
Dissimilarity Detection of
Two Video Sequences

Technical Report - FIT - G20102015006 - 2012 - 04

Vı́tězslav Beran
Lukáš Klicnar

Faculty of Information Technology, Brno University of Technology

December 9, 2012

Abstract

The technical report presents the evaluation of video processing meth-
ods focused on visual content description in the scope of the VideoTerror
project. The video processing task for detection of short- and long-term
changes between two video sequences is defined in detail. The algorithm
comparing two video sequences (reference and query) is introduced to-
gether with definition of particular situations that the algorithm must be
able to detect: re-written parts, removals or injected parts. The image
processing methods are selected to be robust to several practical distor-
tions that might appear in defined task. The appropriate computer-vision
methods are presented and discussed, then proposed method and experi-
ments are introduced and evaluated on manually generated dataset pro-
posed for VideoTerror particular tasks. The algorithms are selected and
optimized to be effectively integrated into VideoTerror hardware solution.
The technical report finally describes the algorithms developed tool, its
usage, parameters and output formats.

1

Contents

1 Introduction 3

2 Video data analysis and representation 4
2.1 Global image features . 4
2.2 Local image features . 5
2.3 Bag-of-words and visual codebooks 6
2.4 Temporal analysis . 6

3 Video sequence visual-based comparison 8
3.1 Key-frame extraction . 9

3.1.1 Local features . 10
3.1.2 Global features . 10

3.2 Similarity matrix . 11
3.3 Dissimilarities detection . 12

4 Results 14
4.1 Datasets used for experiments . 14

4.1.1 Data for descriptor performance tests 14
4.1.2 Data for video matching tests 16

4.2 Descriptor performance . 18
4.3 Video matching performance . 20
4.4 Computational speed . 23

5 Video Matcher Tool 23
5.1 Command-line version . 24

5.1.1 Usage and parameters . 24
5.1.2 Output formats . 24

5.2 Integration into Video Terror system 25

6 Conclusion 26

2

1 Introduction

The main task of the video comparison systems is to detect and validate the
differences between two visually almost identical video sequences. In some cases,
even when two video sequences are declared as the identical, small differences
might appear and manual detection and validation of such video parts may
become extremely time consuming and unbearable. The example of video-pair
disruption with dissimilarity types is showed on Figure 1.

Figure 1: Examples of video-pair disruption.

When comparing the similarity between two video sequences (reference and
query), we define three types of dissimilarity that might occur:

• rewriting - part of the query video is rewriten by different visual content
than in reference video and the length of query video part is the same as
the reference video part;

• injection - part of the query video is new - added to original (reference)
content, so the query video part is longer than the reference video part;

• removal - part of the query video is removed, so the query video part is
shorter than the reference video part;

Presented research is focused on visual content, so audio is omitted. The
visual part of the video is sequence of consecutive images, video frames, and one
way of evaluating similarity between two videos (or its parts) is to compare the
similarities between video frames and compute statistical analysis.

In out work, we represent the video sequence as the set of video-parts. Each
video-part is represented by its temporal information (begin and end) and also
by one or more key-frames. The video-part key-frames are in some sense in-
teresting video frames and are usually represented by image descriptors. One
of the research goals is to analyse the influence of the density of the video-
part key-frames to stability and precision of the entire video-pair comparison
approach.

First, the overview of the state-of-the-art methods together with some op-
timizations and novel approaches is presented in Section 2. The developed
algorithm is proposed and its crucial parts (key/frame extraction, similarity
matrix, geometrical validation and dissimilarity detection) are discussed in Sec-
tion 3. Results of experiments with selected video processing algorithms and

3

developed methods are presented and discussed in Section 4 together with uti-
lized datasets, both widely used in video processing community and manually
created for particular VideoTeror tasks. Finally, the tool is realized and its
usage, parameters and output formats are described in details in Section 5.

2 Video data analysis and representation

The similarity between two images (video frames) can be in general evaluated
using two types of visual content description: global and local. The global ap-
proach of image description extracts image features from the entire image and
utilizes statistics for their representation. Global approach might be very com-
putation cost effective but is usually not very robust to geometrical distortions
as no spatial information is taken into account.

2.1 Global image features

We represents the image content by colour histograms combined with a spatial
pyramid over the image to jointly encode global and local information [3]. We
use several colour models (grey-scale, HSV, IO1O2). The IO1O2 colour model,
known as the opponent colour model [4], is partially colour normalized and
simple to compute. The spatial pyramid is arranged so that low number of
bytes of data is describing each pyramid level. These are appended to create
the final feature vector. On descending to the next level in the pyramid, the
number of segments the histograms are taken over increases four-fold. Therefore,
to maintain the size constraints for each level, the number of bytes used to
describe each channel per segment is quartered. This places a desirable bias on
the importance of the levels. The representation is illustrated on Figure 2.

The amount of data for storing the intensity channel is two times bigger than
the other opponent colour channels. This is a common practice as generally
more information is contained in the intensity information. The histograms are
then L1 normalized. The Euclidean distance between image feature vectors is a
meaningful measure of similarity.

Figure 2: Spatial subdivision of the image at each level of the histogram pyramid
and the amount of data stored for each segment [3].

