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Abstract—Recently, power efficiency has become the most
important parameter of many real circuits. At the same time,
a wide range of applications capable of tolerating imperfections
has spread out especially in multimedia. Approximate computing,
an emerging paradigm, takes advantage of relaxed functional
requirements to make computer systems more efficient in terms
of energy consumption, speed or complexity. As a result, a variety
of trade-offs between error and efficiency can be found. In this
paper, a design method based on a multi-objective evolutionary
algorithm is proposed. For a given circuit, the method is able to
produce a set of Pareto optimal solutions in terms of the error,
power consumption and delay. The proposed design method uses
Cartesian Genetic Programming for the circuit representation
and a modified NSGA-II algorithm for design space exploration.
The method is used to design Pareto optimal approximate
versions of arithmetic circuits such as multipliers and adders.

I. INTRODUCTION

Approximate computing, an emerging paradigm, takes ad-
vantage of relaxed functional requirements to make computer
systems more efficient in terms of energy consumption, com-
puting speed or complexity. Error resilient applications can
achieve significant savings while still serving their purpose
with the same or a slightly degraded quality.

The complexity of computer systems is permanently grow-
ing and thus, automated design tools have to deal with more
and more complex problems specified on higher level of
abstraction than before. The same holds true for approximate
computing. Even though new methods are emerging, there
is a lack of methods for approximate computing offering a
numerous set of trade-off solutions.

Evolutionary algorithms (EAs) have been confirmed to bring
innovative solutions to complex problems. Recently, complex
digital circuits have been optimized by means of EAs while the
scalability of the methods has been improved substantially [5],
[12]. Multi-objective EAs have been used to design simple
approximate circuits from scratch [4].

In this paper, we propose an evolutionary based approach to
design approximate circuits starting from a set of conventional
fully working circuits. The method is evaluated in the task of
approximate 8-bit adders and multipliers design.

II. APPROXIMATE COMPUTING

Recently, power efficiency has become the most important
parameter of almost every computing platform. At the same
time, a wide range of applications capable of tolerating imper-
fections in computations has spread out. As a consequence, a
new research field – approximate computing – has emerged
to investigate how computer systems can be made more
efficient in terms of energy consumption, computing speed
or complexity assuming that some errors are acceptable. It
has been believed, that significant savings can be achieved
by relaxing the requirement of perfect functionality thanks
to the error resilience of some applications. Therefore, the
accuracy of the system can be used as a design metric and
inaccurate solutions can be accepted if an improvement in
other parameters occurs.

The approximation can be introduced at various levels
including the entire computer system architecture [6], particu-
lar components (e.g. ALU) [3], operating system, algorithm
or even programming language [1]. As the complexity of
today’s computer systems grows, manual approximation is
not an efficient design method. Hence, several automated
approximate design methods have been introduced. The design
of approximate circuits is typically based on modifying fully
functional circuits.

The Systematic methodology for Automatic Logic Synthesis
(SALSA) uses a quality function which decides whether a
predefined quality constraint is met or not. The algorithm is
allowed to modify the circuit as long as the quality constraint
is not violated. SALSA has been applied to a number of
problems, e.g. 32-bit adders, 8-bit multipliers, FIR filters, DCT
blocks and others [18].

Another approach, Substitute-and-Simplify (SASIMI), looks
for signal pairs having similar values with a high probability.
By substituting one signal for the other, a part of the circuit
can be removed resulting in area and power savings at the
cost of an error introduced to the output. Moreover, SASIMI
further extends the approach to synthesize quality configurable
circuits, where at runtime, processing of selected input vectors
is given an additional cycle to correct errors due to approxi-
mations [17].

Unlike the aforementioned methods, ABACUS (Automated



Behavioral Approximate Circuit Synthesis) operates directly
on the behavioral descriptions of circuits. ABACUS automati-
cally generates approximate circuits from input behavioral de-
scriptions by performing global transformations on an abstract
synthesis tree (AST) created from the behavioral description.
The outcome approximate circuits are still expressed in be-
havioral code and can be synthesized by means of standard
synthesis tools. Complementary approximate computing meth-
ods, e.g. voltage over-scaling or manually created approximate
components, may be still used [9].

Although most of the design methods deal with combina-
tional circuits, there are methods capable of approximating
sequential circuits. As an example, the Automatic Method-
ology for Sequential Logic Approximation (ASLAN) creates
an approximate version of a sequential circuit that consumes
lower energy, while meeting a specified quality constraint.
ASLAN identifies combinational block in the sequential circuit
that are amenable to approximation and iteratively approx-
imates the entire sequential circuit using a gradient-descent
approach [10].

III. EVOLUTIONARY DESIGN AND OPTIMIZATION

In our previous work, we used evolutionary algorithms to
either design digital circuits from scratch [5] or to optimize
existing circuits [12]. Recently, the evolutionary approach has
been applied in the task of approximate circuits design with
respect to multiple objectives [4].

A. Cartesian Genetic Programming

The proposed method is based on CGP, in which a circuit
is represented as a fixed-sized cartesian grid of Nr×Nc nodes
interconnected by a feed-forward network (see Figure 1). Node
inputs can be connected either to one of Ni primary inputs or
to an output of a node in preceding L columns. Each node
has a fixed number of inputs Nni and outputs Nno and can
perform one of the functions from the set Γ. Each of No

primary circuit outputs can be connected either to a primary
input or to a node’s output. The area and delay of the circuit
can be constrained by changing the grid size and the L-back
parameter.

