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Abstract—A new design paradigm—approximate computing—
was established to investigate how computer systems can be
made better—more energy efficient, faster, and less complex—
by relaxing the requirement that they are exactly correct.
The purpose of this paper is to introduce the principles of
approximate computing and survey the research conducted in
major subareas of approximate computing which are relevant
for design and test of digital circuits.

I. INTRODUCTION

The notion of approximation is well established in many
fields, for example, in computer science (e.g. approximation
algorithms, approximate string matching), mathematics (e.g.
function approximation) and engineering (e.g. approximate
signal processing in complex video, audio, or communication
systems). However, the reasons for introducing the approxi-
mations can have completely different motivation.

In recent years, a new design paradigm—approximate com-
puting—has been established to investigate how computer
systems can be made better—more energy efficient, faster,
and less complex—by relaxing the requirement that they
are exactly correct. Mittal [1] is highlighting the fact that
“approximate computing exploits the gap between the level of
accuracy required by the applications/users and that provided
by the computing system, for achieving diverse optimizations.”

This new research effort in approximate computing is pri-
marily caused by a progressive development of two domains:

(1) Low power consumption requirements on electronics.
Energy efficiency is definitively one of the major driving forces
of current computer industry which is relevant for supercom-
puters on the one hand as well as small portable personal
electronics and sensors on the other hand. In this context,
approximate computing exploits the fact that some applications
are inherently error resilient. Errors are not recognizable
because human perception capabilities are limited (e.g., in
multimedia applications), no golden solution is available for
validation of the results (e.g., in data mining applications), or
users are willing to accept some inaccuracies (e.g., when the
battery of a mobile phone is almost depleted, but at least some
basic functionality is still requested). Therefore, the error (the
accuracy of computations) can be used as a design metric and
traded for performance or power consumption. Accepting ap-
proximate computing as a standard design paradigm requires a
deeper understanding of inherent application resilience across
a broader range of applications. One of the studies conducted

in this direction reported that about 83 % of runtime of the
applications (that are potentially suitable for approximations)
is spent in computations that can be approximated [2]. This
result was obtained using a benchmark suite consisting of 12
widely used recognition, data mining and search applications,
along with representative input data.

(2) Specific properties of integrated circuits in the
nanoscale era. Integrated circuits developed using recent
fabrication technology (45 nm and below) exhibit reliability
issues and uncertainties especially when operated at low
voltages. Deviations of the transistors’ parameters from the
average values are no longer small due fabrication variations
caused at the nanoscale. Adopting conventional fault tolerance
mechanisms (such as introducing redundant components) to
increase the circuit reliability requires additional resources
and power. By allowing approximations in computing and
graceful performance degradation at run-time in the presence
of uncertainties or errors, each component could deliver the
best possible tradeoff between the quality of result and en-
ergy consumption. Hence approximate computing represents
a potential solution to implement energy efficient systems on
inherently unreliable platforms [3], [4].

The field of approximate computing is at an early stage of
development, but a growing number of papers dealing with this
topic indicates a very active research community (Fig. 1). The
relevant research communities involved in approximate com-
puting cover the whole computer stack, integrating thus the
areas of microelectronics, circuits, components, architecture,
networks, operating systems, compilers and applications [1],
[5]. Approximations are conducted for embedded systems,
ordinary computers, graphics processing units (GPUs) and
field-programmable gate arrays (FPGAs). Substantial energy
consumption reductions are expected for data centers and
supercomputers [6], [7].

The purpose of this paper is to introduce the principles of
approximate computing and survey the research conducted in
major subareas of approximate computing which are relevant
for design and test of digital circuits. Approximate comput-
ing in software and compiler design will be addressed only
marginally. The plan for this paper is as follows:
• The principles of approximate computing (Section II)
• Ad hoc circuit approximations (Section III)
• Design automation methods in approximate computing

(Section IV)



Fig. 1. The number of results for “approximate computing” by Google Scholar
(January 2016).

