is constructed as a resources-oriented
method, in which a good compromise is sought between the number of gates
and the error. Resources (gates) can be constrained either by constraining the
product (nc×nr < k) or by constraining the number active gates in a potentially
big array of gates. The first approach was utilized in the literature [22, 23]. In
this work, the second approach is adopted as it enables CGP to operate with
highly redundant arrays of gates which is beneficial for an efficient search [24].
Let the number of available gates be nn and the number of gates in phenotype
be npn. The fitness function is defined:

f =

{
fSAD , if npn ≤ nn
∞, if npn > nn

Search Algorithm: CGP uses a (1+λ) search method consisting of the follow-
ing steps:

1. An initial population of the size 1 + λ is created.
2. Each candidate circuit is evaluated by fitness function f .
3. The highest-scored candidate circuit is selected as a new parent. The par-

ent from previous generation is never selected as the new parent if there is
another individual with the same fitness value.

4. By applying a point mutation, λ offspring individuals are generated from the
parent. Parameter h defines the number of genes (integers) that undergo a
mutation.

5. Steps 2—4 are repeated until the termination condition is not satisfied.

Heuristic Population Seeding: In many cases a conventional exact solution
(circuit C0, with z gates) is available and can be used in the initial population of
CGP. According to [22], a simple method can be employed in order to obtain the
first approximation of C0. We create 2z circuits in such way that every single
gate of C0 is independently replaced by a wire which connects gate’s first or
second input with its output. The circuit producing the smallest error out of
these 2z approximations is taken as the first parent of CGP.

3.2 Resources-oriented Approximation

The proposed method should produce a Pareto front showing the best obtained
compromises between the number of gates and the error. As our target circuits
are relatively small (tens of gates), it makes sense to execute CGP multiple times
and constraint the number of gates in each run to z−1, z−2, . . . , zm, where z is
the number of gates in the exact solution C0 and zm is the smallest reasonable
approximation of C0. Each CGP run begins with the best approximate circuit
obtained from the previous approximation and the objective is to minimize the
circuit error for a given amount of gates.

4 Experimental Results

The adders are key components of edge detection circuits. Firstly, results of
adder approximations are summarized in this section. Then, performance and
cost of various edge detectors utilizing the approximate adders are reported.

4.1 Evolutionary Approximation of Adders

Computational requirements of CGP can significantly be reduced if the initial
population is seeded by a conventional solution. In the case of adders, the carry
ripple adder and the Kogge-Stone adder have been employed. The exact 8-bit
carry ripple adder is composed of one half adder and seven full adders. In total,
it consists of 37 two input gates. However, the carry propagates through 15

100 101 102 103 104 105 106

Generation

80

100

120

140

160

180

F
it

n
e
ss

 (
S

A
D

)

103

Fig. 3. Convergence curves for the adder composed of 41 gates in all 50 evolutionary
runs

6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63

Gates

0

200

400

600

800

1000

1200

1400

F
it

n
e
ss

 (
S

A
D

)

103

Fig. 4. Statistical evaluation of the evolutionary approximation of 8-bit Kogge-Stone
adders using 6 – 63 gates.

gates and the corresponding delay of 15∆ (where ∆ is delay of one gate) is
undesirable for many applications. The 8-bit Kogge-Stone adder [25] exploits the
carry lookahead logic. As the carry bits are computed in parallel, the resulting
delay is only 7∆. The cost is, however, higher – 73 gates.

The objective is to approximate the 8-bit Kogge-Stone adder. In order to keep
the delay less or equal to 7∆, CGP is used with nc = 7. CGP is executed multiple-
times with constrained resources to obtain a Pareto front. The CGP parameters
are initialized as follows: nr = 13, nc = 7, l = nc, and Γ = {BUF, NOT, AND,
OR, XOR, NAND, NOR, XNOR}, where BUF stands for an identity function.
The first runs are seeded with the circuit obtained by removing one gate from
the exact adder, i.e. nn = 72.

The parameters of evolution are set as follows: h = 5%, λ = 4, and ng =
500000. After 50 runs, the number of allowed gates nn is decremented.

In order to demonstrate the progress of evolution, an adder constrained to
utilize up to 41 gates is considered. Figure 3 shows convergence curves obtained

(a) Conventional Design (b) Evolutionary Design

Fig. 5. Error plots of approximate adders containing 9 gates.

Absolute Error
Gates ∆ Avg. MIN Q1 Q2 Q3 MAX

9a 1 47.87 1 16 47 88 128
9 4 15.02 1 6 12 22 63

13 5 9.51 1 4 9 14 32
24 7 2.56 1 1 3 4 8
37 6 1.23 1 1 2 3 7
43 6 0.85 1 1 1 2 3
62 7 0.00 - - - - -

Table 1. Parameters of evolved approximate 8-bit adders and one conventional ap-
proximate 8-bit adder (9a).

from 50 independent runs. Every run starts with the error f = 167 · 103 and
ends up with the error f = 90 · 103 in most cases.