4

Besides colour information, we compute also histograms of image gradients
to represent the image intensity changes.

2.2 Local image features

The local approach extracts local image features such as corners or blobs and
represents the image content as the set of such local features and their descrip-
tors (see Figure 3 for example of local image features represented by yellow
circles). The local approach is more robust to geometrical distortions but might
have poor results with noisy data and is computationally more expensive.

Figure 3: Examples of detected scale-invariant local image features.

The methods based on Harris corner detector [10] and Hessian matrix [11]
proposed by Mikolajczyk and Schmid introduces principles of corner and blob
image structures detection that are invariant to structure scale. One of the
widely used approach is the SIFT detector proposed by Lowe [8] for its high
spatial and scale precision of detected local features and also because it includes
also very robust method for feature description. Next favourite method that
accelerates the Hessian-based approach is known as SURF detector [1]. The
SURF method is also robust to scale and is computationally very effective be-
cause is based on integral-image representation and further approximates the
second-order derivative computation by box-filters. The approach introduced
by Rosten and Drummond known as FAST corners [12] employs machine learn-
ing to construct corner detector that outperforms all know approaches in the
speed point of view. The FAST corner method is not so precise and stable as
SIFT or SURF method, but for several applications give sufficient results with
extremely low computational cost. Other region-based detector with promising
performance is the MSER (Maximally Stable Extremal Regions) developed by

5

Matas et al. [9]. It detects image regions that all pixels inside the region have
either higher or lower pixel intensity than all the pixels on its outer boundary.
The method can be efficiently implemented and attains good robustness and
repeatability. Several other scale-invariant interest point detectors have been
proposed. Examples are the salient region detector proposed by Kadir and
Brady [6], which maximises the entropy within the region. From the subset of
methods based on edges and edge regions the edge-based region detector pro-
posed by Jurie et al. [5] or detector by Tuytelaars and Van Gool [16] have the
interesting performance. They seem less amenable to acceleration though.

2.3 Bag-of-words and visual codebooks

When images are represented as the sets of descriptors, the time complexity of
the comparison of two images is not insignificant as each descriptor from one
image must be compared to all descriptors from the other image. In tasks based
on image comparison such time complexity become unbearable. Representation
of descriptors as single terms defined by some codebook may rapidly change the
computational cost of the comparison operation.

The idea of visual codebook introduces the techniques from natural lan-
guage processing and information retrieval area into computer vision [15] and
is mostly called as bag-of-words. The approach is based on the Vector Space
Model [17] that computes a measure of similarity by defining a vector repre-
senting each document. The model is based on the idea that the meaning of
a document (image) is conveyed by the used words (image structures). The
two image content is then compared using cosine distance of two image bag-of-
words. The bag-of-words construction is showed on Figure 4 and also weights
are presented based on inverse document frequency. More detailed description
of codebook training methods and bag-of-words construction was published in
[2]. Bag-of-words approach is very efficient for fast image comparison and re-
trieval (for inverted file index construction), but keeps the high computational
cost drawback of local feature extraction approach.

2.4 Temporal analysis

The temporal analysis is usually used in video processing to analyse the geomet-
rical changes in consecutive video frames. According to application, the analysis
serves e.g. to detect cuts in video sequences or find the visually most representa-
tive candidates of video-parts. We have selected two distinct approaches. First
approach computes the differences between several adjacent video frames repre-
sented by global image features using Euclidean distance for metric features and
cosine distance for bag-of-words representation. The differences are evaluated
over flowing window. Figure 5 shows the output signal with candidates video-
part boundary candidates (red lines) and key-frame candidates (blue lines).

Other approach is based on tracking of local image features over the close
video frames. The approach is motivated by work of Sivic et al. [14] and further

6

Figure 4: Bag-of-words construction overview - local image features are trans-
lated by codebook and weighted.

Figure 5: Similarity of visual content of adjacent video frames with shot bound-
ary (red) and key-frame (blue line) detected candidates.

developed by Klicnar and Beran [7] for computationally efficient video segmen-
tation. The existing method was adapted to a higher computational speed
and on-line processing. The proposed approach is based on sparse local image
features and the KLT tracker for feature trajectory computation. A RANSAC-
based method is used for initial motion segmentation, resulting motion groups
are partitioned by a spatial-proximity constraints. The correspondence of mo-
tion groups across frames is solved by one-frame label propagation in forward
and backward directions. The method results in stable trajectory bundles that
represents distinctive image regions. The Figure 6 shows the steps of the pro-
cedure (the tessellation is applied arbitrarily).

7

Figure 6: Similarity of visual content of adjacent video frames with shot bound-
ary (red) and key-frame (blue line) detected candidates.

3 Video sequence visual-based comparison

This section describes basic principles of the proposed system for video dissim-
ilarity detection. Its design consists of several independent consecutive layers
(see also the block diagram on Figure 7):

1. Preprocessing of both, reference and query video sequences

2. Computation of similarity matrix

3. Detection of corresponding segments in both videos

Video sequence preprocessing actually involves two important steps. The
system doesn’t work with all frames of the sequence, this would be very time-
consuming and it wouldn’t improve the resuluts significantly. Instead of this,
only a set of keyframes is used – their extraction makes the first step of prepro-
cessing. An image descriptor is computed for every keyframe, which is the way
these frames are represented in the system. Comparison of two frames is then
reduced to computation of distance of their descriptors and the main advantage
is that the descriptors can be designed to be robust to some image distortions
and transformations. Finally, the output of this layer is the representation of
the whole sequence by a set of keyframe descriptors. It is independent of the
input sequence and it can be stored e.g. in the database.

