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ABSTRACT

High speed networks operating at 100 Gbps pose many chal-
lenges for hardware and software involved in the packet pro-
cessing. As the time to process one packet is very short
the corresponding operations have to be optimized in terms
of the execution time. One of them is non-cryptographic
hashing implemented in order to accelerate traffic flow iden-
tification. In this paper, a method based on linear genetic
programming is presented, which is capable of evolving high-
quality hash functions primarily optimized for speed. Evolved
hash functions are compared with conventional hash func-
tions in terms of accuracy and execution time using real
network data.

CCS Concepts

eNetworks — Network monitoring; eComputing method-
ologies — Search methodologies; Genetic programming;

Keywords

Linear Genetic Programming, Network applications, Hash
function

1. INTRODUCTION

We are witnessing a significant progress in the develop-
ment of high speed computer networks. Data centers are
running at 10 gigabit-per-second (Gbps) speeds and mov-
ing to 40 Gbps. Solutions for 100 Gbps are already avail-
able. New network applications, new security threats and
the growing communication speeds are major current chal-
lenges for precise and accurate network monitoring. As it
turns out that networks have to be monitored at the appli-
cation layer, it is crucial to identify the application (or the
application protocol) which the traffic belongs to [24]. The
current practice in the area of network monitoring is based
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on flow measurements, where the flow is uniquely identi-
fied by five parameters within a certain time period: source
and destination IP address, source and destination port and
transport protocol. This means that each packet has to be
processed. In order to identify the application (or the ap-
plication protocol) the network traffic belongs to, one has
to inspect one or several packets with a payload. The main
difficulty is that the time to process one packet is less than
7 ns in the case of modern 100 Gbps links.

The most promising approach capable of solving this prob-
lem is software defined monitoring (SDM) [16]. The idea of
SDM is that most traffic can be processed in hardware using
relatively simple (ad so fast) logic circuits whose function-
ality (i.e. the rules of operation) can be controlled from
software. Unrecognized traffic, which in practice represents
only a fraction of the whole traffic, is then analyzed by so-
phisticated algorithms in software. According to [16], about
80% of flows can be processed in hardware after a learning
phase of the SDM system is finished. However, during the
learning phase, the software has to handle most of the flows.

One of the most frequently called functions from the soft-
ware implementation is a hash function, which assigns a
memory address (slot) where the data of a given flow are
stored to the input flow. A good hash function should ex-
hibit some properties (see more in Section 2.1), in particular,
the number of collisions have to be minimal for the data of
a given target domain. In the case of SDM, there is another
important requirement—obtaining of the hash (i.e. the out-
put of the hash function) has to be very fast. The reason is
that even if most of traffic is processed in hardware, a rela-
tively intensive data stream (about 20 Gbps) has still to be
processed in software. Moreover, the hash function is typi-
cally called several times in order to obtain desired address
because the memory addressing system is designed as hi-
erarchical, for example, in the cuckoo hashing scheme [22].
Hence it is important to optimize not only the quality of
hashing, but also the execution time.

The goal of the paper is to propose and evaluate a method
capable of providing high quality and easy-to-compute hash
functions for SDM. As hash functions are sequences of in-
structions, it is natural to utilize linear genetic programming
(LGP) for their design. In order to minimize the execution
time, candidate hash functions are constructed using simple
instructions such as addition and logic operations. LGP is
implemented as a parallel evolutionary algorithm exploiting
the island model, i.e. there are several independent popu-



lations evolved separately that are exchanging some genetic
material according to a predefined pattern. Evolved hash
functions are analyzed in terms of the quality and execution
time. They are also compared with 11 hash functions avail-
able in the literature using the real network data collected
in our computer network.

The rest of the paper is organized as follows. Section 2
briefly surveys the principles of hash functions, LGP and
evolutionary design of hash functions. The proposed ap-
proach to the evolutionary design of hash functions using
LGP is introduced in Section 3. Section 4 presents the ob-
tained results in terms of properties of evolved hash func-
tions, their quality and execution time. Conclusions are
given is Section 5.