Boxplots summarizing the whole experiment (nn = 6, 7, . . . , 63 gates enabled)
are plotted in Figure 4. The adders with less than 6 gates were omitted due their
large error. It can be seen from the boxplots that the evolution converges to a
single value in most cases. Moreover, we discovered a fully functional implemen-
tation of the 8-bit adder which contains fewer gates (nn = 62) and features
same latency as the 8-bit Kogge-Stone adder. A detailed analysis of the results
revealed that a solution composed of 37 gates has delay 6∆ , which is more than
two times smaller than the delay of the Carry Ripple Adder. The average error
of this approximate adder is only 1.23 (Table 1).

In common conventional approximations, an 8-bit adder is often approxi-
mated by a very cheap implementation consisting of 8 OR gates and one AND
gate (for the carry bit) [26]. This approximation can be compared with an evolved
approximate 8-bit adder of the same implementation cost (i.e. 9 gates). The
conventional adder exhibits bigger maximal, median, and average errors (Ta-

(a) Exact operator (b) A37(37, 37, 37, 37)

(c) A9 (9, 24, 24, 9) (d) A9a (9a, 24, 24, 9a)

Fig. 6. Edge detection by approximate Sobel detectors

ble 1). Figure 5 also shows that more significant errors occur in the case of
larger operands. On the other hand, in the case of evolved approximate adder,
more significant errors are spread out in the space of operand combinations.

4.2 Approximation of Sobel Edge Detector

Several approximations of the reference edge detector implementation from Fig. 1
are proposed in this Section. Firstly, some adders of the reference circuit were
replaced by approximate 8-bit adders. The replacement is performed for a set of
adders occupying the same depth (v1, v2, v3, and v4 in Fig. 1) of the adder tree.
Let us denote an approximate edge detector by An1 (n1, n2, n3, n4), where each
element ni represents the number of gates in adders of a given depth, e.g. A50
(50, 50, 50, 50) is an edge detector containing at all levels approximate adders
consisting of 50 gates.

The impact of approximate adders on edge detection is demonstrated in
Figure 6. For example, by using the adders composed of 37 gates, we obtained
a low-cost edge detector A37 (37, 37, 37, 37) that produces a very small error

Table 2. MAE and other properties of approximate Sobel edge detectors

Edge Detector Mean Absolute Error

Name Gates ∆ 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Eq. 2 813 33
A62 714 30
A37 439 26
A13 291 27
A9 221 24
A9a 221 18

Table 3. RMSE and other properties of approximate Sobel edge detectors.

Edge detector Root Mean Square Error

Name Gates ∆ 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

Eq. 2 813 33
A62 714 30
A37 439 26
A13 291 27
A9 221 24
A9a 221 18

which is indiscernible to human eye. This approximate edge detector contains
the same amount of gates as the edge detector composed of fully functional 8-bit
carry ripple adders. However, the approximate detector is more than two times
faster.

Figure 6 compares edge detector A9 (9, 24, 24, 9) with A9a (9, 24, 24, 9). Both
solutions utilize the same number of gates. A9 (containing the adders evolved
by CGP) shows more precise edge detection than A9a which employs the adders
approximated conventionally. On the image of Lenna, A9 produces the mean
absolute error (MAE) 19.84 per pixel which is bigger than the error of A9a
— 13.53 per pixel. This result is also manifested by darker background of the
image produced by A9. If the root mean square error (RMSE) is used as an
error metric, the result is 20.84 for A9 which is better result than A9a (RMSE
= 22.41).

We tested approximate edge detection circuits on a dataset containing 200
images. Tables 2 and 3 demonstrate the differences in terms of MAE and RMSE
between a fully working detector operating exactly according to formula 2, a
solution in which the adders containing operands having more than 8 bits are
replaced with accurate 8-bit adders (A62), and other approximate detectors –
A9, A9a, A13 (13, 24, 34, 43), and A37.

It is difficult to perform a direct comparison with approximate edge detec-
tors published in the literature. The reason is that many circuit parameters and
details of experiments are not published. A brief comparison can be done with

(a) Reference (b) CSO

(c) ESO24 (d) A24

Fig. 7. Edge detection by approximate Sobel Operators

Axilog. The authors of Axilog reported a 1.82× area reduction for Sobel detec-
tor with RMSE=10% for a single image. The percentage value of RMSE was
computed on the normalized image with pixels in the range (0, 1). Under this
metric, A9 detector obtained 3.89× area reduction with maximal RMSE = 6.2%
using the dataset of 200 images [27]. Moreover, A9 detector reduced the area
three times in comparison with A62 and almost twice in comparison with A37.