Video A

Keyframes
extraction

Descriptors
extraction

Keyframes A Descriptors A

Video A preprocessing

Video B

Keyframes
extraction

Descriptors
extraction

Keyframes B Descriptors B

Video B preprocessing
Similarity

matrix

Keyframe
descriptors
comparison

Matching
segments

Line segments
detection

on sim.matrix

Summary of matching
or di�ering parts of video

Figure 7: Basic block diagram of the proposed system for video sequence com-
parison.

8

Set of keyframe descriptors for both sequences is the input of the next layer,
which is called similarity matrix computation. In this step, all keyframes from
one sequence are compared to keyframes from the other one and this results to a
matrix, which can be understood as a map of similarity of both sequences. This
matrix is thresholded, preprocessed to remove noise and it is the only input
of the next step, detection of corresponding parts in both videos. This task
consists of detection of continuous line segments in the matrix, which can be
interrupted and shifted. It is handled by a recursive algorithm we developed.
Finally, if we have information about matching parts in both sequences, the
decision about changes is straightforward, they correspond to discontinuities in
detected line segments..

3.1 Key-frame extraction

The goal of the keyframe extraction is to describe to whole video sequence by a
set of keyframes, which represents the individual video parts. Every part (or it
can be called a segment) is described by several keyframes - the start frame, the
end frame and possibly one or more representative frames inside. Having only
one representative keyframe is suitable when all frames inside the segment are
fairly similar, but even in this case, our experiments showed that when using
our similarity matrix-based approach for video comparison, it is better to have
more inner keyframes. If a new keyframe is periodically, dense enough created
inside an every segment, it forms a stronger line-response on the matrix, which
is more easy to detect, as it is far more distinct from the noise patterns.

Actually, it is possible not to detect segment boundaries, but create keyframes
directly by using every Nth frame of the video sequence. This may work fine
in some cases, but the precision of detection of their boundaries is dependent
on the period N and very short segments cannot be detected – they may be
simply passed unnoticed if they lie between two keyframes. This is the reason
why every frame must be inspected and boundaries of the individual video parts
must be found. When all keyframes are extracted, they are described by frame
descriptors.

The block diagram of the proposed keyframe extraction method is presented
on Figure 8. Frames are processed sequentially and we check for discontinuities
in the video. A significant change in the video is considered as a boundary be-
tween two segments, so detection of a such change directly leads to a keyframe
creation. In addition, keyframes are also create every 25 frames (resp. 1 second
at common framerate of 25 fps), which improves the response and stability of
long segments in their detection process. So, the resulting set approximately
contains a keyframe every 1 second combined with keyframes at segment bound-
aries.

The last thing is that how segment boundaries are detected, resp. how we
determine the significant change that is referred in Figure 8. We tried two

9

Mark as keyframe

End
of sequence?

no

yes

Grab next frame

Signi�cant
change?

yes

no 25 frames from
previous KF?

yes

no

Compute descriptors
for marked keyframes

KF extraction done

Figure 8: Block diagram of the keyframes extraction process.

approaches - by observing the global features or by utilizing the local features
and their development in time.

3.1.1 Local features

Our solution is based on [7], specifically we utilized the tracking part and used it
for keyframes extraction. We assume that every segment represents a compre-
hensive part of the video sequence, it can change, but these changes are gradual
and most importantly, continuous. We track a set of interest points in the im-
age – some of them disappear, new ones are detected, but most of them can be
tracked stably over a longer base of frames. If significant amount of trajectories
breaks at one time, it will be considered as a big change, start of new segments.
Criterion is the following:

nbroken

ntotal
> N (1)

where ntotal is the number of all tracks, nbroken represents count of currently
broken tracks, N is a threshold. Because we actually track objects (although
we don’t recognize point of these objects as a one unit), we can consider this as
a content-based keyframes extraction.

3.1.2 Global features

The existing method representing the image content by colour histograms com-
bined with a spatial pyramid over the image was presented in [3]. We applied
the pyramidal approach also for histogram of image gradients. Further novelty
of our method is interpolation of segment histogram values into adjacent bins to
improve the descriptor robustness to small geometrical distortions. Similar to

10

SIFT descriptor, the Gaussian weighting function is applied to segment image
values (intensities or gradient lengths).