2. RELATED WORK

This section covers relevant research conducted in the area
of hash function design and evolutionary design using LGP.

2.1 Hash functions

A hash function is a mathematical function h that maps
an input binary string (of length D) to a binary string of
fixed length (R), h: 2° — 2% where D >> R. The output
value is called hash value or simply hash [17].

Hash functions have many applications, for example, hash
tables, caches and cryptography primitives employ them.
Hash functions are primarily used in hash tables to quickly
locate a data record if its search key is given. The hash func-
tion is then used to map the search key to an index which
gives the place in the hash table where the corresponding
record is located.

The quality of the hash function primarily determines
the access time to data and table load factor that can be
achieved for a given memory size. An important require-
ment on hash functions is that a small change in the input
should generate a large change in the output. This is called
the avalanche effect. The definition of hash function implies
the existence of collisions, i.e. h(z) = h(y), where z, y are
two input messages such that  # y. The optimization of
hash functions usually involves both criteria — maximizing
the avalanche effect and minimizing the collision rate.

There are two types of hash functions, cryptographic and
non-cryptographic hash functions. Cryptographic hash func-
tions are used in security applications. Their basic property
is that they are considered practically impossible to invert,
that is, to recreate the input data from their hash values
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Figure 1: Hash table with separate chaining.

double LGP (double x ){

r[0] = x

r[2] = r[0] * r[0]
r[1] = r[2] + r[0]
r[3] = r[1] + r[0]
r[3] = r[3] + r[2]
r[0] = r[2] * r[1]
r[1] = r[1] + r[4]
r[0] = r[0] + r[3]
r[0] = r[1] * r[0]
return r0

Figure 2: Example of LGP individual.

alone. Cryptographic hash functions have to fulfill addi-
tional requirements, for example, first preimage resistance
and collision resistance [19]. These requirements lead to a
more complicated construction procedure and the hash func-
tion needs more time to compute the hash value.

Non-cryptographic hash functions, which this paper deals
with, are typically used for fast lookup in hash tables [17]
and they are much easier to design [20]. Various approaches
have been developed to handle the collisions. For example,
a separate chaining method manages a list of records having
the same hash, see Fig. 1. Each slot in the table refers to
a linear list where the data are stored. The hash value is
computed for a given key and the data are stored to the first
empty slot in the list addressed by the hash. This method
is widely used, because it needs only elementary data struc-
tures and simple operations on lists. Other methods resolv-
ing the collisions are, for example, open addressing, linear
probing, and cuckoo hashing.

Many (non-cryptographic) hash functions have been pro-
posed, for example, DJBHash [4], DEKHash [17], FVN
(Fowler-Noll-Vo) [12], One At Time and Lookup3 [13]. Mur-
murHash2 and MurmurHash3, which are utilized in many
open source projects, are hash functions suitable for gen-
eral hash-based lookup [1]. CityHash is a family of non-
cryptographic hash functions designed for fast hashing of
strings [23]. For hashing of the network flows, the so-called
XOR folding has been proposed [6].

2.2 Linear Genetic Programming

Linear genetic programming [5, 21, 27] uses a linear rep-
resentation of computer programs. Every program is com-
posed of operations called instructions and operands stored
in registers. Example of a candidate program is given in Fig-
ure 2. There are essentially two types of linear GP: machine
code GP, where each instruction is directly executable by
the CPU, and interpreted linear GP, where each instruction
is executable by a virtual machine (simulator) implemented
for a given processor.

An instruction is typically represented by the instruction
code, destination register and two source registers, for exam-
ple, [+, 70,71, 72] is representing the operation 70 = r1+7r2.
The input data are stored in predefined registers or in an
external memory. The result is returned in a predefined
register. The number of instructions in a candidate pro-
gram is variable, but the minimal and maximal values are
defined. The number of registers available in a register ma-



chine is constant. The function set known from GP corre-
sponds with the set of available instructions. The instruc-
tions are general-purpose (e.g. addition and multiplication)
or domain-specific (e.g. read sensor 1). Conditional and
branch instructions are important for solving general prob-
lems. Protected versions of instructions (e.g. a division
returning a predefined value even if the divisor is zero) are
employed in order to execute all programs without invoking
exceptions such as division by zero.

