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Abstract. This paper introduces a new approach to computation of 2-D
discrete wavelet transform on modern GPUs. The proposed approach in-
volves block-based processing enabling one seamless transform even for
high resolution input data. Inside the blocks, two distinct methods can
be used – either separable or non-separable 2-D lifting scheme. Further-
more, the paper presents a comparison of the proposed approach under
different conditions to the best existing methods, whereas our approach
consistently outperforms the other ones. Our methods are implemented
using the OpenCL framework and tested on a wide range GPUs.
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1 Introduction

The 2-D discrete wavelet transform (DWT) is the signal-processing transform
suitable for decomposition of the analysed 2-D signal into several scales. On each
scale, three directional subbands are formed. These are usually referred to as HL,
LH, and HH subbands. The 2-D transform is defined as separable product of 1-D
transforms performed sequentially on rows and columns (or vice versa). Each of
these one-dimensional transforms can be computed through either the convolu-
tion or the lifting scheme. Different strategies of 2-D DWT implementation were
developed for various computational platforms.

In this paper, we focus on implementation of DWT using modern graphics
cards (GPU) capable of a general-purpose computing. In these architectures, the
GPU contains thousands of stream processors that are clustered into blocks. All
processors in each block execute the same instruction with different operands
at one time. The blocks are grouped into multiprocessors which form the ba-
sic functional units of the GPUs. The thread scheduler allocates as many work
groups to multiprocessors as their resources allow. The work groups are defined
as a group of threads that can interoperate with each other using the local mem-
ory and memory barriers. Thus, the resources, such as the local memory size,
should be minimized. The allocated work groups created by OpenCL framework



is then divided into warps (hardware blocks with 32 threads). Execution instruc-
tions of these warps on blocks of processors are provided using warp schedulers
dynamically. Global memory accesses in warp should be coalesced. Otherwise,
additional memory operations are executed. The local memory is organized into
banks. Access to the same banks from warp causes serialization. This issue is
referred to as a bank conflict. The serialization of local memory operations and
uncoalesced global memory access can cause a performance degradation.

This paper is further focused on the OpenCL framework.1 OpenCL is a frame-
work for general-purpose parallel programming across multiple device types. In
this framework, a platform independent executable program is called the kernel.
The kernel is executed on required number of threads that identify their data
and control flow by their N-dimensional indices. These threads are organized
into work groups with identical user-defined number of threads. The threads in
such a group can cooperate with each other through local memory and barriers.

Several methods for the 2-D DWT computation using GPU have been pub-
lished in the last decade. For example, the simplest row–column methods trans-
form the whole image at once. Usually, the transposition is needed between the
horizontal and vertical part. Furthermore, the block-based methods transform
the image using smaller blocks utilizing the row-column method inside. Unfortu-
nately, such a method results in several independent transforms instead a single
seamless one. Finally, the pipelined methods transform the image using column
strips while employing the sliding window on them.

In this paper, we propose two novel block-based methods computing the
seamless 2-D transform. The first of them employs the separable (row–column)
lifting scheme inside the overlapping blocks. The second uses a non-separable
lifting scheme recently proposed. Both of the proposed methods consistently
outperform the existing methods.

The rest of the paper is organized as follows. The Related Work section sum-
marizes the state of the art, especially existing GPU implementations. The heart
of our work is presented in Block-Based Approach section. First, we propose the
separable transform. Further in the text, the non-separable method is discussed.
Finally, Conclusions section summarizes the paper and outlines the future work.

2 Related Work

This section takes a closer look at the discrete wavelet transform and revises the
state of the art of its implementation on contemporary graphics cards.

The DWT can be understood as a transform suitable for decomposition of
a signal into low-pass and high-pass frequency components. Usually, such a de-
composition is performed at several scales resulting in a multi-scale signal repre-
sentation. At this point, we are considering one-dimensional signals. The trans-
form of 2-D signals is computed through the tensor product of these 1-D trans-
forms. For various requirements, different strategies of 2-D transform computa-
tion emerged. Going back to 1-D transform, as the discrete wavelet transform is

1 http://www.fit.vutbr.cz/research/prod/index.php?id=434.
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a linear one, the decomposition into the low-pass and high-pass components can
be performed through a convolution scheme with two filters. However, the more
efficient computational scheme according to the number of arithmetic operations
exists. This scheme is referred to as the lifting scheme. Additionally, using this
scheme, the whole signal can be transformed in-place. Specifically, any discrete
wavelet transform can be factored into a finite sequence of lifting steps. These
steps alternately update odd and even intermediate results using short FIR (fi-
nite impulse response) filters. When evaluating this scheme, intermediate results
can be appropriately shared between neighbouring coefficients.

