
Genetic Improvement for Approximate Computing
Lukas Sekanina and Zdenek Vasicek

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence
Bozetechova 2, 61266 Brno, Czech Republic

Email: sekanina@fit.vutbr.cz, vasicek@fit.vutbr.cz

Abstract—This position paper connects the Genetic Improve-
ment (GI) method, recently established in the search-based
software engineering community, with approximate computing,
in order to obtain improvements in the cases when errors
in computations can be tolerated. It is argued that Genetic
Improvement which shares many objectives with the approximate
computing can be adopted to solve typical problems in the area
of approximate computing.

I. INTRODUCTION

Genetic programming (GP) is an artificial intelligence
method capable of automated designing of programs in a
given programming language [1]. GP has been used is search-
based software engineering (SBSE) which applies metaheuris-
tic search techniques to software engineering problems that
can be formulated as optimization problems [2]. Conventional
techniques of operations research such as linear programming
are mostly impractical for complex software because of their
high time complexity. Hence search methods are employed to
provide “good enough solutions” in a reasonable time.

Genetic Improvement (GI) of software is in SBSE defined as
the application of evolutionary and search-based optimization
methods with the aim of improving functional and/or non-
functional properties of existing software [3]. Contrasted to
approximate computing that has been developed to improve
energy efficiency and performance for the cost of accuracy,
GI has always kept the code functionality identical (or even
better) than the original software.

In this paper, we first briefly survey GI and approximate
computing. It is then argued that GI can naturally be applied
for approximate computing.

II. GENETIC IMPROVEMENT

Applications of GI were surveyed in [3]. For example, GI
was employed for automatic bug fixing work [4] and improv-
ing of sorting algorithms [5], where it enabled to discover code
optimization tricks probably unreachable by current compilers.
Langdon and Harman showed that GI can, in addition to non-
functional parameters, improve functionality of existing code
(DNA sequence matching code) [6]. Such improvements can
be expected in software which is processing large volumes of
data using various heuristic procedures and trying to minimize
an error metric. Genetic Improvement has also been used
to create an improved version of C++ code from multiple
versions of a program written by different domain experts.
For example, some of MiniSAT implementation variants were
evolved together to give a new MiniSAT tailored to solve
interaction testing problems [7].

The non-functional properties of software (such as the
execution time, power consumption and lines of code) can
be improved by replacing the existing code fragments by
newly evolved code fragments providing that they are seman-
tically equivalent [5]. In a general case, deciding whether two
code fragments are semantically equivalent is an undecidable
problem. In practice, GI systems try to estimate the distance
between the existing and candidate code fragments using data
sets and a suitable fitness function. The original code serves
as a “golden model”.

Improving functional properties is possible only for a spe-
cific class of software. The main feature of this class is that the
specification is in principle incomplete since a correct output is
not defined for every legal input. Filters, classifiers, or predic-
tors which are evaluated using big (image, video, speech) data
sets fall into this class. An improvement in functionality is due
discovering a better algorithm for particular data. On the other
hand, when the specification is complete (accurate) and the
implementation is correct, no improvements in functionality
are possible. For example, there is no way to (functionally)
improve a correct implementation of a Boolean function which
is explicitly provided in the specification.

In the past 20 years, a very similar notion of genetic
improvement has been developed in the field of evolution-
ary circuit design. Considering the fact that the majority of
research in this area is performed using circuit simulators,
where circuits are represented as software (using hardware
description languages or netlits), we can speak about genetic
improvement of specific software. In this context, the spectrum
of non-functional properties is rich, including all key circuit
parameters. A typical task for GI is to minimize the number
of gates (the number of instructions in terms of software) of a
fully functional combinational circuit. A considerable progress
has recently been obtained by combining GP with methods of
formal verification. GP can now solve the logic optimization
problem even for complex instances (circuits with hundreds of
inputs and thousands of gates) using a SAT-based functional
equivalence checking embedded in the fitness function [8].

III. APPROXIMATE COMPUTING

One of the approximation techniques is functional approx-
imation whose purpose is to implement a slightly different
function to the original one provided that the error is accept-
able and power consumption, performance or other parameters
are improved. The functional approximation can be conducted
at the level of software as well as hardware. An approximate
solution is typically obtained by a heuristic procedure that
modifies the original implementation. For example, artificial



neural networks were used to approximate software mod-
ules [9] and search-based methods allowed to approximate
hardware components [10], [11].

In addition to functional approximations, timing induced
approximations and components showing “unreliable” behav-
ior (such as memory elements) are often employed. In the
Chisel project, reliability- and accuracy-aware optimizations
of computational kernels are performed by means of integer
linear programming (ILP) and intended for approximate hard-
ware platforms [12]. EnerJ [13] is an extension to Java that
systematically supports approximate software development for
approximate hardware. A specialized processor supporting
approximate computing at the level of SW and HW was
developed in [14].

IV. TOWARDS GENETIC IMPROVEMENT FOR
APPROXIMATE COMPUTING

So far, GI has been used to improve functional and non-
functional properties of software. However, by allowing errors
in the fitness function of GP-based GI, one can easily obtain
approximate solutions. In our previous work in this direction,
we employed GP to approximate elementary circuits such as
multipliers and median outputting circuits [15].

