
Real-time Face Recognition
Utilization of face recognition algorithms in real-time environment

Technical Report - FIT - VG20102015006 - 2015 – 03

Ing. Štěpán Mráček

Faculty of Information Technology, Brno University of Technology

July 20, 2015



Abstract

This report describes practical aspects of implementing and evaluat-
ing real-time face recognition biometric system. We propose a modular
face recognition pipeline consisting of individual modules that deal with
specific tasks, such are face detection, face landmarks detection, face pose
orientation, feature extraction and template comparison. We describe
each of those components and provide overview of available solutions and
how they can be incorporated to the recognition pipeline and further tai-
lored to our needs.

1



Contents

1 Introduction 3

2 Face detection 3

3 Face pose normalization 5

4 Feature extraction 5

5 Score-level fusion 7

6 Parallel implementation 8

7 Real-time 3D Face Recognition 10

8 Conclusion 11

2



1 Introduction

Face recognition involves several consecutive tasks. The first goal is to select a
region containing face in a given input image. The input of this first task is a
frame from the ongoing video stream and the output is a set R = {r1, r2, . . . , r3}
of regions ri in the image that contain a face. This task is described in Section 2.

If the set R is non-empty, the frame with annotated face regions is further
processed with pre-processing part of the recognition pipeline. Here, the face
pose (head rotation) is normalized and improper lighting conditions may be
compensated. This topic is discussed in Section 3.

The normalized face image is further processed in such way that the most
distinguishing features are extracted and the image is represented as a tuple of
numerical values (feature vector). The process of gaining feature vector from
the face image is described in Section 4. Feature vectors can be easily compared
using an arbitrary metrics and thus we can say whether two vectors belong to
the same person or not.

However, we are not relying on just one feature extraction algorithm. Some
form of fusion that can incorporate comparison results from several algorithms
is thus needed. Section 5 is devoted to this topic. The flow diagram of the
process described above is in Figure 1.

Last to sections describe the implementation of the face recognition algo-
rithm utilizing modern multi-core CPUs and possible extension to incorporate
3D sensors.

2 Face detection

Face detection is the first task in the real-time face recognition problem. We
need a fast and reliable method that can detect whether the input frame con-
tains a face. And if so, Region of Interest (ROI) has to be selected. There are
several options how to detect faces. Perhaps the most used is the cascade clas-
sifier [25] (See Figure 2). The sequence of classifiers is trained in such way that
the initial classifier eliminates a large number of negative examples with very
little processing. Subsequent layers eliminate additional negatives but require
additional computation.

In this report, we compare two cascade classifiers utilizing Haar cascades [25]
and Local Binary Patterns (LBP) classifier [14]. Both Haar and LBP classifiers
are implemented in OpenCV1 library. Furthermore, we tested detector utiliz-
ing Histogram of Oriented Gradients (HOG) with subsequent Support Vector
Machines (SVM) classifier [8, 11] that is implemented in dlib computer vision
library2.

We compared number of false detections (false positives, #FP) and number
of false non-detections (false negatives, #FN). These were evaluated manually

1http://opencv.org/
2http://dlib.net/

3



Face detection

Normalization

Face Region

Image frame

Face image

Feature extraction

Feature vector(s)

Comparison Template

Database
Comparison scores

Fusion

Decision

Figure 1: Flow diagram of the proposed face recognition algorithm

Image C1 Object positions

Rejected sub-windows

C2 C3

T T T

F F F

Classifiers

Figure 2: Cascade classifier

4



on set of 100 randomly selected face images from FRGC database [18] and set
of 100 non-face images.

We measured speed of video frames processing on video with resolution
1280×720 pixels (column FPS1 in Table 1). This video was also sub-sampled
to resolutions 640×360 (FPS2) and 320×180 (FPS3). Time of processing was
measured on notebook with Intel Core i7-4702MQ CPU and 8GB RAM.