3.2 Similarity matrix

Similarity of the extracted keyframes is described by a so called similarity matrix
S. Its rows represent keyframes from a reference sequence VR, while columns
represent keyframes from a tested sequence VT . Every value in this matrix
represents the dissimilarity of keyframes VR(r) and VT (t), in our case it is the
distance between descriptors of both keyframes S(r, t) = d(VR(r), VT (t)). This
matrix can be obtained by comparison of every combination of keyframes, which
is the way we use. Very useful step is thresholding by a threshold T , new
similarity matrix ST is created:

ST (r, t) =

{
1 if S(r, t) < T

0 otherwise.
(2)

Threshold T is the maximal distance of descriptors for two frames that are
considered similar. Example of several thresholded similarity matrices is on
Figure 9. As can be seen, similar parts of both video sequences forms evident
diagonal line segments in the matrix. In case of comparison of the same se-
quences, strong line on the main diagonal emerges. If the video contains scenes
with very slow changes (so many subsequent frames are very similar), squared
structures around the diagonal lines are created. When comparing sequences
with no similarities, no diagonal lines appear in the matrix.

(a) exactly the same sequences (c) totally di�erent sequences(b) same sequences with added, missing and shifted parts

Figure 9: Examples of thresholded similarity matrix for various situations –
from exactly the same video sequences to completely different ones. Black color
represents values above threshold (high similarity of frames), while white color
represents values under threshold (low similarity).

Similarity matrix obtained by comparison of every keyframe combination
usually contains significant amount of noise caused by random frames similarity,
which can form small structures or segments in the thresholded matrix. These

11

segments are fortunately usually different from diagonal lines that are the only
important parts of the matrix. That’s why we filter the unwanted segments by
convolving the matrix with the following kernel K (which has strong response
for diagonal lines) and thresholding again:

K =
1

5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (3)

3.3 Dissimilarities detection

As the corresponding parts of both video sequences appears as strong line seg-
ments (with high frame-to-frame similarity) on the similarity matrix, the video
matching problem can be reduced to searching for these lines. In the proposed
algorithm for this task, we suppose several assumptions: First, the frame rates
of both video sequences doesn’t differ excessively, so the lines are nearly or ex-
actly diagonal. We also assume that the order of the scenes is preserved, only
some of them are removed, replaced, or there is some other content inserted.
This means that the disconnected line segments on the similarity matrix can
only be shifted to the right and/or downwards from the previous segment, which
is utilized in the way that the matrix is processed.

We developed an recursive algorithm for segments detection based on the
divide and conquer technique. First, we need to define a continuous segment,
which is a line of neighbouring points on thresholded similarity matrix ST that
goes from A = (ax, ay) to B = (bx, by). From a given starting point A1 =
(a1x, a

1
y), the segment can be gradually constructed by following the diagonal or

by doing a vertical/horizontal step:

An+1 =

(anx + 1, any + 1) if ST (anx + 1, any + 1) = 1

(anx + 1, any) if ST (anx + 1, any + 1) 6= 1 ∧ ST (anx + 1, any) = 1

(anx , a
n
y + 1) if ST (anx + 1, any + 1) 6= 1 ∧ ST (anx + 1, any) 6= 1 ∧ ST (anx , a

n
y + 1) = 1

(anx , a
n
y) otherwise.

(4)
where T is the threshold for similarity matrix values. The segment is con-

structed until An+1 = An. The length of the segment is defined as Euclidean
distance: d(A,B) =

√
(bx − ax)2 + (by − ay)2.

Basic block diagram of the proposed approach is on Figure 10. At first,
the whole matrix is searched for the point, from which the longest continuous
segment can be constructed. If the length of this segment d(A,B) > dmin, it
is accepted and the matrix is subsequently divided into these three areas (as
illustrated in fig. 11):

12

ROI = whole
simil. matrix

Find dominant segment
in the current ROI

Segm. length
> min.?

no

yes
Accept segment Divide current ROI

ROI 1
(upper left)

ROI 2
(lower right)

Terminate for
current ROI

Figure 10: Block diagram of the similarity matrix processing.

1. ROI 1: Rectangle from upper left corner to start of the segment

2. ROI 2: Rectangle from end of the segment to lower right corner

3. Remaining areas

ROIs (regions of interest) 1 and 2 are then processed recursively. In each of
them, the dominant continuous segment is detected and if fulfils the minimal
length criterion, it is accepted, the region is subdivided and the recursion is
repeated. Optionally, an angle criterion can be involved, which ensures that
the detected segment is nearly or exactly diagonal. We suppose that longer
continuous segments are less probable to be formed by noise, so the extraction
of the most dominant lines as first improves the robustness of this algorithm.

(similarity matrix) (step 1a) detected segments (step 1b) matrix subdivison (step 2a) detected segments

(step 2b) matrix subdivison (step 3a) detected segments (step 3b) matrix subdivison (step 4) all segments detected

Figure 11: Example of dominant segments detection.

The Figure 11 shows how this algorithm searches for the new line segments
in the rectangular areas between the already found ones. Also, if both video

13

sequences are exactly the same, only the diagonal segment is detected and the
algorithm terminates after one step. It is also obvious that the diagonal is the
longest possible line, so it will be always detected as the first one.

The left picture shows the thresholded similarity matrix, which is used for
demonstration. The white colour represents areas of the matrix for the next
segment detection, while the grey colour marks already inspected or rejected
regions, where no further segments can be detected. At the beginning, the
largest segment is extracted (step 1a) and the matrix is subdivided into two
parts (step 1b), where the same procedure is proceeded recursively (steps 2,3).
At the end, only too short segments can be detected in the remaining areas, so
the recursion is terminated and five segments are detected.