New candidate programs are created using standard ge-
netic operators such as crossover and mutation operating
over lists of instructions. Advanced genetic operators have
been proposed for LGP, for example [7, 9].

The most computationally expensive part of LGP is the
fitness function evaluation. In order to obtain program’s
quality, the candidate program is executed with a set of
training inputs, program’s outputs are collected and com-
pared with desired values. In a multi-objective scenario,
non-functional program parameters such as the number of
instructions can be optimized together with the functional-
ity. We will employ a specific approach, see Section 3.3.

An individual can contain unused code parts, called bloat,
which do not affect the fitness value. However, the bloat
slows down the program execution. If bloat is detected and
deleted, the evaluation time can significantly be reduced.

Parallel implementations of EAs are very popular because
it is not usually difficult to parallelize the EA and obtained
speedup can be significant. Parallel processing can be in-
troduced at different levels of LGP: a parallel evaluation of
candidate solutions, a parallel evaluation of training vectors
or a parallel search in separate subpopulations.

A parallel LGP based on the island model operates with
several subpopulations (the so-called islands) in which the
evolution is conducted separately, but occasional exchange
of the genetic material is permitted. The communication
between islands can be either synchronous or asynchronous.
As the evaluation of population(s) on different islands may
consume different time, the asynchronous approach enables
the islands to exchange genetic material when it is ready, i.e.
the faster islands do not have to wait for the slower islands
as in the case of synchronous communication.

2.3 Evolution of hash functions

In order to evaluate a hash function, a data set has to
be applied and its key characteristics such as the number of
collisions and the output distribution have to be computed.
The quality of hashing on a particular data set then serves
as the fitness score.

In papers [11, 10], GP employed the avalanche effect as
the fitness criterion. In another work, the number of colli-
sions was the main optimization target [14]. Cryptographic
hash functions were evolved by means of gene expression
programming in [25]. Hash functions tailored for a hard-
ware implementations were obtained in [26]. Recently, non-
cryptographic hash functions based on linear and non-linear
feedback shift registers were evolved with the aim of effi-
cient hardware implementation in FPGAs. It was shown
that evolved solutions can achieve better table load factor
in comparison with human-created solutions [8]. Finally,
cache mapping functions, which can be considered as special
instances of hash functions were evolved to optimize param-
eters of processor cache for a particular application [15].
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3. HASH FUNCTION DESIGN

The main goal of this paper is to evolve using LGP a
special hash function for hashing of network flows by means
of a hash table with separate chaining.

3.1 Towards fast hashing

Each network flow is uniquely identified in IPv4 by a
5-tuple (source IP address (32b), destination IP address
(32b), source port (16 b), destination port (16b) and trans-
port protocol (8 b)). In SDM, the network flow identifier has
a constant length of 104 bits. As the target hash function
has to accept only the 104 bit input, there is an opportunity
to create a simple specialized hash function with good pa-
rameters. Universal hash functions consume the input data
‘block by block’ and the blocks are sequentially processed
in a loop. Restricting the input to 104 bits enables to pro-
cess the whole input string in one step, without any loops,
which would significantly contribute to our key objective—
shortening the execution time.

The second factor influencing the execution time is the in-
struction (function) set. Universal hash functions typically
contain instructions such as logical XOR, addition, multipli-
cation and rotation. The most computationally expensive
operation is multiplication. Hence our objective will be to
evolve multiplication less hash functions.

Finally, the number of instructions to be executed influ-
ences the execution time. After many experiments with
LGP, we learned that sufficiently good hash functions re-
quire less than 12 instructions. Rather than applying a mul-
tiobjective LGP searching for a good compromise between
the execution time and quality of hash functions, we pro-
pose to use a single-objective LGP in which the goal is to
maximize the quality of hashing assuming that the program
size is restricted. The validity of this approach is discussed
in Section 4.3.

