
VideoTerror demonstrator
Event-based Video Analytic Tool (EVIDANT)

Technical Report - FIT - VG20102015006 - 2015 – 02

Ing. Vı́tězslav Beran, Ph.D.
Ing. Michal Kapinus

Ing. Lukáš Klicnar
Ing. Zdeněk Materna

Ing. Michal Hradǐs,Ph.D.
Ing. Vojtěch Fröml

Ing. Tomáš Volf
Ing. Štěpán Mráček

Doc. Ing. Jaroslav Zendulka, CSc.
prof. Dr. Ing. Pavel Zemčı́k

Faculty of Information Technology, Brno University of Technology

August 30, 2015

Abstract

Event-based Video Analytic Tool (EVIDANT) demonstrates the video-
processing methods developed in VideoTerror project and enables the user
to effectively browse interesting events automatically detected in video
sequences. The functional video-processing modules integrated in EVI-
DANT are: Video-Summarizer, Activity-Detector, Face-Tracker, People-
Tracker, Video-Comparator and Scene-Classifier. The system workload
is divided into two parts: video-processing and event-browsing. After
the user prepares video-dataset for further analysis and configures func-
tional modules, the video-processing phase executes time-consuming com-
putationally expensive methods of selected modules. Depending on the
amount and length of videos in the dataset, video-processing phase may
take longer time (from hours to days). When the video-dataset is pro-
cessed, the event-browser provides the user with effective graphical user
interface to browse, filter, select, comment and export the detected inter-
esting events. The integration of developed functional modules is based
on VTAPI and VTServer implementing data-storage and task processing
control mechanisms. The EVIDANT is implemented as the client-server
web application.

1

Contents

1 Introduction 3

2 Design process 5
2.1 Double Diamond Design . 5
2.2 Discover phase . 5
2.3 Define phase . 8
2.4 Develop phase . 9
2.5 Deliver phase . 10

3 Demonstrator concept 12
3.1 System architecture . 12
3.2 VTServer and VTAPI . 13
3.3 Web-based client-server application 16

4 Video-processing modules 19
4.1 Video-Summarizer . 19
4.2 Activity-Detector . 20
4.3 Face-Tracker . 21
4.4 People-Tracker . 22
4.5 Video-Comparator . 24
4.6 Video-Type classifier . 26

5 Event-based Video Analytic Tool 28
5.1 Project management . 28
5.2 Event browser . 29
5.3 Filtering . 33
5.4 Events of Interest . 34
5.5 Export and report . 34

6 Conclusion 36

2

1 Introduction

The VideoTerror project was focused on development of image and video
processing methods and tools. Several methods have been developed and im-
plemented in the project. (e. g. video summarization or face tracking) together
with a framework VTAPI (VideoTerror Application Programming Interface) for
data and processing modules management. A data storage, which is accessed
via VTAPI, contains raw image and video data, metadata related to and/or ex-
tracted from this data by processing modules and can also contain some other
analytical results obtained by processing modules. Such a way, VTAPI sup-
ports and simplifies not only simple image and video applications and process-
ing modules development, but also development of more complex image and
video processing systems with many processing modules and a sophisticated
GUI allowing effective work of the end users.

No matter of the fact that the main objective of the project was develop-
ment of methods and, in some cases, also simple applications demonstrating the
methods’ functionality, we have decided to implement a more advanced demon-
strator integrating some of the methods developed in the project in order to
show their potential and the potential of VTAPI better, especially if they are
used for analytical purposes. As a result, we have developed a demonstration
tool called EVIDANT (Event-based Video Analytic Tool), which is described in
this technical report.

During its development we employed consultations with detectives of the
Police of the Czech Republic. Based on their requirements, some interesting
situations occurring in image and video data were specified and appropriate
methods developed in the project have been adapted and implemented as pro-
cessing modules into the tool.

3

The EVIDANT tool aims to enable the user to select images and videos
and a module for their processing. After the data was processed, the user can
effectively browse the events of interest in a these images and videos, make notes
to selected events or select events for export. The tool also allows preparing a
summary video material or a text report for sharing or printing.

This technical report is structured as follows. Chapter 2 describes the design
process applied in EVIDANT development. The general view of the demonstra-
tor concept is presented in Chapter 3. Modules included in EVIDANT are
briefly described in Chapter 4. Chapter 5 contains information related to the
graphical user interface of EVIDANT, including workflow and good practises
presentation. components and their usage.

4

2 Design process

The goal of the EVIDANT demonstrator is to apply the scientific results of the
VideoTerror project to efficient tool for the end-users. We used Double Diamond
Design1 methodology to design and develop the EVIDANT application concept
and its graphical user interface.

2.1 Double Diamond Design

The model presents four main stages across two adjacent diamonds. As illus-
trated in the Double Diamond model’s first diamond (see Figure 1), the prob-
lematisation and understanding of a problem are equally important. Each of the
four stages is characterised by either convergent or divergent thinking. These
stages are:

• Discover –identify, research and understand the initial problem.

• Define – limit and define a clear problem to be solved.

• Develop – focus on and develop a solution.

• Deliver – test and evaluate, ready the concept for production and launch.

Figure 1: Double Diamond Design methodology.

2.2 Discover phase

Usually the starting point for most projects is a preliminary idea or inspiration.
The discover phase is characterized by divergent thinking as a team opens a
solution space and investigate a broad range of ideas and opportunities. During

1http://www.designcouncil.org.uk

5

the presentations of developed video-processing technologies to potential users,
many qualitative interviews a discussions in focused groups, dozens of ideas
have been gathered. Further, more ideas has been summed up based on the
research of existing tools and solutions, and expectations from state-of-the-art
technology knowledge.