• Software approximation and platforms supporting ap-
proximate computing (Section V)

• Evaluation of approximation techniques (Section VI)

II. THE PRINCIPLES OF APPROXIMATE COMPUTING

In approximate computing, the requirement on functional
equivalence of the specification and implementation can be
relaxed in order to not only reduce power consumption but
also to accelerate computations, minimize the on-chip area
or optimize other system parameters. Applications suitable
for approximate computing can be broadly classified to four
classes [8]:

1) Applications with analog inputs which operate on noisy
real-world data.

2) Applications with analog output intended for human
perception.

3) Applications with no unique answer such as web search
and machine learning.

4) Iterative and convergent applications that iteratively pro-
cess large amounts of data and the equality of results
depends on the number of iterations.

Approximate computing has been developed in different
ways and at various levels of the computing stack as discussed
in [1], [5]. In this section, we will briefly survey approaches
developed to identify approximable parts of applications, er-
ror metrics used to evaluate resulting approximate solutions
and approximation techniques introduced to perform actual
approximations.

A. Identifying approximable parts of applications

In order to obtain useful approximate solutions, sensitivity
analysis has to be performed to identify subsystems suitable
for undergoing the approximation. The analysis should reveal
how the subsystems and their interactions influence the quality
of result, power consumption and other parameters.

In some cases, the selection of components/functions to
be approximated is straightforward. In most cases, however,
a detailed analysis and profiling have to be performed. In
programs, the process includes statistical analysis of the impact
of various changes to the accurate code (such as the precision
of number representation, data storage strategies, code simpli-
fication, relaxed synchronization, unfinished loops and skipped

function calls among others) on the quality of result [9].
In [2], the instructions in the program were partitioned into
computation kernels which were subsequently marked either
as sensitive (whose approximation would lead to crashing the
application) or resilient (which are suitable for approximation).
The approximation method then operated at the level of the
resilient kernels.

In hardware, typical modifications of the accurate circuit
involve the bit width reduction, intentional disconnecting of
subsystems, changes in timing and power supply voltage
and fault injection [2]. For example, a methodology, called
MACACO (Modeling and Analysis of Circuits for Approxi-
mate Computing) was proposed to systematically analyze how
an approximate circuit behaves with reference to a conven-
tional correct implementation [10]. Other system properties of
software as well as hardware (such as testability, dependability,
security, etc.) have to be monitored by the designer as they can
be influenced by the approximations introduced.

B. Error metrics

The error introduced by an approximation is typically
estimated by measuring the output of the approximate system
as a response for a set of data inputs. The resulting values are
compared with the outputs produced by an exact solution. It
has to be noted that establishing a suitable error measure is
highly application dependent.

1) Arithmetic errors: Various error metrics have been de-
veloped for this purpose. Let O(i)

orig and O(i)
approx be the output

values of the accurate solution and approximate solution. The
common arithmetic errors are defined as follows.

Error magnitude (ewst), sometimes denoted the worst case
error, is defined as

ewst = max
∀i
|O(i)

orig −O
(i)
approx|. (1)

If used as the optimization goal (i.e. the following condition
ewst ≤ ε is satisfied during the whole design process) this
metrics guarantees that the approximate output differs from
the correct output by at most ε.

Maximal relative error is defined as

erel = max
∀i

|O(i)
orig −O

(i)
approx|

O
(i)
orig

. (2)

Average error magnitude (eavg) is defined as the sum of
absolute differences in magnitude between the original and
approximate circuits (i.e. total error etot), averaged over n
test vectors:

eavg =
etot
n

=

∑
∀i |O

(i)
orig −O

(i)
approx|

n
. (3)

Error probability (error rate) defined as the percentage of
inputs vectors for which the approximate output differs from
the original one represents the last commonly used metrics:

eprob =

∑
∀i,O(i)

orig 6=O
(i)
approx

1

n
. (4)



Let us assume that the circuit under approximation is
combinational. If all possible input vectors are applied (i.e.
n = 2w, where w is the number of primary inputs) then the
resulting error represents a true error of the circuit. If n < 2w

then the error is computed only for a subset of all possible
input vectors and nothing is known about the error for test
vectors unseen during the evaluation. The latter case is typical
for the evaluation of complex circuits.

Specific metrics are used in particular application domains,
for example, the peak signal to noise ratio (PSNR) in image
processing or the specificity and sensitivity in classification
tasks. In Monte-Carlo analysis proposed in [10], circuit sim-
ulations were performed to obtain an error distribution for a
given operating voltage and frequency.