4 Results

This section consists of four main parts. The first one describes datasets used
for experiments, it contains brief characteristics of included sequences and it
is divided into two groups – for evaluation of frame descriptor behavior and
for evaluation of matching segments detection peformance. Types of artificially
added distortions are also described. The second part of this sections deals
with experiments with descriptors, it is mainly a free quotation of [13]. In the
third part of this section, we evaluate performance of the video comparison as
a whole unit. Experiment details and used metrics are introduced as first, the
results are then shortly discussed. The last, fourth, part addresses the question
of computational demands.

4.1 Datasets used for experiments

We used a small dataset for experiments and evaluation. Because of the necessity
of different properties of the data for evaluation of diffent parts of the video
matcher system, we divided the data into two basic groups: The first one is for
experiments of descriptor performance and the second one serves for evaluation
of the video comparison itself.

4.1.1 Data for descriptor performance tests

Descriptor performance tests are taken from [13], so only brief description of
the dataset the author used follows. Nine different video sequences were use
to represent varying types of scenes – sports, news, cartoons, etc. Every video
is strongly specific, some of them contain fast cuts or static scenes, gradually
moving camera, large color variability, etc. Every sequence has a resolution of
640x360px and a framerate of 25 fps. All videos were downloaded from YouTube,
specifics of the sequences are summarized in the following description:

• vid01 – Climbing a table-top mountain - Expedition Guyana - BBC

14

– Recording of climbing ascent. Shots of landscape, rocks and details
od mountain climber. Mostly slow camera movement, sometimes
even static, cuts to very different shots.

– 5977 frames

• vid02 – Annapurna Base Camp Trekking

– Expedition to Annapurna. Shots of people groups, villages, land-
scape, river, mountains, sometimes inserted static images.

– 30618 frames

• vid03 – Chile Extreme Whitewater Kayaking

– Short movie about kayakers at wild water. Shots of river, watefalls,
detailed shots of kayakers., fast cuts to very similar scenes

– 8661 frames

• vid04 – Wild Chronicles: Madagascar Poison Frogs

– National Geographic document about poison forgs. Shots of rain
forests and animals living in them, cuts from detailed shots of animals
to landscapes, etc.

– 9111 frames

• vid05 – CNN BREAKING NEWS - NASA SOLAR STORM WARNING

– Short passage from CNN news. Mostly shots of anchors with illus-
trative graphics, relatively static scenes.

– 3048 frames

• vid06 – 24H Nurburgring 2011 START

– Part of car race recording. Mostly shots of cars, fast camera move-
ment, in some places shaking, very similar shots.

– 3264 frames

• vid07 – CORAL REEF

– Documentary about coral reefs. Underwater scenes, very similar,
large surface with the same color, subtitles.

– 8638 frames

• vid08 – The Hobbit Trailer

– Movie trailer. Mostly shots of people in different situations, very
fast cuts to scenes of similar colors, included information graphics,
subtitles.

– 3780 frames

15

• vid09 – Donald Duck Put-Put Troubles

– Short cartoon movie. Quickly changing scenes, but often just part of
the frame, very similar large surfaces, scenes of similar colors.

– 10758 frames

These video sequences were modified for testing of different types of dis-
tortion. These were identified as the main three groups: The first one is re-
size+crop. Every video was enlarged to 110%, 120%, 130% of its original size
and cropped, which results to loss of data at the borders. Illustration is on
Figure 12.

Figure 12: Example of the resize+crop distortion.

The second type of distortion is the change of quality. This was simulated
by increasing brightness to 105%, 110%, 115% of original, by lowering contrast
to 85%, 70% 60% of original and by Gaussian-bluring with kernel of size 2, 4,
6px. Illustration is on Figure 13.

The last distortion is the compression. Modified sequences were obtained
by compressing the original with the DivX encoder with different bitrates. The
compression significantly damages the details of the image. Illustration is on
Figure 14.

4.1.2 Data for video matching tests

The main specifics of the data to video matching evaluation is that we need
actually two sequences – one is the original, we call it reference, which is the

16

Figure 13: Example of the quality distortion.

sequence without modifications. The second one is called query, it may contain
some edits as described earlier and we want to find the parts that are equal in
both sequences. We created a small dataset that we used for algorithm design
and its evaluation. It consists of a few artifical situations – we took a video
sequence and edited it, some content was excluded or replaced, some new parts
were added. Together, we used:

• music – Music videos (rewriting detection)

– Two music videos of Metallica and Apocalyptica bands, contains
scenes with static or slow moving camera, colors of both sequences
are very different.

– Reference sequence was made by replacing parts of one sequence with
parts of the second one, so as a query sequence, we can use each of
the basic ones.

– Reference – 5582, query A – 5079, query B – 9678 frames.

• tv1 – TV series 1 (removal detection)

– Five minutes cut-out from a episode of the Big Bang Theory series.
Contains similar scenes, slow moving camera.

– Reference is the whole five minute sequence, query was shortened by
one minute from the start and from the end. It is made for testing
of shortening detection.

– Reference – 7506, query – 4488 frames.

17

Figure 14: Example of the compression distortion.

