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Abstract

This report brings an overview of motion and object detection tech-
niques with respect to the security purposes - especially pedestrian track-
ing and gun detection. The brief description of motion detection as well as
object detection techniques is given. The histogram of oriented gradient
pedestrian detection and subsequent experimental detection of handguns
based on template matching and optical flow tracking is also presented.
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1 Introduction

Motion detection techniques as well as object detection algorithms are described
in this report. The basic principles and techniques used in the area of motion
detection are described in Section 2. Section 3 brings the overview of template-
matching detection as well as the detection based on Haar-like features, descrip-
tors and histogram of oriented gradients.

2 Motion Detection

The main objective of motion detection algorithms is to mark video frame re-
gions that contains motion. They can also estimate the direction and magnitude
of movement.

2.1 Background subtraction

Perhaps the most direct approach is the background subtraction technique. The
detector compares the input frame with the average of previous n frames. The
motion Mt at time t is detected if there is a difference greater than some defined
threshold t on some coordinates (x, y) between the image It and average of
previous frames:

Mt(x, y) =

{
1 if

∣∣∣It(x, y)−
∑n

i=1 It−i(x,y)

n

∣∣∣ > t

0 otherwise
(1)

This simple approach may fail if there is only a small pixel intensity dif-
ference between moving object and background. This may be solved with the
employment of the edge detector, e.g., Canny edge detector [5] or Sobel opera-
tor [7]. The current frame It as well as the history It−1, . . . , It−n is processed
with the edge detector first.

The more complex approach to the background subtraction is shown in [24].
Zivkovic presents adaptive algorithm using Gaussian mixture probability den-
sity. Recursive equations are used to constantly update the parameters and also
to simultaneously select the appropriate number of components for each pixel.

2.2 Optical flow

The goal of the Pyramid Lukas-Kanade tracking [3] is to find for given point
u = (ux, uy) in the image I corresponding point v = u + d in the consecutive
image J . There is an assumption that the neighbourhood of the point u is
similar to the neighbourhood of the point v. The vector d is referred as the
image velocity or the optical flow at u. It is defined as the vector that minimizes
the function:

ε(d) = ε(dx, dy) =∑ux+wx

x=ux−wx

∑uy+wy

y=uy−wy
(I(x, y)− J(x+ dx, y + dy))

2 (2)
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The wx and wy define integration (neighbourhood) window of size (2wx +
1)× (2wy +1). Their typical values for are 2,3,4,5,6,7 and usually w = wx = wy.

There is a trade-off between local accuracy and robustness when choosing
the integration window size. Smaller window size is able to capture even tiny
motion. On the other hand, the tracking is lost when the movement exceeds
the search window. Contrary, the large window size lacks accuracy. Therefore,
an involvement of the image pyramid representation has been proposed.

The image pyramid consists of the original image I0 of size n0x×n0y and Lm
levels – usually 3. Each image IL at level L = 1, 2, . . . , Lm is resized, such its
size is recursively set to 1

2n
L−1
x × 1

2n
L−1
y . In the image pyramid perspective, the

point uLis computed from the point in base image u = u0:

uL =
u

2L
(3)

The pyramidal tracking starts at the highest level image Lm. This will
produce the optical flow estimation guess gLm−1 that is propagated to to the
next pyramid level Lm−1 where the more correct flow estimation is computed.
This is repeated until the base pyramid level is reached. The general equation
for estimating the optical flow at level L is:

ε(dL) =
∑ux+wx

x=ux−wx

∑uy+wy

y=uy−wy(
IL(x, y)− JL(x+ gLx + dLx , y + gLy + dLy )

)2 (4)

The initial guess gLm = (0, 0) and the propagation of the guess from level
L to L − 1 is accomplished by gL−1 = 2(gL + dL). The final optical flow d is
calculated from partial flow estimation at the base level and the corresponding
guess:

d = g0 + d0 (5)

Although the optical flow is usually used for tracking selected point(s) of
interest it may be also used for motion detection. The uniform grid of points is
established in image I. Each point is tracked in the next frame J subsequently.
If the flow d of some point exceeds defined threshold, motion is detected (see
Figure 1).