The usual and most required task, when analyzing larger set of long video
recordings (e.g. from surveillance or monitoring systems), is to detect video
parts where some interesting event occurs. The problem is that the informa-
tion value of particular video part is usually application-specific and is hardly
possible to define interesting events generally.

We organized personal interviews with detectives from the Police of the
Czech Republic and defined the domain of the demonstrator. The definition of
interesting events is based on assumption that recording come from surveillance
or monitoring systems of public spaces (example of presented ideas are shown
on Figure 2). Besides this scenario, two additional use-cases and requirements
have been discussed. When a large set of videos of unknown domain needs to
be analyzed, the important ability of the system is to automatically recognize,
what scene types occurs in the dataset. The second specific task is to compare
the query video to the video dataset; i.e. determine whether any part already
exists in one of the recordings in video dataset.

Figure 2: Examples of developed video-processing technologies.

Based on introduced requirements, we defined list of interesting events, that
the system should be able to detect for further analysis. Interesting events are

6

video parts, where some of the following object appears or situation occurs:

• face, person, people,

• any type of activity or temporal changes,

• locally distinctive changes or movements,

• specific scenario type,

• similar (or dissimilar) video content to given input video.

Besides the interesting events specification, the interviews revealed the re-
quirements for efficient interaction with the application leading to effective
browsing, navigation and manipulation with automatically detected results.
The application should provide the user with following functionality:

• navigate in the video dataset and replay selected video,

• browse through detected interesting events,

• tune the quality and quantity of detected interesting events,

• filter the detected events by various parameters (date and time range,
duration, spatial location in video frame etc.),

• select, edit and add comments to particular interesting events,

• export selected interesting events in the form of text report or video ma-
terial,

• partly anonymize the exported video parts.

Last but not least, the useful application should provide additional functions
to efficiently manage the analytical work:

• organize work into private projects,

• organize videos into groups according to various criteria, e.g. location of
recording device,

• store additional information to project, groups and videos, e.g. date, time
and location of the recordings, notes etc.

• configure detection modules for each group separately, and

• keeps track of user settings and activities.

Gathered requirements formed the definition of frequent and important tasks,
refined the adaptation of the image and video processing methods to functional
modules, specified the extension of VTAPI and VTServer services, lead the de-
sign of GUI layouts and mock-ups and helped to prepare and verify the UI
testing and evaluation.

7

2.3 Define phase

This stage involves the evaluation and selection of ideas. Discover stage results
are analysed, developed and detailed, while ideas for solutions are prototyped
and pitched. We focused on making sense of all the possibilities identified in
previous phase, resulted with a clear list of requirements and user processes.

The EVIDANT is designed to reflect the contradictory user requirements; to
browse and manage the video-processing results in interactive and efficient
way and to process large amount of video materials. Depending on the
image or video processing method complexity and also on the video sequence
length, the time to process a single video-sequence may vary from minutes to
hours.

Time-efficient video event detection is achieved by splitting the process into
two phases. Computationally expensive video processing methods are exe-
cuted in advance to less expensive and faster event detection phase. Designed
concept allows efficiently repeat the event detection phase with various parame-
ters and analyze different results without re-execution of video-processing phase.
The work-flow of the concept is in Figure 3.

During the Define phase, we pointed out following main requirements that
had the most influence on user interface design of the project management. User
should be able to quickly and easily:

• upload multiple videos, add some detailed information about videos, delete
or add new videos (even if some videos are already processed),

• configure functional modules differently for several groups of videos,

• minimize data that must be recomputed when something in project is
changed,

• not have to care about video processing progress, just receive a notification
e-mail when it is done.

The second part of the application is the interface for detected event analysis
itself, which serves for browsing events and making a final report from them.
The user interface was designed with preference to:

• browse events, be able to instantly fine-tune modules parameters,

• filter events and sort events, to be able to quickly find important ones,

• select events for final report, edit them, add some detailed information,

• generate report and video composition with events of interest and added
description.

Figure 3 shows two main phases of the entire process that determines the
design of functional blocks implementing the detection methods. Each image
or video data processing method integrated into the EVIDANT system is also
divided into two parts: pre-processing the image or video data, and detection of
specified image or video events (objects, scene classes, object trajectories etc.).

8

Figure 3: Work-flow of the typical application usage.

2.4 Develop phase

During the Develop stage, one or more of the concepts is developed further.
Design methods deployed during this stage include brainstorming, visualization,
prototyping, testing and scenario development. The methods resemble those
from the Define stage, but focus more on realization.

Based on the outputs from Define phase, analysis of the user requirements,
the following functional blocks has been defined, both for pre-processing and
detection phases:

• Activity - activity detector based on temporal changes (Sec. 4.2),

• Summary - compact video-parts with changing image content and con-
strained by required maximal length of final video (Sec. 4.1),

• Face - face detection and tracking (Sec. 4.3),

• People - people detection and tracking (Sec. 4.4),

• Matcher - block comparing the image content of query video with record-
ings in video dataset (Sec. 4.5), and

• VideoType - classification of the scenes by visual content (Sec. 4.6).

The technical description of designed modules, its interfaces and imple-
mented methods are presented in details in Section 4. The integration and
user interaction with those modules are described in Section 3.3.

9

As the application name suggests, the video content analysis itself is based
on detected events. The events are the fundamental elements for the user
to work with. The developed modules are therefore designed and modified to
provide results of their processing as video events. The event is generally defined
as the particular part of the video (in spatial and temporal domain) and may
contain some augmenting information (class type, score etc.).