Detector Implementation #FP #FN FPS1 FPS2 FPS3

Haar-cascade OpenCV 4 0 3.31 14.35 61.24
Haar-tree OpenCV 1 3 5.24 19.25 54.60

LBP-cascade OpenCV 3 4 13.70 50.11 163.78
HOG-SVM Dlib 0 2 6.80 26.23 102.37

Table 1: Comparison of face detection algorithms

3 Face pose normalization

The acquired and selected face image should be normalized to some predefined
pose. We can use the region marked by the face detector as the initial estimation
of subsequent landmark detector. It will locate important face features such are
eyes, nose and mouth. These landmarks are further use in order to rotate and
scale face image, such the pose variation is minimized.

There are a lot of landmark detectors available. Most of them rely on some
generative probability model of mutual landmark positions. Such landmark
detectors iteratively deform the model in order to fit to a given input image.
We tried several well known and established landmark detectors, see Table 2.

Detector Implementation Reference
Active Shape Models (ASM) VOSM Cootes 1999 [6]

Active Appearance Models (AAM) VOSM Cootes 2004 [7]
Ensemble of Regression Trees Dlib Kazemi 2014 [10]

Structured Output SVM cLandmark Uricar 2015

Table 2: Landmark detectors overview

The next step is the utliziation of detected landmarks. We use a simple
heuristic approach – the image is rotated and scaled in such way, that the
distance between eyes is 100 pixels and both eyes lay on the same y coordinate.

4 Feature extraction

Biometric recognition pipeline usually consists of data acquisition, preprocess-
ing, feature extraction, and comparison that yields to the final decision whether
the user is accepted or not [24].

5



In this section, the main emphasis will be put on the preprocessing and
feature extraction parts. The data acquisition is given by the nature of face
recognition, since we have to deal with consecutive video frames. The last part
of the pipeline – comparison – will be more discussed in section 5.

A general preprocessing and feature extraction pipeline is in Figure 3. It has
to be noted that all particular boxes that represents stages of the pipeline are
optional. Image Filter can be omitted and features can be extracted directly.
Or the dimensionality reduction may be applied directly on the input image. In
the same manner, if the number of features provided by the image descriptor is
adequate, dimensionality reduction is not needed.

Image Image filter Image descriptor Dimensionality reduction

Figure 3: Generalized preprocessing and feature extraction pipeline

The list of image filters that are used in the area of face recognition is in
Table 3. Literature references are provided for each filter. The resulting image
with applied filter may be further processed by the image descriptor module or
it can be directly send to dimensionality reduction block.

Table 3: List of image filters used in face recognition tasks

Name of filter References
Gabor filter Yang 2004 [26], Zheng 2007 [27]

Gauss-Laguerre filter Ahmadi 2007 [1], Mráček 2014 [16]
Difference of Gaussians (DoG) Tan 2010 [21]

The list of various image descriptors used in face recognition is in Table 4.
We are again providing literature references for each image descriptor. There is
a common practice to use image descriptors with histograms. The face image is
divided into N (i×j) non-overlapping sub-images. The histogram of LBP values
or orientations is calculated within each cell. Finaly, the individual histograms
are concatenated and the feature vector is thus extracted.

Table 4: List of image descriptors used in face recognition tasks

Name of descriptor References
Local Binary Patterns (LBP) Ahonen 2004 [2], Tang 2013 [22]

Weber Local Descriptor (WLD) Chen 2009 [5], Li 2013 [13]
Histogram of Oriented Gradients (HOG) Deniz 2011 [9]

The final and also optional part of the feature extraction process is the
dimensionality reduction. Feature vector obtained from the previous blocks can
be projected using some dimensionality reduction technique in order to reduce
redundancy, increase speed of comparison, reduce amount of data needed to
store biometric templates or improve recognition performance.

6



Table 5: List of dimensionality reduction techniques

Projection References
PCA Turk 1991 [23]
LDA Belhumeur 1997 [4]
ICA Bartlett 2002 [3]

5 Score-level fusion

The feature extraction process described in previous section may provide various
implementations. We can select different image filters, parameters of those
filters, image descriptors and many dimensionality reduction techniques. We
can also use various comparison metrics for extracted feature vectors in order
to compare two input samples.