Figure 1: Optical flow
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3 Object Detection

The object detection is the essential task in the area of computer vision and
image understandings. The main objective is to answer whether some object of
a certain class is present in digital image or video. In recent years, there has
been proposed a lot of algorithms that deal with this task [23, 8, 19].

3.1 Template Matching

The simplest approach how to detect a certain object in the image is to pass
a small sliding window (template) across the image and calculate the distance
between the image patch and the reference object. However, this simple ap-
proach has many disadvantages, e.g., intra-class variance of searched object,
lack of robustness to lightning condition, planar rotation of the object, or per-
spective deformation.

There are several possibilities how to measure distance R between the input
image I and the template T :

• Square difference:

R(x, y) =
∑
x′,y′

(T (x′, y′)− I(x+ x′, y + y′))
2

(6)

• Normalized square difference ensuring that the values are from range 〈0, 1〉:

R(x, y) =

∑
x′,y′ (T (x′, y′)− I(x+ x′, y + y′))

2√∑
x′,y′ T (x′, y′)2 ·

∑
x′,y′ I(x+ x′, y + y′)2

(7)

• Correlation:

R(x, y) =
∑
x′,y′

(T (x′, y′) · I(x+ x′, y + y′))
2

(8)

• Normalized correlation:

R(x, y) =

∑
x′,y′ (T (x′, y′) · I(x+ x′, y + y′))

2√∑
x′,y′ T (x′, y′)2 ·

∑
x′,y′ I(x+ x′, y + y′)2

(9)

• Correlation coefficient:

R(x, y) =
∑
x′,y′

(T ′(x′, y′) · I ′(x+ x′, y + y′))
2

(10)

where T ′(x′, y′) = T (x′, y′)− 1/(Tw · Th) ·
∑
x′′,y′′ T (x′′, y′′)

• Normalized correlation coefficient:

R(x, y) =

∑
x′,y′ (T

′(x′, y′) · I ′(x+ x′, y + y′))
2√∑

x′,y′ T
′(x′, y′)2 ·

∑
x′,y′ I

′(x+ x′, y + y′)2
(11)
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3.2 Haar-based detection

Maybe the most frequent algorithm, especially in the area of face detection, is
the Viola-Jones [21] and its variations [11, 12]. It involves several techniques
that are also common in recent feature detections algorithms.

The first notable property of the Viola-Jones algorithm is the usage of inte-
gral representation of the input image i. In integral image I, the value at any
point (x, y) is the sum of all the pixels above and to the left of (x, y), inclusive:

I(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (12)

Haar wavelets, or more precisely Haar-like features (see Figure 2), are used
for feature detection. They are square shaped functions that are convolved with
the input patch. At given point (x, y), the response to the Haar-like function is
simply the sum of pixel values covered with the white region minus the sum of
image patch pixels covered with the grey region of the Haar feature. Integral
image is used for fast computation.

Figure 2: Some Haar-like features used in Viola-Jones algorithm [21]

Given that the base resolution of the detector patch is 24 by 24 pixels, the ex-
haustive set of rectangle Haar-like features is over 150 000. Therefore, a reason-
able selection of the feature space subset has to be selected. Viola and Jones
are applying the adapting boosting algorithm – AdaBoost. The basic idea of
AdaBoost is that the complex (strong) classifier that decides whether the given
image patch contains desired object or not can be made out of the weighted
sum of weak classifiers.

The input for AdaBoost is the example pairs (x1, y1), (x1, y1), . . . , (xn, yn)
where xi is the input vector and yi is its corresponding label (yi ∈ {0, 1}).
The initial point weights are set:

w1,i =
1

m
for yi = 0 (13)

w1,i =
1

l
for yi = 1 (14)

where m is the number of negatives and l is number of positives.
The following algorithm will create T weak classifiers ht with corresponding

weight αt, such that the resulting strong classifier is:
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T∑
t=1

αth(x) (15)

For t = 1, . . . , T :

1. Normalize the weights:

wt,i ←
wt,i∑n
j=1 wt,j

(16)

2. Select the best weak classifier ht with corresponding classification error εt

εt =
∑
i

wi|ht(xi)− yi| (17)

3. Update the weights. This step will ensure that the misclassified points
will obtain bigger weight for the next iteration:

wt+1,i = wt,iβ
1−ei
t (18)

where ei = 0 if the example is classified correctly, ei = 1 otherwise, and

βt =
εt

1− εt
(19)

4. set αt ← log 1
βt

In order to reduce the computation complexity, the cascade of classifiers is
used instead. The sequence of classifiers is trained in such way that the initial
classifier eliminates a large number of negative examples with very little pro-
cessing. Subsequent layers eliminate additional negatives but require additional
computation.