2) Relaxed equivalence checking: However, in some cases
(such as complex arithmetic circuits), it is not sufficient to
establish the error on the basis of a data set (i.e., via a circuit
simulation using n < 2w test vectors). If the exact error
of the approximation has to be determined, formal relaxed
equivalence checking is requested, stressing the fact that the
considered systems will be checked to be equal up to some
bound w.r.t. a suitably chosen distance metric. This research
area is rather unexplored as almost all formal approaches
have been developed for (exact) equivalence checking [11].
Checking the worst error can be based on satisfiability (SAT)
solving as demonstrated in [10]. However, while violating the
worst error can be detected, no efficient method capable of
establishing, for example, the average error using a SAT solver
has been proposed up to now. In the context of approximate
computing, approaches based on binary decision diagrams
(BDDs) to determine the average arithmetic error, worst error,
error rate [12] and average Hamming distance [13] have been
proposed.

The following example demonstrates formal checking of a
predefined worst-case error. The principle of the method which
combines a SAT solver with an integer linear programming
(ILP) solver is shown in Fig. 2 [10]. Firstly, an auxiliary
circuit is constructed. This circuit instantiates the candidate
approximate circuit and the accurate (reference) circuit. Their
outputs are comaperd in miter to quantify the error for any
given input. This miter is an integer subtractor followed by
a comparison operation. In order to measure the maximum
error, the miter subtracts the accurate output (y) from the
approximate circuit output (y′): |y′ − y| ≤ E. The auxiliary
circuit is converted to a formula in conjunctive normal form
and the resulting formula is used together with an objective
function as input of the SAT solver. ILP solver is used to
determine the maximum error E.

C. Approximation techniques

The sensitivity analysis discussed in Section II-A should
reveal the most efficient approach to the actual approximation.
Mittal [1] discusses the following approximation strategies:
precision scaling, loop perforation, load value approxima-
tion, memorization, task dropping/skipping, memory access
skipping, data sampling, using different program versions,

Fig. 2. SAT-based worst-case error analysis

using inexact or faulty hardware, voltage scaling, refresh rate
reducing, inexact read/write, reducing divergence in GPUs,
lossy compression and use of neural networks. As this pa-
per primarily deals with digital circuit approximation, we
will briefly introduce the principles of the over-scaling and
functional approximation which are utilized by many methods
available in the literature.

In the case of over-scaling, circuits are designed to be
working perfectly under a normal environment. However, their
energy consumption can be reduced by voltage over-scaling
(i.e. using lower power supply voltage in which the circuit
is known to occasionally produce erroneous outputs). To deal
with errors caused by a large number of near critical paths,
methods based on cell sizing [14], logic restructuring [15],
and retiming [16] have been proposed to improve the path
delay distribution of overscaled circuits. On the other hand,
performance can be increased when the circuit is over-clocked.
Timing induced errors are due to the fact that some paths in
the circuit fail to meet the delay constraints. The combination
of scaling the supply voltage and clock frequency is known
as dynamic voltage scaling.

The idea of functional approximation is to implement a
slightly different function to the original (accurate) one pro-
vided that the error is acceptable and power consumption or
other system parameters are optimized adequately. Various ap-
proaches to the functional approximation will be discussed in
next sections. The functional approximation is often combined
with voltage over-scaling [17].

III. AD HOC CIRCUIT APPROXIMATIONS

By “ad hoc approximations” we mean various approaches
introduced to approximate a particular component, assuming
that the method is not a general purpose approximation
method. A lot of knowledge about a particular system, its
typical utilization and quality measurement methodology can
be incorporated into the approximation method in order to ob-
tain the best tradeoff for key circuit parameters. For instance,
many ad hoc approaches have been developed to approximate
adders, see a survey in [5].