During the Develop phase, we designed and prepared blueprints and mock-
ups of the fundamental GUI components (see examples on Figure 4 and 5. The
main frames, layouts and components have been also implemented in prelimi-
nary stage (see Sec. 3.3 for details) and connected to VTServer.

Figure 4: The mock-up of the project management screen.

The EVIDANT demonstrator development introduced couple of new de-
mands to previosuly developed VTAPI and VTServer solutions, so the inter-
faces, functions and services have been adapted and extended to provide newly
required functionality (see Sec. 3.2 for the system overview and APIs).

2.5 Deliver phase

During the Deliver phase, the process revolves around the final concept, final
testing, production and launch. The product or service developed to solve a
specific problem during the Discovery stage has reached completion. Important
activities at this stage are: final testing, approval, launch and evaluation.

The developed concept has been presented to end-users. The experiment has
been divided into two parts. First, the users (3 detectives from the Police of the
Czech Republic) were provided with the tool and think-loud protocol was used

10

Figure 5: The mock-up of the browser of the detected events.

to capture the difficulties, misunderstandings or problems that user encounters
during the free tool usage. Second part was based on predefined tasks including
most of the fundamental functionality of the tool. Again the think-loud protocol
was used to gather the user feedback. Finally, the discussion in the focus group
took place to tune the requirements for finalization.

The final solution, the presented EVIDANT application (Section 5), is the
result of incorporated users’ feedback and comments.

11

3 Demonstrator concept

3.1 System architecture

The EVIDANT is an application based on VTServer and VTAPI solution (see
Section 3.2 for more details) and designed as client-server application using
web technologies. The client implements GUI to manage user projects and
video datasets, configure and control the functional blocks’ execution, analyze
detected video events and prepare graphical or textual reports. The client is
thin front-end of the web server application that implements data model for
user-specific data, database interface and application-dependent services. The
web-server video-processing services are connected to VTServer and provide the
EVIDANT processing functionality. Figure 6 shows system layers.

Figure 6: System architecture based VTServer and VTAPI layers.

VTServer is designed as a RPC server utilizing VTAPI abilities and adding
further controlling mechanisms and functionality. Its interface is defined using
Google Protocol Buffers and messages are passed through ZMQ2. Implemen-
tation is based on RPCZ library combining previously mentioned technologies,
having C++ and Python API. Overview of available methods is grouped into
subsets of the API servicing different stages of the event-detection process.

Brief overview of VTServer funcionality follows. Detailed technical specifi-
cation for all supported RPC methods may be found on project results server3

2distributed messaging; http://zeromq.org/
3http://vidte.fit.vutbr.cz/vtapi.html

12

• Dataset API services projects management phase of the work-flow. Its
methods allow user to create or manage datasets for specific projects.
Datasets encapsulate all project-related information - video metadata, de-
fined processing tasks, processing units, computed or otherwise processed
data and various metrics to query the event detection process and results.

• Videos API allows a user to load or delete video data to previously
created dataset.

• Processing tasks API provides methods for definition and querying the
processing tasks. Definition consists of selecting pre-installed computa-
tion method and specifying values of its input parameters. Prerequisite
processing task may also be specified to utilize its previously computed
outputs as inputs for the new task, thus allowing process-chaining (Video-
processing - Event-detection). During processing task creation, VTServer
automatically allocates necessary system resources for output data and
checks if all required inputs are available, notifying user of possible errors.
Created tasks may be queried for their progress or successfully completed
computing operations on certain videos.

• Processes API allows launching and control of system process instances
performing assigned processing tasks. Each process instance is assigned
previously defined processing task and a set of video data for which it
is responsible to complete the processing. Process parallelization is sup-
ported, multiple process instances responsible for same computation will
correctly prevent themselves from performing redundant work.

• Events API methods handle retrieving computed events - outputs of
Event-detection tasks. For faster analysis of events relevancy, it provides
built-in statistical and filtering functionality.

3.2 VTServer and VTAPI

VTAPI is a general application programming interface for video application de-
velopment. It can be used both for development of modules (computational
algorithms of processing methods), like previously mentioned modules for ac-
tivity detection, face tracking etc., or some other newly implemented ones, and
also for development of a complex background system, which launches the im-
plemented methods (here the VTServer). It is based on the open-source Post-
greSQL database system and provides developers with a specific functionality
enabling them to define and implement complex computational tasks without
worrying about certain implementation details (e.g. where and how to store
data).

Figure 7 shows major functionality provided by VTAPI and VTServer. They
support:

13

Figure 7: Overview of VTApi and VTServer usage.

• Management of video data and their metadata in a VTAPI storage (some
of metadata is automatically maintained by the VTAPI, for example de-
tection and storing framerate data of video).

• Implementation of video processing methods, the definition of their pa-
rameters, features/properties extracted from video.

• Definition of tasks for the execution of a given method by specifying the
values of its parameters and optionally another task the output of which
is to be used as input for execution. This allows task chaining.

• Task execution - each process processes the specified task together with
assigned data, the processes can run in parallel.

• Querying output data produced by tasks.

The most common scenario of the VTServer end-user client application typi-
cally includes the videos insertion/selection, the task definition, tasks execution
and querying steps. Other scenarios may include repeated execution of methods
with modified parameters, re-processing reduced set of videos etc.