In recent years, various improvement to the original Viola-Jones algorithm.
For example, in [11], a multi-view face detection algorithm is proposed. Instead
of linear cascade of classifiers, a 3-level chain is proposed. Level 1 is a non-face
rejecter, which could reject the non-face samples for all face views. Level 2 is
view estimator and verifier. It has 2 sub levels to estimate the sample view from
coarse to fine. Level 3 is independent view verifier for each view. The sample
can be determined as face area only if it can pass the verifier in level 3.

In [12], six different types of feature images rather than just one is used for
feature extraction. Additionally, a key points based SVM predictor is imple-
mented in the prediction phase to obtain the confidence of the detection result.

There are also proposed modification of boosting algorithm, like in [22, 9]
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3.2.1 Detecting objects in video sequence

The original algorithm for detection objects of interest in static image is ex-
tended to the video sequence in [20]. Viola-Jones features operate on the differ-
ences between pairs of images It and It+1 in time. Motion filters operate on 5
images:

∆ = |It − It+1|
U = |It − It+1 ↑ |
D = |It − It+1 ↓ |
L = |It − It+1 ← |
R = |It − It+1 → |

(20)

where {↑, ↓,←,→} are image shift operators, e.g., It+1 ↑ is It+1 shifted up
by one pixel. See Figure 3.

Figure 3: Various shifted difference images used in [20]. The first two images
are two frames with a low resolution pedestrian pictured. The following images
show the ∆, U , D, L, and R images described in the text.

The input of AdaBoost is the set F of the following filters:

• First type of filters compares sums of absolute differences between ∆ and
one of {U,D,L,R}:

fi = ri(∆)− ri(S) (21)

where ri() is a sum of intensities within detection window and S is one of
{U,D,L,R}.

• Second type of filters compares sums within the same image:

fj = φ(S) or fj = φ(It) (22)

where φ() is the response to one of the wavelets similar to those in Figure 2.
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• Third type of filter measures magnitude of motion in one of the motion
images S:

fk = rk(S) (23)

The AdaBoost training of simple classifiers into the cascade is similar to the
static variation of Viola-Jones algorithm. In each round the learning algorithm
chooses from a heterogeneous set of filters. The output of the AdaBoost learning
algorithm is a classifier that consists of a linear combination of the selected
features. Each classifier in the cascade is trained to achieve very high detection
rates, and modest false positive rates. Simpler detectors (with a small number
of features) are placed earlier in the cascade, while complex detectors (with a
large number of features are placed later in the cascade).

3.3 Descriptor-based detection

Detectors based on descriptor features are trying to find distinctive points
within the image (key-points, interest points). From each key-point, a multi-
dimensional descriptor is extracted. Descriptor provide information about the
vicinity of the key-point independently on orientation, lighting conditions, and
perspective deformation.

3.3.1 Scale-invariant Feature Transform (SIFT)

The main disadvantage of Viola-Jones Algorithm is that the original algorithm
was not able to detect objects rotated around axis perpendicular to the image
plane. Lowe [13] proposed the algorithm that rely on key-points gained from
the difference of Gaussian function applied in scale space to a series of smoothed
and resampled images.

The difference of Gaussians (DoG) image of the original image I at (x, y)
and scale σ is defined as:

D(x, y, σ) = L(x, y, kiσ)− L(x, y, kjσ), (24)

where

L(x, y, kσ) = G(x, y, kσ) ∗ I(x, y) (25)

is the convolution of image I with Gaussian function G.
The local extremes within the DoG image D are candidate key-points. From

this candidate key-points, the points that are located on edges and within low-
contrast areas are discarded.