3.2 Parallel LGP and its parameters

The proposed implementation utilizes the island-based asyn-
chronous parallel LGP model with a ring topology. Af-
ter a predefined number of generations, every island sends
the best individuals to its neighbors. All islands try to re-
ceive new individuals from other islands in every generation.
Newly incoming individuals replace randomly chosen indi-
viduals of the population. However, the best individual of a
given subpopulation is never replaced. The individuals are
sent as integer array messages. In our case, the implemen-
tation is based on MPI [18]. LGP is employed in the style
of [5].

The program size is restricted to contain up to 12 instruc-
tions. The set of constants consists of prime numbers that
are commonly used in cryptographic hash function SHA-2
[2]. The function set includes the addition, logical XOR and
right rotation. Note that right rotation and left rotation are
interchangeable [11]. All LGP parameters are summarized
in Table 1. They were chosen carefully on the basis of many
experiments. The impact of some of them on the process of
evolution will be discussed in Section 4.

3.3 Initialization and fitness function

The initial population is randomly generated. In order to
calculate the fitness score, the responses have to be calcu-
lated for all training vectors. In this process, every training
vector is used to initialize the registers of a candidate hash



Table 1: LGP parameters

Parameter Value
Population size 200
Crossover probability | 90 %
Mutation probability | 15 %
Program length 12
Registers count/type | 8/32b — int

Constants {0x6a09e667, 0xbb67ae85,
0x3c6ef372, Oxab4ff53a,
0x510e527f, 0x9b05688c,
0x1f83d9ab, 0x5be0cd19,
0x428a2f98, 0x71374491}

{RightRotation, XOR, +}

Instruction set

Tournament size 4
Maximum number 1000

of generations

Crossover type One-point

Migration period 40 generations

function. All registers are 32bit. The dimension of a train-
ing vector is reduced before starting the evolution to 3 x 32
bits in such a way that the source and destination IP ad-
dresses remain in the original format and a new 32 bit vector
is created from the source and destination port (sp, dp) and
transport protocol (tp) according to formula

((sp << 16) V dp) P tp.

As real traffic contains especially two types of transport pro-
tocol (TCP and UDP) there is not a significant loss of infor-
mation using this reduction of input vector. As this modi-
fication reduces the input space, it makes the hash function
evolution easier.

The fitness function is based on counting the number of
collisions. Let K; inputs (keys) be mapped into i-th memory
slot by a candidate hash function h. Then the fitness f(h)
is defined as

S = 3 o where )
=1
g0 if K <1 )

and s is the number of memory slots. This function penal-
izes candidate individuals showing many collisions and long
lists in the hash table with separate chaining. Shorter lists
in the table will lead to faster lookup. Lower fitness values
mean better solutions. Example: Consider that two inputs
are assigned to slot ¢ = 5, three inputs are assigned to slot
i =12 and 0 or 1 inputs are assigned to the remaining slots.
Then f(h) = 2% + (22 + 3?) = 17.

4. EXPERIMENTS AND RESULTS

This section introduces the network data used for the eval-
uation and a set of hash functions that will be compared
with evolved hash functions. The experimental evaluation
is focused on a basic statistical evaluation of LGP. Then, the
quality and time of execution of evolved non-cryptographic
hash functions intended for a hash table with separate chain-
ing are analyzed.
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4.1 Network Data

Experiments will be performed with three data sets con-
taining 20,000 (DataSet1), 50,000 (DataSet2) and 100,000
(DataSet3) identifiers of network flows. These sets were col-
lected using a network monitoring device installed in our
computer network in different days and are considered as
the representative data for our network. There are no du-
plicate records in these data sets. DataSetl is used as a
training set for LGP. IP addresses and transport protocol
are converted to the decimal format which is used in our
data sets (Figure 3).