Based on VTServer API, the work-flow example may be implemented as the
following procedure:

1. Add new dataset (project)

addDataset = call(’addDataset ’, {’name ’: test_dataset })

14

2. Add video to dataset

addVideo = call(’addVideo ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’filepath ’: test_video_path.mpg ,

’start_time ’: {’seconds ’: 1439734399 , ’nanos ’: 0}})

3. Define Video -processing task

addTask1 = call(’addTaskVideoProcessing ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’module ’:’people ’,

’params ’:[

{’type ’:’TP_FLOAT ’, ’name ’:’input_frame_scale ’ ,

’value_float ’:0.5} ,

{’type ’:’TP_FLOAT ’, ’name ’:’threshold ’ ,

’value_float ’:0.5}]})

4. Run Video -processing task

runProcess1 = call(’runProcess ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’video_ids ’: [addVideo[’video_id ’]],

’task_id ’: addTask1[’task_id ’]})

5. Get process state (this should be called

repeatedly in loop)

getProcessInfo1 = call(’getProcessInfo ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’process_ids ’: [runProcess1[’process_id ’]]})

6. Define Event -detection task

addTask2 =call(’addTaskEventDetection ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’module ’:module ,

’prereq_task_id ’: addTask1[’task_id ’],

’params ’:{’type ’:’TP_FLOAT ’, ’name ’:’min_duration ’ ,

’value_float ’:2.0}})

7. Run Event -detection task

runProcess2 = call(’runProcess ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’video_ids ’: [addVideo[’video_id ’]],

’task_id ’: addTask2[’task_id ’]})

8. Get process state (this should be called

repeatedly in loop)

getProcessInfo2 = call(’getProcessInfo ’, {

’dataset_id ’: addDataset[’dataset_id ’],

15

’process_ids ’: [runProcess2[’process_id ’]]})

9. Load detected events

getEventList = call(’getEventList ’, {

’dataset_id ’: addDataset[’dataset_id ’],

’task_id ’: addTask2[’task_id ’],

’video_ids ’:[addVideo[’video_id ’]]})

3.3 Web-based client-server application

This application provides a user-friendly graphical interface able to control set-
tings and processing of different modules, dealing with detected events and
creating of various reports from uploaded videos and detected events.

The application is based on Model-View-Controller design pattern and uses
a lot of open-source projects. The server is written in Python, using web frame-
work Django4. The PostgreSQL5 has been used as a database back-end, but
the application could be easily adapted to others database systems like sqlite,
MySQL and others. Gunicorn6 (Python WSGI HTTP Server for UNIX) had
been selected as a http server for our demo setup and the Nginx7 proxy server is
used for serving static files like JavaScript files, images, videos and so on. This
web server is acting like a layer between thin web client (which is described
below) and the VTServer (which is described above).

Application like this needs to store a lot of different data. It uses VTAPI to
store multimedia data like videos and to control processing of modules. Projects
and video metadata are stored in separated database independently on VTAPI.
Figure 8 shows selected parts of the entire E-R diagram with the most important
entities. Necessary information about the video recordings is stored; e.g. name,
identifier to VTServer, date and time of video acquisition etc. Application
settings for particular configuration of project, modules and video-groups are
also stored. Further, the detected events in VTAPI does not contain information
important for the user, so the application data model also includes metadata
for the GUI and the user like events selection, start and stop refinements, user
notes etc.

Web server provides various functions of these categories for the thin client:

• Project management: Functions for creating, deleting and managing
project. These functions uses Dataset API of VTServer for creating and
deleting datasets.

• Videos management: It allows the thin client to work with videos (up-
loading, deleting, meta-data settings etc.). Functions from this category

4https://www.djangoproject.com/
5http://www.postgresql.org/
6http://gunicorn.org/
7http://nginx.org/

16

Figure 8: Partial ER diagram of web-based client-server application

uses Videos API of VTServer to register video to VTApi database and
possibly to delete video from dataset and storage.

• Video groups management: This category provides function for man-
aging video groups. These groups are completely separated from VTApi
and they are handled only in EVIDANT.

• Modules processing: These functions allows client to control processing
of modules and getting info about this processing (like progress etc.). They
uses Processing tasks API and Process API of VTSever.

• Events management: It handles loading events from VTApi to client,
creating interest events for export and so on.

• Others: In this category are other functions needed by web client.

EVIDANT web client is implemented using modern HTML5 and CSS3-based
technologies. Twitter Bootstrap8 library is used for most of the standard GUI
elements, also jQuery9 and several jQuery-based libraries (for date and time

8http://getbootstrap.com/
9https://jquery.com/

17

pickers, dialogs, form validation, etc.) are involved. Live data updates and
communication with server are handled by asynchronous requests (AJAX tech-
nology) with JSON data structure. To achieve a most interactive experience,
web client also involves data caching.

18

4 Video-processing modules

Based on the designed concept of the video analytic tool and the user require-
ments, several developed methods have been selected and adapted to functional
video-processing modules. Usually, each functional block contains two modules:
one for video-processing and one for event detection. The event detection mod-
ules so contain as one of their mandatory inputs the one of the outputs of their
video-processing sibling. The presented demonstration solution does not allow
linkage of different modules.

4.1 Video-Summarizer

Video summarization is a process of creating a short video summary from a long
video sequence. Several properties are typically demanded, the summary should
be much shorter, and also contain every important parts or even contain only
the most important ones. Application-specific requirements follows: duration
of every part, continuity, preservation of time order, preference of certain types
of objects, or even more complex attributes.

The Video-Summarizer module is based on presented research [5] also re-
ported in details in project technical report [6]. Video processing is very straight-
forward, it consist of extracting descriptors from keyframes, which are dis-
tributed with constant, pre-configured period over the whole video sequence.
The descriptors are based on histogram of simple frame differences: Two con-
secutive frames are subtracted and resulting values are quantized into several
bins, which approximates the degree of video activity at given time.