After that, to each key-point, the orientation θ and magnitude m are as-
signed:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (26)
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θ(x, y) = atan2((L(x+ 1, y)− L(x− 1, y), (L(x, y + 1)− L(x, y − 1)) (27)

The resulting descriptor for each key-point is a feature vector created in
the following way: The 4× 4 sample regions rotated according to the key-point
orientation θ is created around the key-point. Each subregion consist of 4 × 4
pixels. The histogram with 8 bins of intensity gradients is calculated within
each subregion. This yields to the 4 ·4 ·8 = 128 element feature vector. In order
to decrease the effect of local lighting conditions, the feature vector is scaled to
the unit length.

Figure 4: A key-point descriptor is created by first computing the gradient mag-
nitude and orientation at each image sample point in a region around the key-
point location (left). These are weighted by a Gaussian window, indicated by
the overlaid circle. These samples are then accumulated into orientation his-
tograms summarizing the contents over 4x4 subregions, as shown on the right,
with the length of each arrow corresponding to the sum of the gradient magni-
tudes near that direction within the region. [13]

The matching between descriptors obtained from the images from the train-
ing set and descriptors obtained from the current image is provided by approx-
imate Best-Bin-First (BBF) algorithm, although other variations derived from
the search within k-d tree may be also used [14].

SIFT imposes a large computational burden, especially for real-time systems
such as visual odometry, or for low-power devices such as cellphones. There has
also been research aimed at speeding up the computation of SIFT, most notably
with GPU devices [18]. Another improvement has been reported in [10], where
the dimensionality reduction of the resulting descriptor has been applied.

3.3.2 Speed-Up Robust Features (SURF)

Although the SIFT algorithm is able to detect descriptors in scale and rota-
tion invariant manner, the computation complexity is much higher than with
the Viola-Jones algorithm. The SURF algorithm [1] is able to locate high
distinctive object descriptors with lower computation cost. The diagram of
the computation of SURF descriptors is in Figure 5.
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Input image Integral image Hessian-based key-point detector Descriptor

Figure 5: The flow diagram of descriptor computation with SURF algorithm.

Given a point x = (x, y) in an image I, the Hessian matrix H(x, σ) in x at
scale σ is defined as follows:

H(x, σ) =

[
Lxx(x, σ) Lxy(x, σ)
Lxy(x, σ) Lyy(x, σ)

]
(28)

where Lxx(x, σ) is the convolution of the Gaussian second order derivative
with the image I in point x. In order to speed-up the calculation of the Hessian
matrix, the approximation for second order Gaussian partial derivatives are
used. See Figure 6.

Figure 6: Left to right: The (discretised and cropped) Gaussian second order
partial derivative in y (Lyy) and xy-direction (Lxy ), respectively; The ap-
proximation for the second order Gaussian partial derivative in y (Dyy) and
xy-direction (Dxy). The grey regions are equal to zero [1].

Additionally, rather than using a pyramid scale of images, the approxima-
tions of multiple-scaled Gaussian partial derivatives with single precomputed
integral image is used. The points of interest are then located as the local
maximums of the determinant of the Hessian matrix.

The assignment of orientation to the located points of interest is achieved by
the dominant orientation of the Gaussian weighted Haar wavelet responses at
every sample point within a circular neighbourhood. See Figure 7 for example of
Haar wavelet filters and Figure 8 for the example of calculation of the dominant
Haar wavelet response.

Figure 7: Haar wavelet filters that compute the responses in x (left) and y
direction (right). The dark parts have weight -1 and the light parts +1 [1].

In some application, the calculation of the orientation is not necessary.
The variation of the SURF algorithm without the orientation assignment of
orientation is called upright SURF (U-SURF) [2].

11



Figure 8: Orientation assignment: a sliding orientation window detects the dom-
inant orientation of the Gaussian weighted Haar wavelet responses at every
sample point within a circular neighbourhood around the interest point [1].

In the following text, dx is the Haar wavelet response in horizontal direc-
tion and dy is the Haar wavelet response in vertical direction. The relatively
rotated square region around key-point is divided into 4×4 square regions. In
each subregion that consist of 5×5 pixels the Haar responses are calculated.
The resulting descriptor is build from the sums of dx and dy. See Figure 9.