Examples of the ad hoc approximation methods given below
show that approximations can be introduced at different system
levels:
• Transistor level: adders [18], median circuit [19]



• Gate-level: multipliers [20], [21], fault tolerant logic [22]
• RT-level: image filters [20]
• Microarchitecture: pipeline circuits [23]
• Processor: approximate vector processor [24]
• Memory: Multi-Level Cell [25], SRAM [3], memory

hierarchy [26], [6]

IV. DESIGN AUTOMATION METHODS IN APPROXIMATE
CIRCUIT DESIGN

In this case, the approximations are performed using the
same procedure for all problem instances of a given class.
Approximate implementations showing different compromises
between considered system parameters are generated and
presented to the user, whose responsibility is to choose the
most suitable approximate solution for a given application.

A. Systematic methods

A functional approximation is typically obtained by
a heuristic procedure that iteratively modifies the origi-
nal, accurate (hardware or software) implementation. Sev-
eral design automation methods have been proposed to ap-
proximate digital circuits. Examples include: SALSA [27],
ASLAN [28], SASIMI [17], ABACUS [29], ABM [12] and
genetic programming-based methods [30], [13]. Approximate
high level synthesis (in particular, allocation and scheduling)
enabled to compose complex circuits systems using approxi-
mate components [31]. Table I summarizes benchmark prob-
lems and error computing approaches used for evaluation of
systematic approximation methods. Some of the methods are
briefly elaborated below.

The Systematic methodology for Automatic Logic Synthesis
of Approximate circuits (SALSA) starts with a description of
the accurate circuit and an error constraint that specifies the
type of error that can be accepted [27]. SALSA introduces
the quality function which takes the outputs from both the
original circuit and approximate circuit and decides (by means
of SAT solving) if the quality constraints are satisfied. The
quality function outputs a single Boolean value. The SALSA
algorithm attempts to modify the approximate circuit with the
goal of keeping the output of the quality unchanged. The
concept of approximation by means of the quality function
has been extended to sequential circuits in [28]. The main
issues here are how to model and handle errors which can
propagate through the combinational logic over multiple cycles
of operation.

Another method, SASIMI, tries to identify signal pairs in the
circuit that exhibit the same value with a high probability, and
substitutes one for the other [17]. These substitutions introduce
functional approximations. Unused logic can be eliminated
from the circuit which results in area and power savings.

ABACUS creates an abstract synthesis tree (AST) from
the input behavioral description and then applies various
operators to the AST using an iterative stochastic greedy
algorithm [29]. Candidate designs are evaluated in terms of
accuracy, power consumption and area in a single objective
optimization scenario based on a training data set.

Evolutionary approximation methods, currently based on
Cartesian genetic programing (CGP), transform the circuit
approximation problem to a multi-objective search problem.
Candidate approximations are generated from an exact solu-
tion using genetic operators such as mutation and reproduction
and evaluated by means of circuit simulation [30] or relaxed
equivalence checking based on BDDs [13]. While CGP is ca-
pable of delivering high quality approximate solutions showing
an excellent trade off among key design objectives, its main
weakness is in the scalability and long non-deterministic runs.

B. Quality configurable circuits

Quality configurable circuits allow for a dynamic approxi-
mation (and thus dynamic reconfiguration) at the circuit level
as response to variable requirements on the quality of result
(e.g. in image compression). This concept can be demonstrated
using an adder whose input operands are split into several
regions, and each region is independently summed up. The
partial sums from the regions are conditionally composed
together based on the desired quality of addition. Adaptive
quality control can be achieved by various design methods,
for example, SASIMI metod [17] or subcircuits isolation and
their approximation in accordance with the requested quality
of results in method [32].

V. SOFTWARE APPROXIMATION AND PLATFORMS
SUPPORTING APPROXIMATE COMPUTING.

There are many approaches targeting software approxima-
tion as documented in the recent survey [1]. One research
direction is based on extending common programming lan-
guages to support approximate computing. This work includes
the disciplined approximate programming paradigm that lets
programmers declare which parts of an algorithm can be com-
puted approximately. For example, EnerJ [33] is an extension
to Java that adds approximate data types and approximate
operations. It assumes that data storages of various reliability
and approximate arithmetic units are available in the hardware
platform. Approximate data can be processed more cheaply,
but less reliably. The system can statically guarantee isolation
of the precise program component from the approximate
component.