Table 1: Video-Summarizer processing module.
type video-processing module

binary summarizer offline
params int keyframe freq 25 (1,MAX INT)
inputs string video name?? nebo ID??
outputs float[34] summfeatures
notes

• keyframe freq Set the keyframes sampling frequency.

Event detection process is based on differences between subsequent keyframes.
Using descriptors introduced in video processing part, frame differences are com-
puted, which results into activity estimation metric for the whole video sequence.
It is normalized, Gaussian smoothed and local minima are found. Summariza-
tion is then performed by picking fixed count of strongest local minima from not
yet included parts of video and exporting segments centered around this point,
also with fixed length. These segments directly equal events, only overlapping
or very close ones are merged together.

19

Table 2: Video-Summarizer event-detection module.
type event-detection module

binary summarizer online

params
float seg length 1.2 (1,MAX INT)
int seg count 10,(1,MAX INT)

inputs float[34] summfeatures
outputs list of events
notes

• seg length Set the extracted segments length.

• seg count Set the (maximal) count of extracted segments.

4.2 Activity-Detector

The Activity-Detector is able to find spatially-constrained regions in video,
where high importance is assumed. Since no general importance can be defined,
it is approximated with a degree of activity – spatiotemporal change of pixel
values of video frames. It may appear slightly similar to the Video-Summarizer,
which is also focused on finding video parts with high activity/importance, but
the Activity-Detector is designed to be sensitive to local activity (instead of
global video summarization). It is useful, if only part of the image is important,
for example when some place needs to be monitored.

Video processing is done by utilizing a OpenCV implementation of Gaussian
mixture model background subtraction (MOG2) algorithm [13]. It is very com-
putationally efficientt and performs also shadow detection. This results into a
frame mask for activity regions, which is then subject of a morphological closure
and contour-extraction algorithm. Its output is a collection of detected activity
regions, each characterized by mask and bounding box. Finally, tracking them
along multiple frame is done by a matching pairs of two overlapping activity
regions with highest F-measure. These are directly converted into events by
sampling their trajectory with a constant step between detected regions.

Table 3: Activity-Detector processing module.
type video-processing module

binary actdet offline

params

int keyframe freq 25 (1,MAX INT)
double min width 0.0 (0,1)
double min height 0.0 (0,1)
double max width 1.0 (0,1)
double max height 1.0 (0,1)

inputs video
outputs vtevent event off
notes

20

• keyframe freq Set the sampling frequency of the detected activity regions
trajectories.

• min (width/height) Set the relative minimal width or height of the de-
tected activity regions.

• max (width/height) Set the relative maximal width or height of the de-
tected activity regions.

Since the video processing produces events directly, following event detection
task is very simple – it involves only an another stage of event filtering. Meaning
of min., max. width and size parameters remains the same, but they should be
used more as a part of the analysis rather than activity noise suppression.

Table 4: Activity-Detector event-detection module.
type event-detection module

binary actdet online

params

double min width 0.0 (0,1)
double min height 0.0 (0,1)
double max width 1.0 (0,1)
double max height 1.0 (0,1)

inputs vtevent event off
outputs list of events
notes

4.3 Face-Tracker

The face detection and tracker module is able to localize and track faces in the
input video. The output of this module are trajectories of detected faces that can
be further processed, e.g. with blur function in order to prevent identification
of subjects.

The module consists of two parts – video processing and event detection. The
video processing portion is responsible for detection of faces using tree of stage
classifiers based on Haar-like features [8, 9]. In order to deal with frames when
false non-detects occur (i.e. the face is not detected), Lukas-Kanade method for
optical flow estimation is used [1].

• min size (x/y) Set the minimal size of the detected face region.

• max size (x/y) Set the maximal size of the detected face region.

• input frame scale Set the image scale prior to the face detection.

The event detection module serves as a simple filter that allows a user to
define the minimal length of trajectories.

21

Table 5: Face-Tracker processing module.
type video-processing module
binary face offline

params

int min size x (2, 16)
int min size y (2, 16)
int max size x (16, 96)
int max size y (16, 96)
double input frame scale (0.25, 1)

inputs video
outputs trajectories of faces
notes

Table 6: Face-Tracker event-detection module.
type event-detection module
binary face online

params double minimal duration (0.0, DBL MAX)
inputs trajectories of faces
outputs filtered trajectories of faces
notes

• minimal duration Set the minimal duration (in seconds) of the output
trajectories.

The example of the face detection module functionality is in Figure 9. First
two images in figure show arbitrary frames from the video with detected faces
labeled. The last black and white image shows trajectories of the faces move-
ment.

4.4 People-Tracker

The main task of the people tracker module is to detect and follow pedestrians
in the input video. The detection algorithm is based on the Histogram of Ori-
ented Gradients (HOG) and Support Vector Machines (SVM) binary classifier
[2, 10]. The video-processing part of the module is similar to the face-tracker –
it detects pedestrians and follows their movement using Lukas-Kanade optical
flow estimation. The second portion of the module (event-detector) serves as
a filter that allows user to select minimal duration of the output trajectories.
The detailed information about the video-processing part is in Table 7 and the
information related to the subsequent event-detection is in Table 8.

• threshold Set the detection threshold.

• input frame scale Set the image scale prior to the people detection.

22

Figure 9: Face detection module. Two example frames from the input video
and the resulting trajectories.

Table 7: People-Tracker processing module.
type video-processing module
binary people offline

params
double threshold (0, 1)
double input frame scale (0.25, 1)

inputs video
outputs trajectories of pedestrians
notes

Table 8: Face-Tracker event-detection module.
type event-detection module
binary people online

params double minimal duration (0.0, DBL MAX)

inputs trajectories of pedestrians
outputs filtered trajectories
notes

• minimal duration Set the minimal duration (in seconds) of the output
trajectories.