• tv2 – TV series 2 (all dissimilarities)

– Five minutes cut-out from the same episode of the Big Bang Theory
series, which is the reference sequence. One part was replaced by a
30s from another TV series (How I Met Your Mother), another 30s
part was excluded, another 30s part was inserted.

– Reference – 7503, query – 7503 frames.

• tv3 – Movie (all dissimilarities)

– Same as the tv2, except that 5min part of the movie Groundhog day
was used as a reference sequence.

– Reference – 7501, query – 7501 frames.

The music sequence is downloaded from YouTube and has a resolution of
384x288, the other ones are grabbed from a digital TV broadcasting, edited and
resampled to the same resolution.

4.2 Descriptor performance

The goal was to determine, how different distortions affect the frame descrip-
tors distances. Following description and results are taken from [13], where the
author used similarity matrix for reference and distorted sequence comparison.
First, similarity matrix was computed for every pair of reference and query
sequence, only every 25th frame was used. Example of such matrix is on Fig-
ure 15. Black colour means that frames are identical (low, resp. zero descriptor

18

distance), white colour means that frames are completely different (large dis-
tance) – the darker the colour is, the more similar the frames are. Because the
content of both sequences is similar, it is obvious that the diagonal represents
comparison of corresponding frames. A strong diagonal line can be clearly seen
on the left-most figure, but it becomes weaker with more distortion that the
descriptor is not tolerant to.

Figure 15: Similarity matrices for vid05, using the colour histogram descriptor.
The reference sequence was compared to (from left): reference, resize+crop,
quality, compression, all modifications represents the most distorted variant
(level 3).

These matrices were made for every sequence from the dataset described in
Section 4.1.1, every sequence was compared to all of its distorted versions (see
example on Figure 16). Next, every similarity matrix for distorted sequence was
compared according to the following metric, so the error was computed:

E(Sref , Squery) =

∑Y
y=1

∑X
x=1 |Sref (x, y)− Squery(x, y)|

XY
, (5)

where Sref (resp. Squery) are the similarity matrices created by comparison
of the reference sequence with the reference (resp. query) sequence. Sizes of
both matrices are the same, as the compared sequences are equal (except for
image distortion).

Example of results for the colour histogram image descriptor are shown on
Figure 16. It is obvious that change of quality and compression significantly
affects the descriptor distance. The descriptor showed the best tolerance for
resize+crop, but this is only because the crop was very small and Gaussian-
weighting of the tiles simply suppressed the change. But from our experience
comes that behaviour of this descriptor is hugely affected by cropping the image.
The gradient variant from [13] handles better the change of quality, because it
preserves the image structure, but it is more prone to compression, which on
the contrary destroys the structure.

19

Figure 16: Performance of the colour histogram descriptor.

4.3 Video matching performance

The aim of these test were to evaluate, how the similar segments extraction
performs in different situation. First, we computed a similarity matrix by com-
paring a reference sequence with the one with added disruptions. The task is to
find the equal parts present in both sequences – they arise as line segments on
the similarity matrix. We used the video sequences described in Section 4.1.2
and we pursued these following standard evaluation metrics:

• Segments count – Number of segments that are actually present on the
similarity matrix.

• Segments found – Number of segments that was detected on the simi-
larity matrix.

• Recall – The fraction of segments that are detected, which is considered
true if at least one detected segment corresponds with the actual one. It
is computed by the following formula:

R =
of present seg. that are detected

of all present seg.
(6)

• Precision – The fraction of all found segments that are correct, which
means that the detected segment corresponds to an actual one. It is
computed by the following formula:

P =
of detected seg. that are correct

of all detected seg. (overseg. count as 1)
(7)

20

• Over-segmentation – Penalizes situations, where some segments are ac-
tually detected as a multiple shorter ones. It is computed by the following
formula:

OS =
for each pres. seg.:

∑
of corresp. that are detected

of correctly detected segm. (overseg. count as 1)
− 1 (8)

The results are summarized in Table 1 and the corresponding thresholded
similarity matrices with highlighted actual found segments are shown on Fig-
ure 17. Special case is the comparison #1, which compares a sequence with
itself. Some of the matrices are very noisy, which is caused by very similar
frames across the whole sequence, but the detection algorithm works very well
– all of the present segments were found in all evaluated sequences. But several
imperfections are present, they could be generalized as:

• False segments detection – some of the noise patterns can be detected
as segment by mistake, for example in comparison #1 (tv2).

• Inaccurate localization – as can be seen in comparison #1 (tv1): The
detected line doesn’t exactly lie on the actual one. In this case, it is caused
by the way the line segments are gradually constructed – horizontal or
vertical steps are not limited, so it continues over a black rectangle of very
similar frames and shifts one end of the line.

• Over-segmentation – one segment is detected as multiple ones, because
a line on the similarity matrix is interrupted. This may be caused by bad
tollerance of the descriptor to some distortion, that is present in one or
several frames.