In another approach—Axilog, a set of language annotations
was developed that provide the necessary syntax and semantics
for approximate hardware design and reuse in Verilog [34].
Axilog enables the designer to relax the accuracy requirements
in certain parts of the design, while keeping the critical parts
strictly precise

In the Chisel project, reliability- and accuracy-aware opti-
mizations of computational kernels are performed by means
of integer linear programming and intended for approximate
hardware platforms [35].

However, only in a few cases the software approximations
were connected with a hardware platform supporting approx-
imate computing. An integrated HW/SW approach to approx-
imate computing has been developed in [36]. It consists in
automatic resilience characterization of the target application



TABLE I
BENCHMARK PROBLEMS AND ERROR COMPUTING APPROACHES USED FOR EVALUATION OF SYSTEMATIC APPROXIMATION METHODS.
Method Ref. Benchmarks Error computing based on:
ABACUS [29] FIRb, perceptron, block matcher training data
ABM [12] 6 ISCAS-85 benchmark circuits BDD
ASLAN [28] FIRb, IIRc, MACf, DCTd, Sobel and 8-input neuron for MPEG encoder and clustering. sequential QCCa(SAT)
CGP [30] Multipliers, 9-input and 25-input median training data
CGP-BDD [13] 16 combinational circuits from LGSynth, ITC and ISCAS BDD
Logic Isolation [32] Adders, multipliers, datapath modules, DCTd, FFTe, FIRb probability of output
SALSA [27] Adders, multipliers, datapath modules, FIRb, IIRc, DCTd QCCa(SAT)
SASIMI [17] ISCAS85 benchmarks, multipliers, adders, datapath modules training data
a Quality Constraint Circuit b Finite Impulse Response filter c Infinite Impulse Response filter d Discrete Cosine Transform
e Fast Fourier Transform f Vector Dot Product

in order to identify those parts of the application that are suit-
able for approximation. The application is then implemented
using a specialized hardware (processor) whose components
can be tuned in accordance with the desired output quality
to adapt their energy consumption. In addition to the off-line
tuning of the application, an automated on-line regulation of
the degree of approximation is supported by the hardware.
This energy-efficient recognition and mining processor was
fabricated demonstrating that approximate computing can lead
to 2-20X energy savings with minimal impact on output
quality across a range of applications.

Finally, in order to accelerate program execution and re-
duce power consumption, trained artificial neural networks
were proposed to replace an original complex general-purpose
code written in an imperative language [37]. Neural networks
implemented on a chip were also recognized as a good target
for the approximation methods [38].

VI. EVALUATION OF APPROXIMATION TECHNIQUES

Approximate solutions are always evaluated in comparison
with their accurate counterparts. However, also the techniques
developed for actual approximations have to be evaluated.

In the case of software approximations, AxBench—a set of
representative applications from various domains—was intro-
duced to explore different aspects of approximate computing
and compare approximation strategies [37]. Unfortunately, for
the evaluation of circuit approximation techniques, suitable
benchmark circuits (with known errors and other parameters)
are not available.

In order to compare circuit approximation techniques, it
would be requested for each technique and each benchmark
circuit to provide a Pareto front containing the best tradeoffs
achieved for key circuit parameters such as the error, area,
delay and power consumption (in a given fabrication tech-
nology), assuming that a fixed time budget is available for
the approximation procedure. Figure 3 shows a comparison
of four approximation methods by means of Pareto fronts ob-
tained using multi-objective CGP (MO) and two-stage single-
objective CGP (SO, three different sets of weights for the
average error, area and delay considered) in the task of 8-bit
multiplier approximation [39]. The axes are normalized with
respect to an original accurate multiplier.

Fig. 3. Pareto fronts obtained for the approximate 8-bit multiplier using
four approximation methods when the same time is available for each
approximation method.

VII. CONCLUSIONS

In this paper, we briefly surveyed the field of approximate
computing with a special focus on approximate circuits. We
can summarize that approximate computing is currently a
rapidly growing multidisciplinary field with a potentially huge
impact not only on computer engineering but on the whole
society because it tries to address one of the major global
issues—energy efficiency. However, approximate computing is
not a panacea. Approximations have to be carefully introduced
and their results have to be carefully analyzed. In order to
be accepted as a standard design paradigm, a lot of research
is needed, especially in the areas of quality (error) analysis
and computation, automated approximation methodologies and
scalable solutions for complex systems.
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