23

The example of people detection module functionality is in Figure 10. First
three images in figure show arbitrary frames from the video with detected people
labeled. The last black and white image shows trajectories of the pedestrians
movement.

Figure 10: People detection module. Three example frames from the input
video and the resulting trajectories.

4.5 Video-Comparator

The main task of the video comparison module is to detect and validate the
differences between two visually almost identical video sequences. In some cases,
even when two video sequences are declared as the identical, small differences
might appear and manual detection and validation of such video parts may
become extremely time consuming and unbearable. The example of video-pair
disruption with dissimilarity types is showed in Figure 4.5.

The Video-Comparator is based on adapted published approach [5] also pre-
sented in details in project technical report [4]. Video processing is done by
extracting global image features for all keyframes. These features are color-
histogram based, they are computed from frame subdivided into multiple over-
lapping regions and designed for efficient frames comparison. Keyframes are
equally distributed with constant interval, but also with addition of boundary
frames (e.g. where the video is cut) obtained by temporal analysis. This is done
by continuously computing the differences between several adjacent frames and

24

thresholding. Frame interval between two boundaries is called a segment, which
is also output of this module.

Table 9: Video-Comparator processing module.
type video-processing module

binary matcher offline
params int keyframe freq 25 (1,MAX INT)
inputs video

outputs
int segment id
uchar[1024] descriptor

notes

• keyframe freq Set the equally distributed keyframes frequence (maximal
distance between two consecutive keyframes in a same segment).

The event-detection module needs two video sequences – reference and query
– and the procedure starts with computing a so called similarity matrix. Its rows
represent keyframes from a reference sequence VR, columns equals to keyframes
from a query sequence, and its elements are obtained as a metric of similarity
between the two corresponding frames. Detection of differences/similarities is
done utilizing the Needleman–Wunsch algorithm for aligning two sequences,
which can also be understood as finding an optimal path on a similarity matrix.
This path is then segmented and the resulting parts are classified into several
types of video disruptions.

Table 10: Video-Comparator event-detection module.
type event-detection module

binary matcher online

params
string ref seq
float sensitivity 0.5 (0,1)

inputs keyframes (segments) and its descriptors
outputs list of events
notes

25

• ref seq Set the video sequence for base of the comparison.

• sensitivity Set the comparison sensitivity, adding value increases amount
of detected changes, but some of them may be false alarms.

4.6 Video-Type classifier

This module extracts high-level semantic information from videos and uses it
to provide efficient search and navigation. The semantic information which
can be extracted includes what types of objects are present in the video (cars,
animals, buildings, ...), what type of scene is depicted (pub, mountains, street,
stadium, ...), and possibly other similar content descriptions. After the semantic
information is extracted from videos, the content can be filtered in real time by
the desired content type.

The semantic information is extracted using convolutional neural networks
which are the state-of-the-art in many video recognition tasks including object
detection [3], scene classification [12], and facial recognition [11]. We applied
the technology developed in this project to the classification and localization
task of ImageNet Large Scale Recognition Challenge 201410 and presented it at
ECCV 2014 conference11.

The module consists of an off-line general engine which is able to efficiently
compute convolutional neural networks on the video content. These networks
take video frames as input and they output probabilities of the relevant content
types. The off-line engine can work with large range of networks many of which
are publicly available e.g. at Model Zoo12. The relevant publicly available
networks can detect objects types and classify scene types. Additional networks
can be trained for custom content types on demand.

Table 11: Video-Type processing module.
type video-processing module

binary videotype offline
params int keyframe freq 25 (1,MAX INT)
inputs video
outputs float[N] score
notes

• keyframe freq Set the equally distributed keyframes frequence (maximal
distance between two consecutive keyframes in a same segment).

• N is the actual number of trained classes.

10http://www.image-net.org/challenges/LSVRC/2014/results
11http://www.image-net.org/challenges/LSVRC/2014/eccv2014
12https://github.com/BVLC/caffe/wiki/Model-Zoo

26

The event-detection module uses scores and selected classes by user for each
keyframe, executed the flowing window analysis and detects then such video
parts where some of the detected scene classes are significantly stable and high-
scored. Each such video-part with stable scene classification and high score is
detected as result event.

Table 12: Video-Type event-detection module.
type event-detection module

binary videotype online

params
double minimal duration (0.0, DBL MAX)
int[M] selected class id

inputs float[N] score
outputs list of events
notes

• minimal duration Set the minimal duration (in seconds) of the output
event.

• selected class id List of classes selected by the user to be used by event
detection.

27

5 Event-based Video Analytic Tool

This chapter presents the EVIDANT graphical user interface: the application
important parts, its main interaction components, user frequent tasks and pro-
cesses. Besides the key UI components developed for the needs of the EVI-
DANT, the workflow and good-practices are presented.

5.1 Project management

Every project consists of three main components that can be (or have to be)
set by the user: Data for analysis (video sequences), processing modules with
their configuration and additional project data (description, author name, e-
mail for notifications, etc.). After creating an empty project, user usually wants
to add data for processing, since the purpose of this application is to analyze
them. Video sequences are uploaded and normalized at server and since it is
not instant operation, the progress is visualized by progress bar. To be able to
use some functions (for example filtering events by real-world date and time),
user can enter video capture date and time. Also, some additional data can be
added, such as detailed description, etc. Basic layout of project management is
shown in Fig. 11, it consists of several controls blocks:

• List of videos allows user to selected a single video group and upload its
videos. Since the videos must be preprocessed at the server side first,
progress is signalized by a progress bar. Of course, they can be deleted.
By clicking on a video item, it is selected and can be edited with a controls
in the current video controls block (described later).