4.2 Hash functions used for comparison

Evolved hash functions will be compared with human-
created hash function DJBHash, DEKHash, One At Time,
Lookup3, FVNHash, Murmur2, Murmur3, CityHash, a spe-
cial hash function XORHash optimized for network flows [6]
and evolved hash functions available in the literature GPHash
[10, 11] and EFHash [14]. A 16 bit hash table with separate
chaining is employed for testing all functions. As conven-
tional hash functions typically produce a 32-bit hash value,
we created a 16-bit output using XOR folding [6].

4.3 Analysis of LGP Setting

The evolution has been carried out using 1, 2, 4, 8 and
16 independent islands (i.e. cores) on a 16-core processor
enabling the parallel processing and communication using
MPI.

In order to obtain basic statistics, 20 independent LGP
runs were performed, each taking 1000 generations (on each
island). In other words, the total time allocated for the
evolution is almost identical independently of the number
of islands, but the number of generated individuals is lin-
early depending on the number of islands. The objective
is to investigate how the quality of results is depending on
available cores. The progress of evolution can be seen as
the median value (out of 20 runs) in Figure 4. While the
individuals were significantly improving for 100 generations,
only small improvements are visible after 200 generations.
Hence enabling 1000 generations for these experiments was
more than sufficient.

The boxplots shown in Fig. 5 give the fitness value after
1000 generations spent by LGP executed with a different
number of islands. Boxplots used in this figure represent
the minimum, first quartile, median, third quartile and max-
imum. The experiments confirmed our assumption that if
more islands are involved a better solution can be obtained,
because more individuals are generated (in total) and ex-
changed among the islands. It has to be emphasized that
we are not interested in an analysis of the speedup obtained
by a parallel implementation in this case.

Fig. 6 shows the number of instructions that were really

192.79.52.199,192.229.91.12,80,4236,TCP

l

3226416327,3236256524,80,4236,6

Figure 3: Example of conversion between a real net-
work record and training vector.
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utilized in the programs created randomly for the initial pop-
ulation and in the programs of the final population. Please
note that the instructions which did not contribute to the
fitness (i.e. bloat) were removed. Even if the maximum pro-
gram size is limited to 20 instructions, the median number
of used instructions is less than 12. This analysis justifies
our initial choice to limit the number of instructions to 12.

4.4 Evolved hash functions

From evolved solutions, two interesting hash functions
were chosen for a detailed analysis. LGPHashl (see the
C code in Fig. 7) is the best scored hash function from all
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Figure 5: The best fitness values obtained from 20

independent runs on 1, 2, 4 , 8 and 16 islands.

the runs. The second hash function selected is LGPHash2
(see the C code in Fig. 8) which is very simple. It ranked
in the first quartile for 16 islands. It has to be noted that
we removed all instructions not contributing to the fitness
from evolved genotypes before creating the source codes in
C which are presented in the paper.

In order to evaluate the impact of multiplication in the in-
struction set and the impact of increasing the number of in-
structions, we repeated our experiments (i) with a modified
function set in which the multiplication was permitted and
(i) with up to 20 instructions allowed in the hash function.

20

-
o
L

10

Number of instructions

Final
population
(20 inst)

Final
population
(12 inst)

Initial
population
(20 inst)

Initial
population
(12 inst)

Figure 6: The number of instructions that were uti-
lized in the initial population and final population if
the program size is limited to 12 and 20 instructions.
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unsigned int LGPHash1 (unsigned int * input ){ unsigned int LGPhash20inst (unsigned int * input ){