4.3 Approximation of Evolved Edge Operator

Paper [12] presents Sobel operator (CSO) implemented as:

uint8 CSO(uint8 kernel[9]) {

int i;

i = kernel[0] + 2*kernel[1] + kernel[2];

i = i - (kernel[6] + 2*kernel[7] + kernel[8]);

i = max(i, 0);

i = min(i, 255);

return i;

}

Table 4. Properties of approximate edge operator CSO and approximate evolved op-
erator ESO.

Sobel operator Root Mean Square Error

Name Gates ∆ 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

CSO 411 30
CSO62 358 28
CSO37 233 25
CSO24 188 24
ESO62 506 73
ESO37 381 68
ESO24 336 69

where kernel is the 3×3-pixel convolution window. Paper [12] also presents an
edge detector (ESO), completely evolved by CGP. This operator used the image
shown in Fig. 7 as a golden image in the fitness function. The evolved code of
ESO is given below.

uint8 ESO(uint8 kernel[9]){

uint i14, i17, i19, i22, i27, i29;

i14 = min((kernel[1] + kernel[7]) >> 1, kernel[7]);

i17 = i14 ^ kernel[7];

i19 = min(i14 + (255 - kernel[1]), 255);

i22 = 255 - i19;

i27 = min(i22, (i17 + i19) >> 1);

i29 = min(i22 + i27, 255);

return (i27 + i29) & 0xff;

}

CSO operator employs just a part of the Sobel edge detector and it thus
computes the horizontal derivative. The cost of CSO is five adders and an array
of NOT gates. In order to obtain edges as shown in Figure 7, we saturated
the output to 0 or to 255, if the output value is negative or greater than 255,
respectively.

Both CSO and ESO can be approximated using the adders presented in
Section 4.1. As CSO has only three levels of adders, we denote the approximate
conventional operator CSOn1 (n1, n2, n3) where ni represents the number of
gates used in approximate adders at the level vi.

Evolved operator ESO contains five adders which can be replaced by their
approximate versions. Approximate detectors will be denoted ESOn1 (n1, n2,
n3, n4, n5) where ni represents the number of gates used in a given approximate
adders.

ESO contains more gates than CSO mainly because there were no require-
ments on the area minimization in paper [12]. Table 4 gives RMSE calculated
using 200 images for all approximate edge detectors.

It can be seen that RMSE is growing when CSO62 (62, 62, 62) is compared
with approximate CSO37 (37, 37, 37) and CSO24 (24, 24, 34). But for example,
RMSE boxplots are almost identical in the case of ESO62 (62, 62, 62, 62, 62),
ESO37 (37, 37, 37, 37, 37), and ESO24 (24, 24, 24, 30, 28). It seems that the evolved
solution is more robust to the approximation than conventional CSO. It also
turns out that it is hard to predict the impact of approximations on the overall
circuit behavior.

5 Conclusions

In this work, various approaches to the approximation of edge detectors based
on the Sobel operator were proposed and evaluated. We replaced exact adders
in conventional as well as evolved edge detectors by their approximate versions.
The approximate adders were obtained using CGP. Results were reported in
terms of the error (MAE and RMSE obtained using 200 test images) and the
implementation cost given as the number of gates.

We showed that evolved approximate 8-bit adder composed of 9 gates has
smaller average error than a commonly used approximation consisting of the
same number of gates. Moreover, evolved inaccurate adder containing 37 gates
and producing a very small average absolute error has 3× smaller delay than
a fully functional carry ripple adder composed of the same amount of gates.
In the case of edge detection, we demonstrated a circuit showing 3.89× area
reduction with maximal RMSE=6.2%. It seems that evolved edge detectors are
more resilient to approximations than conventional edge detectors.

Our future work will be devoted to a detailed analysis of the approximations
not only at the circuit level but also at the whole system level.

Acknowledgements. This work was supported by the Czech science founda-
tion project GA16-17538S.

References

1. Vasicek, Z., Sekanina, L.: Circuit approximation using single- and multi-objective
cartesian GP. In: Proceedings of the 18th European Conference on Genetic Pro-
gramming – EuroGP. LNCS 9025, Springer (2015) 217–229

2. Sonka, M., Hlavac, V., Boyle, R.: Image Processing: Analysis and Machine Vision.
Thomson-Engineering (1999)

3. Ttofis, C., Hadjitheophanous, S., Georghiades, A., Theocharides, T.: Edge-directed
hardware architecture for real-time disparity map computation. IEEE Transactions
on Computers 62(4) (2013) 690–704

4. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming. In:
Proceedings of the First Annual Conference on Genetic Programming. (1996) 309–
314

5. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection using
multivariate density. In: Proceedings of the 15th Annual Conference on Genetic
and Evolutionary Computation, ACM (2013) 917–924

6. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multiobjective
genetic programming: a methodology and preliminary study on edge detection. In:
In: GECCO 05: Proceedings of the 2005 conference on Genetic and evolutionary
computation, ACM (2005) 795–802

7. Priego, B., Bellas, F., Souto, D., Lopez-Pena, F., Duro, R.: Evolving cellular
automata for detecting edges in hyperspectral images. In: 2012 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), IEEE (2012) 1–6

8. Sekanina, L., Harding, L.S., Banzhaf, W., Kowaliw, T.: Image processing and
CGP. Cartesian Genetic Programming (2011) 181–215

9. Hollingworth, G., Tyrrell, A., Smith, S.: Simulation of Evolvable Hardware to
Solve Low Level Image Processing Tasks. In: Proc. of the Evolutionary Image
Analysis, Signal Processing and Telecommunications Workshop. Volume 1596 of
Lecture Notes in Computer Science., Springer-Verlag (1999) 46–58

10. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to
edge detector design. In: Proceedings of the 2006 IEEE International Symposium
on Circuits and Systems, IEEE (2006) 4683–4686

11. Harding, S., Banzhaf, W.: Genetic programming on gpus for image processing.
Int. J. High Perform. Syst. Archit. 1(4) 231–240

12. Vasicek, Z., Sekanina, L.: An evolvable hardware system in Xilinx Virtex II Pro
FPGA. International Journal of Innovative Computing and Applications 1(1)
(2007) 63–73

13. Esmaeilzadeh, H., Sampson, A., Ceze, L., Burger, D.: Neural acceleration for
general-purpose approximate programs. Commun. ACM 58(1) 105–115

14. Yazdanbakhsh, A., Mahajan, D., Thwaites, B., Park, J., Nagendrakumar, A.,
Sethuraman, S., Ramkrishnan, K., Ravindran, N., Jariwala, R., Rahimi, A., Es-
maeilzadeh, H., Bazargan, K.: Axilog: Language support for approximate hardware
design. In: Design, Automation Test in Europe Conference Exhibition (DATE),
2015, IEEE (2015) 812–817

15. Kulkarni, P., Gupta, P., Ercegovac, M.D.: Trading accuracy for power in a multi-
plier architecture. J. Low Power Electronics 7(4) (2011) 490–501

16. Shi, K., Boland, D., Stott, E., Bayliss, S., Constantinides, G.: Datapath synthe-
sis for overclocking: Online arithmetic for latency-accuracy trade-offs. In: 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), IEEE (2014) 1–6

17. Monajati, M., Fakhraie, S., Kabir, E.: Approximate arithmetic for low-power image
median filtering. Circuits, Systems, and Signal Processing 34(10) (2015) 3191–3219

18. Higuchi, T., Niwa, T., Tanaka, T., Iba, H., de Garis, H., Furuya, T.: Evolving Hard-
ware with Genetic Learning: A First Step Towards Building a Darwin Machine.
In: Proc. of the 2nd International Conference on Simulated Adaptive Behaviour,
MIT Press (1993) 417–424

19. Miller, J.F.: Cartesian Genetic Programming. Springer-Verlag (2011)
20. Torresen, J.: A scalable approach to evolvable hardware. Genetic Programming

and Evolvable Machines 3(3) (2002) 259–282
21. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-

synthesis evolutionary optimization in evolvable hardware. Genetic Programming
and Evolvable Machines 12(3) (2011) 305–327

22. Vasicek, Z., Sekanina, L.: Evolutionary approach to approximate digital circuits
design. IEEE Transactions on Evolutionary Computation 19(3) (2015) 432–444

23. Sekanina, L., Vasicek, Z.: Approximate circuits by means of evolvable hardware.
In: 2013 IEEE International Conference on Evolvable Systems. Proceedings of the
2013 IEEE Symposium Series on Computational Intelligence (SSCI), IEEE CIS
(2013) 21–28

24. Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian
genetic programming. IEEE Trans. Evolutionary Computation 10(2) (2006) 167–
174

25. Kogge, P.M., Stone, H.S.: A parallel algorithm for the efficient solution of a general
class of recurrence equations. IEEE Transactions on Computers (Aug 1973) 786–
793

26. Nepal, K., Li, Y., Bahar, R.I., Reda, S.: Abacus: A technique for automated be-
havioral synthesis of approximate computing circuits. In: Proceedings of the Con-
ference on Design, Automation and Test in Europe. DATE ’14, EDA Consortium
(2014) 1–6

27. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring
ecological statistics. In: Proc. 8th Int’l Conf. Computer Vision. Volume 2. (July
2001) 416–423