The discrete wavelet transform is often used as a basis for sophisticated com-
pression algorithms. This paper focuses on a popular CDF (Cohen-Daubechies-
Feauveau) 9/7 wavelet. This wavelet is used, e.g., in JPEG 2000 image compres-
sion standard. In [2], Daubechies and Sweldens factored CDF 9/7 wavelet into
four successive lifting steps, employing short symmetric two-taps FIR filters. A
data-flow diagram of the factorization (without scaling) is depicted in Fig. 1,
where, the α, β, γ, δ are real constants specific to CDF 9/7 transform. Formally,
the forward transform in Fig. 1 can be expressed by the dual polyphase matrix

P̃ (z) =

[
1 α

(
1 + z−1

)
0 1

] [
1 0

β (1 + z) 1

] [
1 γ
(
1 + z−1

)
0 1

] [
1 0

δ (1 + z) 1

]
. (1)

In this paper, we consider the lifting scheme only, as it is usually a better alter-
native. A detailed comparison of the convolution and lifting schemes on GPUs
was addressed, e.g., in [11] and [12].

The implementation of this transform was comprehensively studied on var-
ious platforms including the modern GPUs. Considering this scenario, the in-
put image has to be initially transferred from main memory into memory on
the graphics card. Similarly, the resulting coefficients could be transferred back.
Having the input 2-D image in the GPU global memory, different strategies of
2-D DWT implementation can be used. These strategies can be divided into
three groups – row–column, block-based, and pipelined methods.

The row–column method applied on the entire 2-D image was used for in-
stance in [11], [12], [3], [1], [4], [5]. In [3] and [1], data transposition was per-
formed in between the horizontal and vertical series of 1-D transforms. In [11]
and [12], Tenllado et al. adapted the discrete wavelet transform on GPU frag-
ment shaders. As this paper is focused on the OpenCL framework, we will not
discuss their paper in more details. The other cited papers are focused on the
CUDA architecture. In [3], the convolution scheme is applied on each row. Then,
the image matrix is transposed and the convolutions are applied on each column.
Finally, the image is transposed back. In [4] and [5], V. Galiano et al. compared
several CUDA implementations of DWT. They used the CDF 9/7 wavelet and
convolution-based algorithm on entire rows/columns. Their fastest implementa-
tion uses the coalesced memory access.

In [1], the authors calculate the wavelet transform through 4 kernels. The
first kernel performs an image transposition using work groups of size 16 × 16
threads, where the thread processes one image element. To ensure coalesced
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Fig. 1: A portion of the data-flow graph attributable to individual threads. The method
of (a) Laan and two methods used by Blazewicz – with (b) one, and (c) four pairs.

global memory access, the transposition in the shared memory is used rather
than directly in the global memory. In the second kernel, the vertical wavelet
transform is performed as follows. Each thread loads its elements from the global
memory and stores them into the shared memory. Then, the adjacent elements,
that are required for the computation of the output coefficient, are loaded from
the shared memory into registers. The threads compute their output coefficients
using 4 steps of the wavelet scheme independently to each other (with no synchro-
nization). When the computation is finished, the output coefficients are written
back to the global memory. The third and the fourth kernels calculate the image
transposition and the horizontal wavelet transform in the same way as the first
two kernels. The calculations that are performed by a single thread using the
approach described can be seen in Fig. 1b and Fig. 1c.