Figure 9: An oriented quadratic grid with 4×4 square sub-regions is laid over
the interest point (left). For each square, the wavelet responses are computed
from 5×5 samples (for illustrative purposes, only 2×2 sub-divisions are shown
here). For each field, the sums dx, |dx|; dy, and |dy| are collected, computed
relatively to the orientation of the grid (right) [1].

3.3.3 ORB

Rublee [17] proposed a very fast binary descriptor based on BRIEF [4], called
ORB. For key-point detection, the FAST corner detector is used [16]. The BRIEF
descriptor is a bit string description of an image patch constructed from a set
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of binary intensity tests τ of path p at point x:

τ(p,x,y) =

{
1 : p(x) < p(y)
0 : p(x) ≥ p(y)

(29)

Choosing a set of n (x,y)-location pairs uniquely defines a set of binary tests.
The n element feature vector is defined as a set of n binary tests:

fn(p) =

n∑
i=1

2i−1τ(p,xi,yi) (30)

The set of binary tests defines 2× n matrix S:

S =

(
x1 x2 . . . xn
y1 y2 . . . xn

)
(31)

The rotation θ and corresponding rotation matrix Rθ of the corner detected
by FAST is measured using the intensity centroid [15]. The steered version of
matrix S is:

Sθ = RθS (32)

and the steered BRIEF operator gn becomes:

gn(p, θ) = fn(p)|(xi,yi) ∈ Sθ (33)

3.3.4 Histogram of Oriented Gradients

Histogram of oriented gradients (HOG) are feature descriptors reminiscent to
edge orientation histograms, SIFT descriptors and shape contexts, but they are
computed on a dense grid of uniformly spaced cells and they use overlapping
local contrast normalizations for improved performance [6]. Object appearance
and shape within an image can be described by the distribution of intensity
gradients or edge directions. The implementation of these descriptors can be
achieved by dividing the image into small connected regions, called cells, and
for each cell compiling a histogram of gradient directions or edge orientations
for the pixels within the cell.

The HOG computation can be divided to the following steps:

1. Color and gamma normalization: In fact, this step can be omitted
in HOG descriptor computation, as the ensuing descriptor normalization
essentially achieves the same result.

2. Gradient computation: the computation of the gradient values is achieved
by applying the 1-D centered, point discrete derivative mask in one or
both of the horizontal and vertical directions. In other words, the color or
intensity data of the image is convolved with the following filter kernels:

[1, 0,−1] and [1, 0,−1]T (34)
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Figure 10: HOG computation. From left to right: Mean image of computed
gradients from the training set; input probe image; calculated HOG descrip-
tor. [6]

3. Histogram binning: The next step involves creating the cell histograms.
Each pixel within the cell casts a vote for the resulting orientation his-
togram. The histogram channels are evenly spread over 0 to 180 degrees
or 0 to 360 degrees, depending on whether the gradient is ,,unsigned”
or ,,signed”. Unsigned gradients used in conjunction with 9 histogram
channels performed best in their human detection experiments [6].

4. Descriptor calculation: In order to account for changes in illumination
and contrast, the gradient strengths must be locally normalized, which re-
quires grouping the cells together into larger, spatially connected blocks.
The HOG descriptor is then the vector of the components of the normal-
ized cell histograms from all of the block regions. These blocks typically
overlap, meaning that each cell contributes more than once to the final
descriptor.

5. Histogram normalization: Let v be the non-normalized vector contain-
ing all histograms in a given block, ‖v‖ is the Euclidean norm and e be
some small constant. The L2-norm is then:

f =
v√

‖v‖2 + e2
(35)

6. SVM classification The final step is to feed the descriptors into some
recognition system based on supervised learning. Support Vector Ma-
chine (SVM) classifier is used for this purpose. Once trained on images
containing some particular object, the SVM classifier can make decisions
regarding the presence of an object, such as a human being, in additional
test images.

4 Experiments

The experiments were conducted on the dataset consisting of 26 individual video
files. First ten videos were captured at Faculty of Information Technology, Brno
University of Technology1. Individual recordings contains persons walking in the

1http://www.fit.vutbr.cz/.en

14



hallways, in front of the building and coming out from the building. Some of
them are equipped with gun replicas (knifes, handguns and rifles).