Reference Query # seg. # found R P OS
1 music qr. A music qr. A 1 1 1.0 1.0 0.0
2 music ref. music qr. A 3 3 1.0 1.0 0.0
3 music ref. music qr. B 4 5 1.0 1.0 0.25
4 tv1 ref. tv1 qr. 1 1 1.0 1.0 0.0
5 tv2 ref. tv2 qr. 4 5 1.0 0.8 0.0
6 tv3 ref. tv3 qr. 4 4 1.0 1.0 0.0

Table 1: Results of the matching segments extraction for different video se-
quences.

The protocol for evaluation of video-matching method performance is de-
signed to be scalable for bigger datasets (TRECVID) for other experiments.
Actually, the size of the used dataset (designed to reflects the particular task)
biases the performance.

21

music reference - music query B

tv1 reference - tv1 query

tv2 reference - tv2 query

tv3 reference - tv3 query
music reference - music query A

music query A - music query A

Figure 17: Similarity matrices for evaluation of the matching segments extrac-
tion. Due to its proportions, the image for tv1 is shown rotated.

22

4.4 Computational speed

The goal of these tests was to evaluate computational performance of the whole
process and to determine a proportional representation of its parts. We tested
both keyframe extraction methods separately. Tests were made on a common
personal computer with Intel Core 2 Duo T7100@1.80Ghz processor, 4GB of
RAM and Windows 7 64 operating system, used sequence contains a total of
28358 frames with resolution of 624x352px. Achieved results are shown in Ta-
ble 2. You can see that the global approach for keyframes extraction is much
faster than the local, tracking-based one. Considering that both of them give
similar results on most of the supposed input data, we claim the histogram-based
approach overall better.

Global Local
Computation time 164.6s 2136.8s
Framerate 172.4 frames/s 13.3 frames/s

Table 2: Performance of the whole video comparison process.

Notice, that the computational cost only of the video processing steps is
measured, so in practical application, also the time for video frames decoding
must be taken into account.

The proportional representation of its particular steps is shown in Table 3. It
is clear that keyframes extraction, which means browsing all frames of the video
sequence, is the most time-consuming part. The proportion changes slightly
when using local or global keyframe extraction, due to the massive demands
of tracking local features – it simply tremendously beats all other parts. On
the other hand, proportion of similarity matrix computation and its segments
extraction is practically negligible, which means that future speed optimizations
should be done on the first two parts.

Global Local
Keyframes extraction 75.2% 95.3%
Descriptors computation 23.5% 4.4%
Similarity matrix computation 1.2% 0.3%
Segments extraction 0.1% ¡0.1%

Table 3: Proportional representation of particular steps of the video comparison.

5 Video Matcher Tool

The section describes the particular basic and advanced usage and the informa-
tion about integration of the methods to Video Terror server platform.

23

5.1 Command-line version

For demonstration of the introduced algorithm, we developed a simple appli-
cation with command-line interface. It is implemented in C++ with utilizing
of OpenCV 2.4 library for image processing, it can be compiled and used in
Windows or Linux operating systems. It requires two input video sequences:
One is called reference, which should be the original sequence (without adds,
gaps or shifts]; the second one is called test and this the sequence that we want
check for differences from the reference one.

5.1.1 Usage and parameters

The command-line interface of the application is simple, it can be run by:

vmatch.exe -r ref.avi -t test.avi [-n step] [-t thr.] [-x] [-h]

Mandatory parameters:

• -r reference.avi – Sets the file name of the reference video sequence.

• -t test.avi – Sets the file name of the tested video sequence.

Optional parameters:

• -n step – Sets the step between forced keyframes (default 25).

• -t threshold – Sets the threshold for distance of two frame descriptors
to be considered similar (default 30).

• -x – Switches output from simple text to structured XML.

• -h or --help – Displays simple description of application interface.

5.1.2 Output formats

In the output, information about matching and differing segments from the
reference video sequence are provided. The output can be set to one of these
two variants:

1. Simple text output – it is the prefered way if just several comparisons
are done and the results are read by human.

2. Structured XML output – common XML parser can be used to read
the results, which is useful when other application is used for further
processing.

Example of the simple text output:

24

ref/00:00:00-00:00:34 matches test/00:00:00-00:00:34

ref/00:00:35-00:01:04 matches test/00:01:19-00:01:54

ref/00:01:04-00:01:36 differs

ref/00:01:36-00:02:15 matches test/00:02:26-00:03:08

ref/00:02:15-00:02:47 differs

ref/00:02:47-00:03:20 matches test/00:03:08-00:03:42

ref/00:03:20-00:03:43 differs

Example of the structured XML output for the same results:

<segments>

<segment start="00:00:00" end="00:00:34">

<match start="00:00:00" end="00:00:34" />

</segment>

<segment start="00:00:35" end="00:01:04">

<match start="00:01:19" end="00:01:54" />

</segment>

<segment start="00:01:04" end="00:01:36" />

<segment start="00:01:36" end="00:02:15">

<match start="00:02:26" end="00:03:08" />

</segment>

<segment start="00:02:15" end="00:02:47" />

<segment start="00:02:47" end="00:03:20">

<match start="00:03:08" end="00:03:42" />

</segment>

<segment start="00:03:20" end="00:03:43" />

</segments>

If there are some modifications in the test sequence when compared to ref-
erence one, it will result into one or several detected differing segments in the
output of the application.