The pipelined approach was used in [8] and [9]. In [8], Laan et al. accelerated
the Dirac video codec using the CUDA platform. In [9], the authors provided
a detailed analysis of the DWT implementation using the lifting scheme on the
CUDA platform. They focused on 2-D and 3-D methods of DWT implementa-
tion using several wavelets including CDF 9/7. In the horizontal part of their
transform, each work group is mapped to a single image row. Each thread com-



putes one coefficient per a single step and shares it with other threads. Because
of non-atomic instructions issued in whole group, memory barrier is needed in
between each two steps. See Fig. 1a. The vertical part of their transform maps
each work group to multiple vertical strips with a width that ensures coalesced
global memory accesses and bank-conflict-free shared memory transfers.

Another row-column approach was used in [7]. The horizontal transform is
computed in the same way as Blazewicz et al. did. The vertical transform is
computed using 32 coefficients wide strips per work group like in Laan’s imple-
mentation. The difference between the Laan’s and Kucis’s vertical methods lies
in processing assigned to a single thread. Kucis et al. used rotated Blazewicz’s
approach with 2 pairs per thread mapping. Moreover, Kucis et al. also demon-
strated that their approach outperforms Laan’s and Blazewicz’s ones. The ap-
proach of Kucis is used as a reference approach and labeled as Kucis2014.

The approaches in [10] as well as [1] are focused on the lifting scheme. Their
implementations split the image into small tiles and perform several indepen-
dent transforms on each of them. Thus, they performed several independent
transforms (introducing a block effect) which is different and much easier task
comparing to what we are dealing with in this paper.

As it can be seen, the problem of the efficient 2-D discrete wavelet transform
implementation on conventional GPUs was fairly well studied. However, we see
several gaps which can allow for additional speedups. Specifically, only the sep-
arable 2-D schemes were examined so far. These schemes require to pass the
results through the global memory, while causing unnecessary memory traffic.

3 Block-Based Approach

The heart of our work is presented in this section. At the beginning, we pro-
pose the separable block-based method. Afterwards, we discuss the block-based
method utilizing non-separable lifting scheme recently proposed. The perfor-
mance comparison of the proposed methods is shown in Fig. 4. As it can be
seen, the block-based methods perform consistently faster compared to the best
of the existing methods. Our implementation is based on the OpenCL framework.
All of the algorithms are evaluated using AMD R9 290X and NVIDIA TitanX
graphics cards. The main benefit of the block-based methods is the reduction of
memory access count as the data is read as well as written only once.

3.1 Separable Method

Except for the sliding window, our separable block-based approach uses the same
scheme as the Laan’s method. The threads in each work group are responsible
for processing of 2 × 2 input coefficients. At the beginning, the thread loads
their coefficients from the global memory and stores them into separate shared
memory locations. The computation is briefly illustrated in Fig. 2. In the first
step of the horizontal pass, each of the threads computes the LH coefficient using
two LL coefficients of the thread itself and the thread on the right. Additionally,
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Fig. 2: The separable (top) and non-separable block-based approach (bottom).

the HH coefficient is computed using HL coefficients of the current thread and
the thread on the right. In the second step, the computation of LL and HL
coefficients is performed in the same way as the computation of the LH and HH
coefficients. After that, these two steps are repeated with a substitution of α and
β with γ and δ coefficients.

The vertical steps are performed in the same way as the horizontal steps ex-
cept for a rotation of the scheme by 90 degrees. Unlike the horizontal pass, syn-
chronization using the memory barrier is required between the steps. Horizontal
steps are synchronization-free thanks to the atomicity of hardware instructions.
Fig. 2 shows individual steps of the underlying data-flow graph.

3.2 Non-Separable Method

In [6], the authors derived a non-separable 2-D lifting scheme for CDF 5/3 and
subsequently CDF 9/7 transforms. As initial step of CDF 5/3 transform, the
input signal is split into quadruples (LL,HL,LH,HH). Then, lifting steps leading
to the calculation HH coefficients are performed. This is followed by parallel
computation of the HL and LH coefficients. In the third step, the LL coefficient
is updated. Finally, the coefficients can be scaled. The scheme for CDF 9/7
comprises two these connected transforms.