We can evaluate all possible combinations mentioned above and select the
one that outperform others. The second option is to employ a score-level fu-
sion [19, 20, 17]. A diagram of score level fusion approach is in Figure 4.

Sample 1

Sample 2

Feature extraction

Feature extraction

Comparison

Decision

Templates

Score fusion

Comparison

Templates

Figure 4: Diagram of score-level fusion

However, the number of possible combinations is very high, therefore some
optimization selection method is needed in order to improve speed as well as
remove redundancy. We employ hill-climbing selection and the optimization
criterion is fusion Equal Error Rate (EER) [12]. Some examples of possible
individual recognition pipelines (units) is in Figure 5.

The individual units were trained on the first 300 images from the Spring2004
portion of FRGC database. Next 300 samples were used for the training of unit
selection and the remaining 1509 scans were used for evaluation. The selection
of units in in Table 6. The following abbreviations are used in the descriptions
of the pipelines:

• orientedGradients – oriented gradients

• histogramBins-x-y-z – divide the image to x × y grid and calculate his-
togram of values divided into z bins

• zpca – PCA projection with z-score normalization of projection compo-
nents (also called whitened PCA)

7



Image Scale PCA Normalization

Image Scale PCA NormalizationGabor filter

Equalization Equalization

Image Scale PCA NormalizationGauss-Laguerre filter

Equalization Equalization

Image NormalizationGauss blur filter

Equalization

Local Binary Patterns Scale PCA

Image NormalizationGauss blur filter

Equalization

LBP PCAGrid Histogram

Figure 5: Visualisation of various feature extraction techniques

• dog-x-y – difference of Gaussians with kernel sizes x and y

• gaborAbs-x-y – absolute response on Gabor filter with scale x and orien-
tation y

• scale-x – Scale the image with factor x

• equalize – equalization of histogram of pixel intensity values

• contrast – contrast enhancement [21]

• gaussLaguerreAbs-x-y – absolute response on Gauss-Laguerre filter with
parameters x and y

Figure 6 shows evaluation on FRGC database. Detection Error Tradeoff
(DET) curve that plots False Match Rate (FMR) against False Non-match Rate
(FNMR) is shown [20].

6 Parallel implementation

If we want to have a real-time face recognition system, it should utilize modern
multi-core CPUs. There are several points within the pipeline where parallel
computation may be involved. Moreover, we can take advantage of processors

8



Table 6: Selected recognition units

Feature extraction pipeline Metric
1 orientedGradients;histogramBins-10-9-8;zpca correlation
2 dog-5-3;contrast;gaborAbs-3-3;scale-0.5;zpca correlation
3 orientedGradients;histogramBins-10-5-16;zpca correlation
4 equalize;gaborAbs-6-1;scale-0.5;zpca correlation
5 dog-5-3;contrast;gaborAbs-7-6;scale-0.5;zpca correlation
6 gaborAbs-2-4;scale-0.5;zpca correlation
7 dog-5-3;contrast;gaborAbs-7-3;scale-0.5;zpca correlation
8 dog-5-3;contrast;scale-0.5;zpca correlation
9 orientedGradients;histogramBins-10-5-16 correlation
10 equalize;gaborAbs-7-3;scale-0.5;zpca correlation
11 dog-5-3;contrast;gaborAbs-5-1;scale-0.5;zpca correlation
12 orientedGradients;histogramBins-5-9-4;zpca correlation
13 gaborAbs-4-6;scale-0.5;zpca correlation
14 dog-5-3;contrast;gaussLaguerreAbs-16-3-0;scale-0.5;zpca correlation
15 gaborAbs-2-2;scale-0.5;zpca correlation

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00

FN
M
R

FMR

Figure 6: Evaluation on the FRGC databse

Table 7: Utilization of multi-core CPUs and GPUs for face detection

Library Class Multi-core CPU OpenCL CUDA
OpenCV CascadeClassifier Yes Yes Yes

Dlib object detector No No No

on graphic cards (GPU). Table 7 shows the utilization of multi-core CPUs and
GPUs for face detection for OpenCV and Dlib computer vision libraries.