5.2 Integration into Video Terror system

The developed and evaluated solution is partially integrated into Video Terror
server platform using VTAPI. In VTAPI, every sequence is represented by a class
Sequence, which is created by interface of the Dataset class. The integration
is based on realized wrapper class for the VTAPI Sequence that adapted its
interface to the video sequence iterator in the method’s core implementation.
The result is that sequences from the Video Terror server database can be
compared, the selection of both videos is done by giving the name of the dataset
and the name of the concrete sequence. System function is in compliance with
the description in former sections – both sequences are preprocessed, similarity
matrix is computed and finally, segments extraction is done. The next step of
the integration will defined from the results of project Tasks 3.3 and 3.4 together
with user-interface design activities.

25

6 Conclusion

The presented work describes practical video processing application for detec-
tion of short- and long-term changes between two video sequences in detail. Two
video sequences might be declared as the identical, but small differences might
appear. An auto-detection system is needed as human manual comparison in
such situation is extremely time consuming. The video-pair dissimilarity anal-
ysis is based on detection and validation of the video-frame differences between
two visually almost identical video sequences. The solution must be sensitive to
re-written, removed or injected video-parts.

The proposed approach is based on modern image and video processing
methods that are briefly introduced together with the discussion of their us-
ability for given task. The image processing methods are carefully selected to
be robust to several image distortions that might appear in defined task. The
overall procedure involves keyframes extraction analysing each video sequence
in temporal domain. Then, keyframes from both video sequences are compared
each by each and similarity matrix is built. The analysis of similarity matrix
then results in candidate video-parts that are validated, classified and reported
as the final output of the method.

All parts of the solution have been evaluated and tested on specific dataset
particularly created for the purpose of this work to best reflect the task do-
main. The algorithms are selected and optimized to be effectively integrated
into VideoTerror hardware solution. The developed method is the core of the
end-user tool. The final application, its usage and parameters, performance and
output formats is described in detail. The final test validated the usability and
readiness of the solution for practical deployment of the developed solution.

During the development, the application has been presented to the end-
users. The outputs of their experiences have been used to improve the practical
impact of the application.

References

[1] Bay, H., Tuytelaars, T., and Gool, L. V. Surf: Speeded up robust
features. In In ECCV (2006), pp. 404–417.

[2] Beran, V. On-line Data Analysis Based on Visual Codebooks. PhD thesis,
2011.

[3] Chum, O., Philbin, J., Isard, M., and Zisserman, A. Scalable near
identical image and shot detection. In CIVR ’07: Proceedings of the 6th
ACM international conference on Image and video retrieval (New York,
NY, USA, 2007), ACM, pp. 549–556.

[4] J. Geusebroek, R. van den Boomgaard, A. S., and Geerts, H.
Color invariance. PAMI 23, 12 (2001), 1338–1350.

26

[5] Jurie, F., and Schmid, C. Scale-invariant shape features for recognition
of object categories. Conference on Computer Vision and Pattern Recog-
nition 2 (2004), 90–96.

[6] Kadir, T., and Brady, M. Scale, saliency and image description. Inter-
national Journal of Computer Vision 45, 2 (2001), 83–105.

[7] Klicnar, L., and Beran, V. Robust motion segmentation for on-line
application. In Proceedings of WSCG’12 (2012), 20-th International Con-
ference in Central Europe on Computer Graphics, Visualization and Com-
puter Vision, University of West Bohemia in Pilsen, pp. 1–6.

[8] Lowe, D. G. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

[9] Matas, J., Chum, O., Urban, M., and Pajdla, T. Robust wide base-
line stereo from maximally stable extremal regions. In Proceedings of the
British Machine Vision Conference (London, UK, September 2002), P. L.
Rosin and D. Marshall, Eds., vol. 1, BMVA, pp. 384–393.

[10] Mikolajczyk, K., and Schmid, C. Scale & affine invariant interest point
detectors. International Journal of Computer Vision 60, 1 (2004), 63–86.

[11] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A.,
Matas, J., Schaffalitzky, F., Kadir, T., and Gool, L. V. A com-
parison of affine region detectors. International Journal of Computer Vision
65, 1-2 (2005), 43–72.

[12] Rosten, E., and Drummond, T. Machine learning for high-speed corner
detection. In In European Conference on Computer Vision (2006), pp. 430–
443.

[13] Sailer, Z. Image retrieval based on color histograms, 2012.

[14] Sivic, J., Schaffalitzky, F., and Zisserman, A. Object level grouping
for video shots. International Journal of Computer Vision 67, 2 (2006),
189–210.

[15] Sivic, J., and Zisserman, A. Video Google: Efficient visual search of
videos. In Toward Category-Level Object Recognition, J. Ponce, M. Hebert,
C. Schmid, and A. Zisserman, Eds., vol. 4170 of LNCS. Springer, 2006,
pp. 127–144.

[16] Tuytelaars, T., and Gool, L. V. Matching widely separated views
based on affine invariant regions. Int. J. Comput. Vision 59, 1 (2004),
61–85.

[17] Zezula, P., Amato, G., Dohnal, V., and Batko, M. Similarity Search
- The Metric Space Approach, vol. 32 of Advances in Database Systems.
Springer, 2006.

27