Applying the GI methodology for approximate computing
(particularly for approximate software) seems to be straightfor-
ward. The main outcomes would be reducing the optimization
time with respect to commonly used solvers (such as ILP
in [12]) and obtaining better trade-offs among key system
parameters (note that the search-based methods are not con-
strained by various assumptions of mathematically rigorous
methodologies). The key advantage is that the GI systems can
be constructed as multi-objective, i.e. they provide a Pareto
front showing the best trade-offs among the error, speed,
memory usage, energy consumption, network loading, etc., at
the end of each run.

We can suggest that before introducing any approximations,
the accurate HW/SW systems should firstly be optimized
(e.g. by GI) in order to improve their functional (in the case
of incomplete specified problems) as well as non-functional
properties. The reason is GI/GP systems are often capable of
improving existing solutions and hence the original systems
could be improved in such a way that no intended approx-
imations will be needed to reduce energy consumption and
optimize other parameters.

Another advantage connected with GP and GI is that they
can be executed in situ to dynamically adapt software as well
as hardware as a response to a changing environment which
can be represented by changing specifications, data patterns
or hardware platforms (e.g. when it is operated with variable
power budget).

Finally, to provide a complete picture, weak points of
GI/GP methodology have to be mentioned. GP/GI can be time
consuming and non-deterministic. Resulting solutions can be
less trustworthy in terms of functionality. In order to obtain
useful results, a GP expert providing insights into the problem

encoding, genetic operators, fitness function and performance
tuning has to be employed.

V. CONCLUSIONS

Software engineering and hardware engineering currently
share a new challenge consisting in satisfying the requirements
of energy efficiency. It has been argued in this paper that
GI can naturally be used for purposes of software as well
as hardware approximations. We believe that establishing a
collaboration between the approximate computing community
and genetic improvement community will provide new oppor-
tunities, insights and potential applications for both sides.

VI. ACKNOWLEDGMENTS

This work was supported by the Czech science foundation
project 14-04197S Advanced Methods for Evolutionary Design
of Complex Digital Circuits.

REFERENCES

[1] J. R. Koza, “Human-competitive results produced by genetic program-
ming,” Genetic Prog. E. Machines, vol. 11, no. 3–4, pp. 251–284, 2010.

[2] M. Harman and B. J. Jones, “Search-based software engineering,”
Information and Software Technology, vol. 43, pp. 833–839, 2001.

[3] W. B. Langdon, “Genetic improvement of software for multiple ob-
jectives,” in 7th International Symposium on Search-Based Software
Engineering, SSBSE, ser. LNCS, vol. 9275. Springer, 2015, pp. 12–28.

[4] W. Weimer, S. Forrest, C. Le Goues, and T. Nguyen, “Automatic
program repair with evolutionary computation,” Communications of the
ACM, vol. 53, no. 5, pp. 109–116, 2010.

[5] D. R. White, A. Arcuri, and A. John, “Evolutionary improvement of
programs,” IEEE Trans. Evol. Comput., vol. 15, no. 4, pp. 515–538,
2011.

[6] W. B. Langdon and M. Harman, “Optimizing existing software with
genetic programming,” IEEE Trans. Evol. Comput., vol. 19, no. 1, pp.
118–135, 2015.

[7] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a C++ program to a
problem class,” in 17th European Conference on Genetic Programming,
ser. LNCS, vol. 8599. Springer, 2014, pp. 137–149.

[8] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genetic Prog. E. Machines, vol. 12, no. 3, pp. 305–327, 2011.

[9] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-
celeration for general-purpose approximate programs,” Commun. ACM,
vol. 58, no. 1, pp. 105–115, Dec. 2015.

[10] K. Nepal, Y. Li, R. I. Bahar, and S. Reda, “Abacus: A technique
for automated behavioral synthesis of approximate computing circuits,”
in Proceedings of the Conference on Design, Automation and Test in
Europe, ser. DATE ’14. EDA Consortium, 2014, pp. 1–6.

[11] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghu-
nathan, “Salsa: systematic logic synthesis of approximate circuits,” in
The 49th Annual Design Automation Conference, DAC ’12. ACM,
2012, pp. 796–801.

[12] S. Misailovic, M. Carbin, S. Achour, Z. Qi, and M. C. Rinard, “Chisel:
Reliability- and accuracy-aware optimization of approximate computa-
tional kernels,” in Proc. of the 2014 Conference on Object Oriented
Programming Systems Languages & Applications. ACM, 2014, pp.
309–328.

[13] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “EnerJ: Approximate data types for safe and general low-
power computation,” in Proc. of the 32nd ACM SIGPLAN Conf. on Prog.
Language Design and Implementation. ACM, 2011, pp. 164–174.

[14] V. Chippa, S. Venkataramani, S. Chakradhar, K. Roy, and A. Raghu-
nathan, “Approximate computing: An integrated hardware approach,” in
2013 Asilomar Conference on Signals, Systems and Computers. IEEE,
2013, pp. 111–117.

[15] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate
digital circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp.
432–444, 2015.