The next part of the recognition pipeline where the parallelism can be in-
troduced is the feature extraction. Each feature extraction unit from Table 6 is
completely independent. Since the feature extraction takes approximately sev-
eral milliseconds, it is not a good idea to create new processes or threads every

9



time. Much better solution is the thread pool. Threads are created when the
biometric system is initialized and the feature extraction unit just query them
when needed.

Table 8 shows the time consumption of individual components of the recog-
nition pipeline. It was measured on notebook with Intel Core i7-4702MQ CPU
and 8GB RAM. 1000 consecutive frames with resolution 640 × 480 were cap-
tured with build-in video camera. Frames were scaled to size 320× 240 for the
face detection component. In each frame, after the feature vector was extracted,
a comparison with previously extracted 300 templates was made. It should be
noted that the feature extraction portion is the most time consuming part. Here
we gain the advantage of the parallel thread-pool-based computation. If there is
no thread pool, the average time of feature extraction is 70 milliseconds. With
thread-pool we gain 16 frames per seconds recognition rate with thread pool
and only 10 frames per second without it.

Table 8: Single frame time consumption of individual components of the recog-
nition pipeline

Component Average duration (ms)
Face detection 14

Landmark detection 3
Face pose normalization 0

Feature extraction 29
Comparison and identification 17

The illustration of the demo application is in Figure 7. Users can enroll to
the system. At the same time runs the identification loop.

7 Real-time 3D Face Recognition

3D face recognition is the natural extension of the classical 2D approach. It
solves several disadvantages of 2D approach such are head rotation, poor lighting
conditions and liveness detection. However, the usage of 3D sensors is limited –
we can’t use 3D sensors in direct sunlight. Table 9 brings an overview of tested
low-cost depth sensors.

Table 9: Overview of low-cost depth sensors

Vendor Sensor Involved technology
Intel RealSense structured light

SoftKinetic DepthSense DS325 time of flight
Occipital Structure.io structured light
Microsoft Kinect 360 structured light

Since we are not relying on just a texture, we can incorporate 3D shape and
curvature into the feature extraction. The processing is similar - 3D shape is

10



Figure 7: Illustration of positive identification in the demo application.

transformed to the image representation and further processed as it was a plain
face image. Figure 8 shows various image representations of the 3D face model
from the FRGC database.

Figure 8: Various representations of the 3D face model. From left to right:
texture, depth, shape index, mean curvature, Gaussian curvature, and eigen-
curvature.

We tested Intel RealSense, SoftKinetic DepthSense DS325, and Microsoft
Kinect 360. Figure 9 shows the evaluation on the database consisting of 400
scans and 42 subjects.

8 Conclusion

This reports described the real time face recognition system. The entire source
code can be found at https://github.com/stepanmracek/face. More de-
tailed description of the involved algorithms may be also found in our previous
publications: [16, 15].

11



	0

	0.05

	0.1

	0.15

	0.2

	0.25

1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 1.0e+00

FN
M
R

FMR

Figure 9: Evaluation of 3D face recognition system employing Intel RealSense
camera.

References

[1] H. Ahmadi and A. Pousaberi. An Efficient Iris Coding Based on Gauss-
Laguerre Wavelets. In Advances in Biometrics, pages 917–926. 2007.

[2] T. Ahonen, A. Hadid, and M. Pietikäinen. Face Recognition With Local
Binary Patterns. In 8th European Conference on Computer Vision, pages
469–481, 2004.

[3] M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski. Face Recognition by
Independent Component Analysis. IEEE transactions on neural networks,
13(6):1450–1464, 2002.

[4] P. Belhumeur, J. Hespanha, and D. Kriegman. Eigenfaces vs. Fisherfaces:
Recognition Using Class Specific Linear Projection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19(7):711–720, 1997.

[5] J. Chen, S. Shan, C. He, G. Zhao, M. Pietikäinen, Senior Member, Xilin
Chen, and Wen Gao. WLD: A Robust Local Image Descriptor. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(9):1705–
1720, 2010.