• Current group controls are used for adding or editing details of current
groups of videos (name and description) and primarily, for starting video
processing of current group. When started, the process button turns into
a stop button, which allows cancelling the current processing.

• Current video controls are used for adding or editing details of selected
video (name, capture date and description).

• Settings of video processing modules displays all modules installed in EV-
IDANT, several (or all) of them can be checked and applied. Of course,
various module parameters can be set before hitting the start button. Af-
ter that, progress is signalized for every module independently and a green
tick appears when the processing is done.

• Main toolbar – common for the entire user interface – is used for changing
modes (settings, player) and manipulation with project (edit details, close,
delete).

During user testing, following requirement arose: to set different parameters
of video processing modules for different video sets (for example, when having
videos from several locations or viewing distances). It can be easily achieved

28

Figure 11: Layout of project management.

with the video groups functionality – videos can be uploaded into several groups
and the actual module settings are independent for each one. For a better ori-
entation, groups can be named and have aditional data assigned. After data
preparation at the server side is done, video processing can be started. De-
pending on current video analysis task, user can select one or more processing
modules and set their parameters for every group of videos independently. Also
the video processing is started for every group separately, which enables user
e.g. to browse events from one group of videos, while the other groups are still
being processed and not ready yet for browsing events. Example of possible
video processing states is shown in Fig. 12. Since video processing can possibly
take a large amount of time, a notification e-mail address can be associated with
the project.

5.2 Event browser

Event browser is the main part of EVIDANT. It is used for the actual video
content analysis – mainly visualizing events and performing various operations
with them. The user interface consists of several parts arranged according to
workflow described in Sec. 2.3. User can select video for browsing using the
video-selector component on the left side, which also offers various sorting op-
tions. When working only with a limited set of videos, it is possible to apply
a filter to display one or several video groups. Another useful functionality is

29

Figure 12: Video processing modules: (a) Module can be selected and its param-
eters changed, (b) Progress of running process is shown, it can also be stopped,
(c) Video processing is done, changing parameters is possible only after unlock-
ing module with [change settings].

marking video as ”already seen”, immediately telling the user which videos are
already analyzed and which of them have to be inspected yet. This can be
helpful when work has to be interrupted and continued later. Basic layout of
event browser is shown in Fig. 13:

• List of videos contains videos of the current project. Only videos from
selected groups are shown, they can also be sorted by several criteria
(name, group, already seen flag, events count, events coverage). Besides
video name, group and thumbnail, every item contains a checkbox, which
sets the already seen flag, signalizing that user has completed its analysis.
Also basic statistics are shown, indicating events count and coverage for
current module and video sequence. By clicking on a video item, it is
selected, video is loaded in the video player and its events are displayed.

• Modules settings is used for selecting current module and for setting its
parameters. It consists of tabs for all modules, a single one is selected
by clicking on it, which means that events for this module are displayed.
Current module parameters can be changed, recomputing events is done
by clicking at the update button. Also, auto update can be checked, new
parameters are then automatically sent to the server, immediately after
they were changed. If the ”draw events” checkbox is checked, events are
also visualized as a video overlay.

• Filter controls offers several events filtering criteria. Events are filtered
and updated immediately after changing some of the filter parameters.

30

User interface indicates, which filter is active, and also provides a controls
for reseting them to default value. Filtering by region of interest (ROI) is
done easily by drawing a rectangle mask on the video overlay.

• Video player plays current video and provides basic controls for start-
ing/stopping video playback, stepping by a minor amount of time and
skipping events. Also, events with spatial data are visualized with their
trajectories and bounding boxes.

• Timelines displays events of every module enabled in current project for
current video. First timeline shows events of interest, the other ones are
for visualization of events detected by particular modules. For better
orientation, modules are color-coded. One event can be selected as current
by clicking on it, which means it is highlighted through the entire user
interface and also selected in the events list.

• List of events contains all events for current module and current video. It
shows basic informations (position, duration, type, score, thumbnail, etc.)
and provides controls for copying events to events of interest collection and
manipulation with them. The list can be also sorted by several criteria.
At the bottom, simple statistics are displayed – count and total length of
all and selected events.

• Exporting and reporting controls are used for generating a text report
and a video summary of selected events of interest. The report button
opens a new browser window with document reporting selected events.
Generating a export video is not instant operation – by clicking on the
particular button, the generation process is started and its progress is
shown. When it is done, a notification is displayed and the exported
video may be downloaded.

The video analysis consists of browsing events detected by selected event-
detection module in current video sequence. Unlike the video processing de-
scribed in Sec. 2.3, event detection is instant, which – also with simple statistics
(event count and coverage for every video) – helps to quickly decide how to
fine-tune parameters. It is important to note, that the previous events (ob-
tained with previous module parameters) are lost and replaced with the new
ones, when parameters are changed and results of some module are recomputed.
By selecting a video and an event-detection module, events for this combination
are visualized in three main components of the EVIDANT user interface (see
Fig. 14):

• Video player with overlay visualization of events with spatial data (for
example tracking of a person)

• Event timeline

• Event list

31

Figure 13: Layout of events browser.

Figure 14: Several components of event browser interface.

Video player is the center of the browser interface, it offers basic functionality
as video playing, seeking to desired time, stepping to next frame, etc. If user
wants to view events one by one, a ”skip to next or previous event” function can

32

be used. Events from all modules are displayed on several timelines, which can
also be used for navigating in current video sequence. More detailed description
of events from currently selected module is shown in the event list, for example:
start and end position, duration, type, detection score, etc. It can be also sorted
by various criteria. For better orientation, when a user wants to focus on a single
event, it can be marked as current by clicking on this event at timeline (or event
list described later). It is then highlighted in the whole user interface and also
the video sequence can be instantly seeked to this event beginning.