r[0] = input[0] r[0] = input[0]
r[1] = input[1] r[1] = input[1]
r[2] = input[2] r[2] = input[2]
r[1] = r[1] + r[2] r[6] = rotr(r[1], r[2])
r[2] = r[1] + r[2] r[1] = r[1] & r[0]
r[4] = r[0] + r[2] r[7] = r[1] + r[4]
r[0] = r[1] + r[4] r[7) = r[7] + r[6]
r[3] = 0x5BE0CD19 r[1] = rotr(x[7], r[6])
r[2] = rotr(r[3], r[4]) r[0] = r[4] + r[6]
r[0] = r[0] + r[2] r[5] = r[1] + r[0]
r[0] = 0xAB54FF53A + r[0] r[7] = r[5] + r[2]
return r0 @ (r0 >> 16) r[4] = rotr(x[1], r[1])
} r[4] = r[7] & r[4]
r[0] = r[0] & r[4]
Figure 7: Evolved hash function LGPHashl. ) return r0 @ (r0 >> 16)
unsigned int LGPHash2 (unsigned int * input ){
r[0] = input|0] Figure 10: Evolved hash function LGPhash20inst.
r[1] = input[1]
r[2] = input[2]
Table 2: The rri}}llmber ];)f C()fllislilpps.
— . e number of collisions
i{g} _ ig f i% Hash function DataSetl | DataSet2 | DataSet3
return 10 @ (10 >> 16) DJBHash 2835 15113 13925
} DEKHash 2926 15247 49017
FVNHash 2756 14957 48780
Figure 8: Evolved hash function LGPHash2. One At Time 2821 14988 48636
lookup3 2742 15009 48737
Murmur2 2800 15050 48749
Evolved hash functions showing the best fitness value out of Murmur3 2744 14911 48763
all runs—LGPhashMult (Fig. 9) for (i) and LGPhash20inst CityHash 2807 14990 48647
(Fig. 10) for (ii)—will be reported for comparison. XORHash 2864 15011 48575
GPHash 2777 15052 48750
4.5 Collision test EFHash 5317 25266 63175
Evolved hash functions as well as the hash functions ob- LGPhashi 2667 15031 48680
tained from the literature have been implemented in C pro- LGPhash?2 2746 15170 48835
gramming language and compiled with the identical com- LGPhashMult 2769 14975 48715
piler setting. All tests were then preformed using these im- LGPhash20inst 2761 14980 48755
plementations.
Table 2 gives the number of collisions for all hash functions
on three data sets. The best values are typed with bold font. all the hash functions except EFHash. It can be concluded
It can be seen that the number of collisions is very similar for that evolved hash functions that are composed of simple
instructions exhibit the quality almost identical with other
) ) ) ) ) hash functions. Neither enabling multiplication (LGPhash-
unmgned‘ int LGPhashMult (unsigned int * input ){ Mult) nor more instructions (LGPhash20inst) have led to a
r[0] = input[0] considerable reduction in the number of collisions.
r[1] = input[1]
r[2] = input[2] 4.6 The execution time
The execution time of hash functions (i.e. their imple-
r[6] = r[2] + r[0] mentations in C) was measured on the Intel XEON E5-2630
r[7] = 0xAB54FF53A processor. Table 3 gives the average execution time obtained
r[5] = rotr(r[1], r[6]) from 20 independent runs for all vectors of a given data
r[6] = r[1] @ r[5] set. Differences between the run times on the same data
r[4] = r[6] * r[0] sets are very small which can be documented on detailed
r[7] = rotr(r[1], r[7]) boxplots depicted in Fig. 11, where we compared the best
r[6] = rotr(x([7], r[4]) evolved hash functions and the fastest conventional function
r[3] = r[6] + r[2] XORHash.
r[0] = r[3] + r[0] The proposed special construction of loop-less and multipli-
return r0 & (r0 >> 16) cation-less hash functions produced the faster solution. En-
} abling the multiplication definitely increases the execution
time, but as the number of instructions is limited to length
Figure 9: Evolved hash function LGPhashMult. 12, evolved hash function containing the multiplication is
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Table 3: The average execution time.

. Time [ms
Hash function DataSet1 DataS[etQ] DataSet3
DJBHash 1.783 5.036 13.254
DEKHash 1.592 4.591 12.199
FVNHash 1.678 4.647 12.373
One At Time 2.365 6.269 15.763
lookup3 1.275 3.736 9.931
Murmur2 1.314 3.820 10.153
Murmur3 1.590 4.434 11.568
CityHash 3.089 7.883 19.237
XORHash 0.913 3.174 8.708
GPHash 1.936 6.229 15.813
EFHash 2.323 16.282 56.921
LGPhashl 0.818 3.039 8.446
LGPhash2 0.756 2.852 8.057
LGPhashMult 0.912 3.349 9.096
LGPhash20inst 0.916 3.242 8.954

still faster than other hash functions. If 20 instructions can
be used, the execution time is prolonged proportionally to
the number of instructions in the candidate program.