Motivated by the work of Iwahashi et al. [6], we have reorganized the elemen-
tary lifting FIR filters in order to obtain a highly parallelizable scheme suitable
for the modern GPUs. The main purpose of this modification is to minimize



the number of memory barriers that slow down the calculation. As a result,
we get several non-separable two-dimensional FIR filters. For their description,
we employ the well known z-transform notation. The transfer function of the
two-dimensional FIR filter x(km, kn) is defined as

X(zm, zn) =

∞∑
km=−∞

∞∑
kn=−∞

x(km, kn) z−kmm z−knn , (2)

where m refers to the horizontal axis and n to the vertical one. Moreover, to keep
consistency with [6], the H∗(zm, zn) = H(zn, zm) denotes a filter transposed
to the H(zm, zn). Furthermore, the H(zm, zn) = H(z−1n , z−1m ) denotes a filter

reversed along the m- as well as n-axis. Coupled together, the H
∗
(zm, zn) denotes

a transposed and reversed filter to the original H(zm, zn). The scheme we formed
is composed of three elementary filters F,G,H given byFa

Ga

Ha

 =

Fa(zm, zn)
Ga(zm, zn)
Ha(zm, zn)

 = a

 1
zn

1 + zm

 , (3)

where a denotes a filter parameter. The filters above are assembled into more
complex operations. Our scheme consists of two halves between which a memory
barrier is placed. The first half of the scheme uses the following filters. Similarly,
the second half uses these filters in the reverse orientation. Due to the limited
place, we have made a small abuse of notation. Instead of the full notation
H(zm, zn), we only use a shortened labeling, such as H.


Fa

Ga

Ha

H∗a
GaHa

 =


a
a zn

a (1 + zm)
a (1 + zn)

a2 (zn + zmzn)

 ,


Fa

Ga

Ha

H
∗
a

GaHa

 =


a

a z−1n
a (1 + z−1m )
a (1 + z−1n )

a2 (z−1n + z−1m z−1n )

 (4)

Finally, our scheme is composed of four steps referred to as S1 to S4. Between
the second S2 and the third S3 step, the memory barrier must be inserted in order
to properly exchange intermediate results. Additionally, our scheme requires the
induction of two auxiliary variables per each quadruple of coefficients LL, HL,
LH, and HH. These are denoted as HL′,LH′. This is valid regardless of their
initial as well as final values. The scheme

y = S4
βS

3
βS

2
αS

1
αx (5)

describes the relation between input x and output y vectors[
LL HL LH HH HL′ LH′

]T . (6)

Each single thread of the work group is responsible of one such a vector.



Regarding this notation, the individual steps are defined as follows. For better
understanding, the signal-processing block diagram of this scheme is shown in
Fig. 3. In addition, the operations are graphically illustrated in Fig. 2.

S1
α =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

Hα 1 0 0 0 0
0 0 0 0 0 1

 (7)

S2
α =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

GαHα Gα Hα 1 Fα 0
0 0 0 0 1 0

H∗α 0 1 0 0 0

 (8)

S3
β =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 Hβ 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (9)

S4
β =


1 0 Fβ GβHβ Hβ Gβ

0 0 0 H
∗
β 1 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (10)

Compared to [6], the total number of arithmetic operations has been reduced
form 24 to 20. The calculation of CDF 9/7 transform comprises two of these
connected transforms (the first one with α, β, the second with γ, δ) between them
another barrier is placed. In total, the calculation contains 3 memory barriers.

4 Conclusions

We have presented two novel block-based approaches to 2-D wavelet transform
using modern GPUs. These approaches can handle high resolution images while
producing the seamless transform. Both of the proposed methods consistently
outperform the existing methods with all tested GPUs.

The first presented approach utilizes classical separable 2-D lifting scheme.
Whereas the second approach employs a novel 2-D non-separable scheme. Con-
sidering the second one, we have minimized the number of memory barriers.
Moreover, as compared to the existing non-separable scheme, the total number
of arithmetic operations has been reduced form 24 to 20.
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Fig. 4: Throughput performance. Kucis2014 is the reference state-of-the-art method.



The future work includes behavior of the proposed methods under a multi-
scale decomposition. Another direction of our research may include a connection
with some practical application (e.g., JPEG 2000 scheme).

Acknowledgement

This work has been supported by the TACR Competence Centres project V3C
– Visual Computing Competence Center (no. TE01020415).

References
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