5.3 Filtering

When searching for a specific events, a filtering interface is available. Displayed
events and statistics (count and coverage) are updated instantly when some filter
parameter is changed. Multiple filtering options can be applied (user interface
is shown in Fig. 15):

• Date and time range – can be used to point out the important part of the
whole video, only events from selected time range will be shown.

• Daytime period – if video time range extends to multiple days, only activ-
ity e.g. at 7:00-9:00 AM every day may be important. It can be reflected
using this filter.

• Duration – for example, to select only ”strong” events, minimal (or max-
imal) event length can be constrained.

• Region of interest – user can highlight some important area on the image
(e. g. space around a door, some guarded item, etc.), only events passing
this region will be retrieved.

Figure 15: Various event filtering options.

33

5.4 Events of Interest

Many events can be detected in analyzed videos, but only some of them may
be important for a current task. These are called ”events of interest” (EoI)
and their importance consists in being a source for final report and exported
video summary. They are always based on ”general” events produced by event-
detection modules, created by duplicating them. User can mark some event
as important, which results in creating a copy of this event, that is afterwards
treated independently from the source module. Also some extended functional-
ity can be applied (see Fig. 16):

• A commentary can be added (it is also displayed in final report).

• Start and end position in time can be adjusted.

• Event can be selected for export/report.

• Event can be deleted.

Because EoI are no longer attached to their source modules, they are pre-
served even when event detection is reapplied with different parameters and the
base events are lost. Events of interest are stable and they can be deleted only at
user request. Also, creating several slightly different reports may be demanded,
which is easily possible by another property of EoI – they must be checked to
be included in the report. Multiple reports are then quickly made by checking
different events for each one of them.

Figure 16: Events of interest controls: Any general event can be copied to
EoI, additional controls are then available. Dialogs for adding commentary and
editing EoI are shown on the right.

5.5 Export and report

The text report is generated as a printer-friendly HTML page. It contains name
of the project, information about its author, project and report creation date.

34

There is a list of modules used for detection of selected events. For each module,
there is its description and list of videos with events. The event is specified by
its start and end time and optionally by a user-entered comment.

To generate a video-summary, the user selects one video from the video list
and then presses export button. The video-summary will include all EoI for
the selected video. For each event the summary contains 10 second information
slide (see Fig. 17) and respective part of the video which length is variable.
The information slide contains project, group and video name and description,
source module, event timing and optional user-entered comment.

Figure 17: Information slide example for a video summary containing one EOI.

35

6 Conclusion

The main objective of the EVIDANT demonstrator is to show the usage of
some scientific results of the VideoTerror project in a tool tailored to real-world
conditions of some departments of police. The specific category of tasks we
focused in the tool was the processing of events of interest in a set of images or
videos. The processing modules, which are available in EVIDANT, include video
summarizer, activity detector, face tracker, people tracker, video comparator
and video type classifier.

The development of the demonstrator also proved the significant benefit of
VTAPI framework in both processing modules and more complex image and
video processing applications and systems implementation.

36

References

[1] Bouguet, J.-Y. Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm. Technical report, Intel Corpo-
ration, 2001.

[2] Dalal, N., and Triggs, B. Histograms of oriented gradients for human
detection. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2005. (2005), vol. 1, IEEE, pp. 886–893.

[3] Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
Computer Vision and Pattern Recognition (2014).

[4] Klicnar, L., and Beran, V. Dissimilarity detection of two video se-
quences. Technical Report VG20102015006-2012-04, Faculty of Informa-
tion Technology, Brno University of Technology, 2012. This is an expanded
version of [7].

[5] Klicnar, L., and Beran, V. Robust motion segmentation for on-line
application. In Proceedings of WSCG’12 (2012), 20-th International Con-
ference in Central Europe on Computer Graphics, Visualization and Com-
puter Vision, University of West Bohemia in Pilsen, pp. 1–6.

[6] Klicnar, L., and Beran, V. Video sequence summarization and syn-
opsis. Technical Report VG20102015006-2014-03, Faculty of Information
Technology, Brno University of Technology, 2014.

[7] Klicnar, L., Beran, V., and Zemč́ık, P. Dissimilarity detection of two
video sequences. In Proceedings of SCCG 2013 (2013), vol. 2013 of Confer-
ence Materials and Posters, Comenius University in Bratislava, pp. 28–31.

[8] Lienhart, R., and Maydt, J. An extended set of haar-like features for
rapid object detection. In International Conference on Image Processing
(2002), vol. 1, IEEE, pp. 900–903.

[9] Mráček, S. Object detection. Technical Report VG20102015006-2012-02,
Faculty of Information Technology, Brno University of Technology, 2012.

[10] Mráček, S. Motion and object detection. Technical Report
VG20102015006-2013-04, Faculty of Information Technology, Brno Univer-
sity of Technology, 2013.

[11] Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. DeepFace:
Closing the Gap to Human-Level Performance in Face Verification. In
Conference on Computer Vision and Pattern Recognition (CVPR) (2014),
p. 8.

[12] Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., and Oliva, A.
Learning Deep Features for Scene Recognition using Places Database. Ad-
vances in Neural Information Processing Systems 27 (2014), 487–495.

37

[13] Zivkovic, Z. Improved adaptive gaussian mixture model for background
subtraction. In Proceedings of the Pattern Recognition, 17th International
Conference on (ICPR’04) (2004), vol. 2, IEEE, pp. 28–31.

38