4.7 Overall quality of hash functions

The Compilers, Principles, Techniques book [3] proposes
the following formula for evaluating the hash function qual-
ity:

m—1

_ bj(bj +1)/2
@= Z (n/2m)(n+2m — 1)’

Jj=0

®3)

where b; is the number of items assigned to j-th slot, m
is the number of slots, and n is the total number of items.
The numerator estimates the number of slots a hash function
should visit to find the required value. The denominator is
the number of visited slots for an ideal function that puts
each item into a random slot. An ideal function produces
the outputs with almost random distribution probability. If
the hash function is ideal the formula should return 1, and a
good quality is between 0.95 and 1.05. If @ is greater than

9.2

8.6 B

Time [ms]

8.2 B

=

XORHash LGPhashl LGPhash2  LGPhashMult LGPhash20inst
Hash function

Figure 11: The execution time of selected hash func-
tions on DataSet3 calculated from 20 runs.
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Table 4: Overall quality of hash functions

. Quality (Q
Hash function DataSet1 DataSe(tQ) DataSet3
DJBHash 1.005 1.004 1.006
DEKHash 1.012 1.012 1.012
FVNHash 0.999 0.998 1.001
One At Time 1.003 1.001 1.000
lookup3 0.999 1.000 0.999
Murmur2 1.001 1.001 1.000
Murmur3 0.999 0.998 1.001
CityHash 1.003 0.999 0.998
XORHash 1.007 0.999 0.997
GPHash 1.001 1.003 1.000
EFHash 1.338 4.045 6.312
LGPhashl 0.996 1.002 0.999
LGPhash2 0.999 1.003 1.001
LGPhashMult 1.000 0.998 1.000
LGPhash20inst 0.998 0.998 1.000

1, there are more collisions. If the number is smaller, there
are less collisions than randomly distributing function.

From Table 4 it can be seen that evolved hash functions,
despite the fact that they are composed of simple instruc-
tions, show very good quality according to the @ function [3].
This measurement indicated that enabling the multiplica-
tion and more instructions in programs has only a very small
impact on the quality of hashing.

S. CONCLUSIONS

A method based on LGP was proposed which is capable
of evolving high-quality and fast hash functions intended for
network applications. In order to evolve desired hash func-
tions, the function set was composed of simple instructions
and the program size was restricted to 12 instructions. The
fitness function was based on counting the number of col-
lisions and penalizing candidate hash functions generating
many collisions.

The best evolved hash functions were compared with 11
hash functions available in the literature. In order to provide
a fair comparison, all hash functions were implemented in C,
compiled for the same processor and executed several times
to obtain the average execution time and quality.

In terms of the execution time, the best evolved hash func-
tion LGPhash1 provides 10.4%, 4.2% and 3.0% improvement
on DataSets 1, 2 and 3 against the fastest available hash
function XORHash [6] while the number of collisions was re-
duced by 6.8% for DataSet1l and slightly increased by 0.1%
and 0.2% for DataSets 2 and 3. LGPhashl and XORHash
perform almost identically according to the @ quality func-
tion. The obtained speedup seems to be small, but one has
to consider that the hash function is called many times and
total savings are very valuable. Moreover, LGPhashl re-
duced the execution time by 48.5%, 31.4% and 26.9% for
DataSets 1, 2 and 3 with respect to Murmur3 hash func-
tion, which is typically used in SDM and which, on the other
hand, provides a slightly lower number of collisions.

We observed that by enabling the multiplication or by
increasing the program size, the number of collisions can
be improved only insignificantly, but the execution time in-
creased by 5-10%.

In our future work, we plan to analyze the impact of



pipeline processing and instruction scheduling which could
influence the execution time on a particular processor. We
will also test evolved hash functions in a SDM system.
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