Another 16 videos were captured at University of Defence, Brno in coopera-
tion with Department of Weapons and Ammunition at University of Defence2.
Several scenarios were used when the videos were captured. In each shot, some
subjects are equipped with weapons. Civilians are also present beside soldiers.
The following scenarios were captured:

• Individuals walk in a corridor. There is approximately 2 meters gap be-
tween them.

• Subjects walk in a corridor in groups consisting of 2 to 4 persons.

• Subjects walk the stairs.

• Subjects walk in front of the building as individuals and in small groups.

• Subjects walk in front of the building towards the camera.

4.1 Motion Detection

The simple motion detection employing the background subtraction technique
(see section 2.1) was evaluated first. The result of motion detection is in Fig-
ure 11. The main problem of the simple background extraction approach is the
requirement of establishing proper decision threshold. In the worst case, the
threshold should be manually set for each video.

Figure 11: Masked areas of video frame where the motion using background
subtraction technique was detected

The disadvantage of the user-defined threshold may be solved with the in-
volvement of the edge detector algorithm. Our experiments shown that the best
results were achieved with the Sobel operator [7]. The process of background-
subtraction-based motion detection using Sobel oparator is in Figure 12.

2http://www.unob.cz/en/fmt/structure/k201/Pages/default.aspx
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Figure 12: Motion detection using background subtraction applied on individ-
ual frames with Sobel Operator. From left to right: input frame It, applied
Sobel operator, mean of frames It−1, . . . , It−n, difference between It and the
mean, morphological closure applied on the difference image, masked regions
containing movement.

It has emerged that the motion detection based on optical flow estimation
brings only poor results. However, the optical flow is a good choice for tracking
points of interests in the video. See Figure 13.

4.2 Gun Detection and Tracking

Our next experiment involves utilisation of several aforementioned algorithms.
We are using HOG-based pedestrian detection (see Section 3.3.4) that marks
regions containing persons - either solders ans civilians.

Template matching (Section 3.1) within the regions selected by the HOG
detector is used for weapon detection and localisation. Due to the very big
intra-class variability of various guns, template matcher is searching for specific
hand gesture when the subject is holding a gun – see Figure 14.

We are using normalized correlation coefficient metric (Equation 11) for
measuring the distance between template and candidate image patch. In order
to reduce false alarm rate, the required correlation coefficient threshold has
been set to 0.9. However, this yields to lower detection rates – the gun-holding
gesture is not detected in all frames. Therefore, when the gun is not detected at
point where it was in last frame, optical flow (Section 2.2) is used for estimation
of the gun movement.

Some results from the gun detection and tracking expriments are in Figures
15, 16, and 17. Subjects detected with pedestrian HOG detector are marked
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Figure 13: Tracking of selected points of interest and their trajectory.

Figure 14: Templates used for detection of gun-holding gesture.

with green rectangle. The red circle denotes a point where the template matcher
located hand-holding gesture. The small yellow circle shows the result of track-
ing a point where the gun was previously detected.

5 Conclusion

This report briefly introduced a key concepts of motion and object detection. We
have evaluated some of described algorithms on our testing dataset. The motion
detection based on background subtraction as well as the enhancements utilizing
Sobel operator or mixture of Gaussians were tested.

The pedestrian detection based on the histogram of oriented gradients and
subsequent SVM classifier were used in conjunction with template matcher and
Lukas-Kanade optical flow estimator for gun detection and tracking.

Probably the most weak part of the gun detection and tracking pipeline
is the template matcher. Although our experiments show that the correlation
coefficient (Equation 11) outperforms other similarity metrics (see Equations 6,
7, 8, 9, and 10) used in template matching, the false alarms as well as detection
misses are still present.

In further works, detection relying on descriptors (see Section 3.3) will be
evaluated.
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Figure 15: Although the subject on the right side of the image was not detected,
previously detected gun is correctly tracked.

Figure 16: The gun of the soldier
on the left hand side of the image
was previously detected. The civil-
ian has no gun.

Figure 17: False detection of hand-
holding gesture in one of previous
frames for soldier in the center of
the image.
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