[6] T. F. Cootes and C. J. Taylor. A Mixture Model for Representing Shape
Variation. Image and Vision Computing, 17(8):567–573, 1999.

[7] T. F. Cootes and C. J. Taylor. Statistical Models of Appearance for Com-
puter Vision. Technical report, 2004.

[8] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human
Detection. In Conference on Computer Vision and Pattern Recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[9] O. Déniz, G. Bueno, J. Salido, and F. De La Torre. Face Recognition
Using Histograms of Oriented Gradients. Pattern Recognition Letters,
32(12):1598–1603, 2011.

12



[10] V. Kazemi and S. Josephine. One Millisecond Face Alignment with an
Ensemble of Regression Trees. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1867–1874, 2014.

[11] D. E. King. Dlib-ml : A Machine Learning Toolkit. Journal of Machine
Learning Research, 10:1755–1758, 2009.

[12] R Kohavi. Wrappers for Feature Subset Selection. Artificial intelligence,
97(1):273–324, 1997.

[13] S. Li, D. Gong, and Y. Yuan. Face Recognition Using Weber Local De-
scriptors. Neurocomputing, 122:272–283, 2013.

[14] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li. Learning Multi-scale Block
Local Binary Patterns for Face Recognition. In International Conference
on Biometrics (ICB), pages 828–837, 2007.

[15] Š. Mráček, J. Váňa, R. Dvořák, M. Drahanský, and I. Provazńık. 3D Face
Recognition on Low-Cost Depth Sensors. In Proceedings of the Interna-
tional Conference of Biometrics Special Interest Group (BIOSIG 2014),
2014.

[16] Š. Mráček, J. Váňa, K. Lankašová, M. Drahanský, and M. Doležel. 3D
Face Recognition Based on the Hierarchical Score-Level Fusion Classifiers.
In Biometric and Surveillance Technology for Human and Activity Identi-
fication XI, 2014.

[17] K. Nandakumar, Y. Chen, S. C. Dass, and A. K. Jain. Likelihood Ratio-
Based Biometric Score Fusion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(2):342–347, February 2008.

[18] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman,
J. Marques, J. Min, and W. Worek. Overview of the Face Recognition
Grand Challenge. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), pages 947–954. IEEE, 2005.

[19] L. Puente, M. J. Poza, B. Rúız, and D. Carrero. Biometrical Fusion –
Input Statistical Distribution. In G. Chetty and J. Yang, editors, Advanced
Biometric Technologies, pages 87–110. InTech, 2011.

[20] A. Ross. An Introduction to Multibiometrics. In A. K. Jain, P. Flynn, and
A. A. Ross, editors, Handbook of Biometrics, pages 271–292. Springer US,
2008.

[21] X. Tan and B. Triggs. Enhanced Local Texture Feature Sets for Face
Recognition Under Difficult Lighting Conditions. IEEE Transactions on
Image Processing, 19(6):1635–1650, 2010.

[22] H. Tang, B. Yin, Y. Sun, and Y. Hu. 3D Face Recognition Using Local
Binary Patterns. Signal Processing, 93(8):2190–2198, 2013.

13



[23] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. Pro-
ceedings of IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 591(1):586–591, 1991.

[24] C. Vielhauer, J. Dittmann, and S. Katzenbeisser. Security and Privacy
in Biometrics. In P. Campisi, editor, Security and Privacy in Biometrics,
pages 25–43. Springer London, London, 2013.

[25] Paul Viola and Michael J. Jones. Robust Real-Time Face Detection. In-
ternational Journal of Computer Vision, 57(2):137–154, May 2004.

[26] P. Yang, S. Shan, W. Gao, S. Z. Li, and D. Zhang. Face Recognition Using
Ada-Boosted Gabor Features. In Proceeding of 6th IEEE International
Conference on Automatic Face and Gesture Recognition, pages 356–361,
2004.

[27] Z. Zheng, F. Yang, W. Tan, J. Jia, and J. Yang. Gabor Feature-Based
Face Recognition Using Supervised Locality Preserving Projection. Signal
Processing, 87(10):2473–2483, October 2007.

14