The genotype is of fixed length, whereas the phenotype is of
variable length depending on the number of inactive nodes, i.e.
nodes whose output is not used by any other node or primary

F

nc columns

n
r r

ow
s

n
o 

pr
im

ar
y 

ou
tp

ut
s

n
i p

ri
m

ar
y 

in
pu

ts

F F F F

F F F F F

F F F F F

Fig. 1. Cartesian Genetic Programming.
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Fig. 2. Example of a CGP representation of 3-bit ripple-carry adder.

output (see Figure 2). This implies the existence of individuals
with different genotypes but the same phenotypes, which is
usually referred to as neutrality. It was shown that for certain
problems the neutrality significantly reduces the computational
effort and helps to find more innovative solutions [7].

Standard (single-objective) CGP uses a simple mutation
based (1 + λ) evolutionary strategy as a search mechanism,
the population size 1 + λ is mostly very small, typically,
λ = 4. The initial population is constructed either randomly
(evolutionary design) or by mapping of a known solution to
the CGP chromosome (evolutionary optimization). In each
generation, the best individual is passed to the next generation
unmodified along with its λ offspring individuals created by
means of point mutation operator. In case more individuals
with the best fitness exist, a randomly selected one is chosen.
The mutation rate m is usually set to modify up to 5 %
randomly selected genes.

B. Multi-Objective CGP

Unlike the single-objective optimization, which enables to
compare any two candidate solutions and decide which one is
better, the multi-objective optimization leads to the existence
of a whole range of trade-off solutions, if the objectives are
conflicting. In the case of digital circuits design, the better the
circuit works, the larger area and power consumption it has.

Many multi-objective evolutionary algorithms have been
proposed, most of them are based on the idea of Pareto
dominance. The solution p dominates the solution q if p is
no worse than q in all objectives and p is strictly better than
q in at least one objective. The Pareto optimal solutions are
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not dominated by any other solutions and form the so called
Pareto front.

One of the most popular multi-objective evolutionary al-
gorithms is the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) [2]. It is based on sorting individuals according
to the dominance relation into multiple fronts. The first front
F0 contains all Pareto optimal solutions. Each subsequent
front Fi is constructed by removing all the preceding fronts
from the population and finding a new Pareto front. Each
solution is assigned a rank according to the front it belongs
to, the solutions from the front Fi have the rank equal to i.
The NSGA-II fast non-dominated sort is very efficient, the
overall complexity is O(MN2), where N is the population
size and M is the number of objectives. The principle of
the algorithm can be seen in Figure 3. NSGA-II was recently
applied to design approximate digital circuits from scratch, the
convergence of the method was improved by using multiple
islands [4]. The multi-objective approach was compared to
the single-objective CGP in the task of approximate circuits
design, however, the estimation of power consumption and
delay of the circuits was rough [15].

C. Function set
Since the goal of this paper is to optimize the circuits as

much as possible, we use a subset of functions from a 180nm
technology process library. The function cells have one, two or
three inputs (e.g. full adder) and one or two outputs. Complete
list of the functions including their area and leakage power can
be found in Table I.

Function Description Area [µm2] Leakage power [nW]
BUF Buffer (2x/4x) 24/32 0.066/0.113
INV Inverter (1x/2x/4x/8x) 16/16/24/40 0.022/0.036/0.073/0.147

AND2 2-input AND (1x/2x) 32/32 0.075/0.090
OR2 2-input OR (1x/2x) 32/32 0.075/0.090

XOR2 2-input XOR (1x) 56 0.161
NAND2 2-input NAND (1x) 24 0.039

NOR2 2-input NOR (1x) 24 0.035
XNOR2 2-input XNOR (1x) 56 0.161
NAND3 3-input NAND (1x) 36 0.056

NOR3 3-input NOR (1x) 64 0.055
MUX2 Multiplexor (1x) 48 0.087
AOI21 3-input AND/NOR (1x) 32 0.052
OAI21 3-input OR/NAND (1x) 23 0.048

FA Full adder (1x) 120 0.231
HA Half adder (1x) 80 0.161

TABLE I
LIST OF USED FUNCTION CELLS.

Some of the functions (e.g. BUF, INV) have multiple
sizes which differ in the maximum output load, area, power
consumption and delay. During the evaluation, proper size is
selected depending on the output load of the gate. The dynamic
power and delay of the gates depend on the output load as well.

D. Output Error
In the case of digital circuit evolution, the output error

of the candidate circuit is often measured as the number of

correct output bits compared to a specified truth table (i.e. the
Hamming distance). In order to obtain a fully working circuit,
2Ni test vectors have to be evaluated so as to compute the
fitness value. It can be sped up by applying parallelism at
various levels [5] or by introducing formal methods, e.g. SAT
solvers [12] or Binary Decision Diagrams (BDD) [14].

In the case of approximate circuits, Hamming distance is
often not suitable. Instead, metrics based on the arithmetical
distance, such as the worst case error, mean absolute error,
relative error or others are usually used [13]. In this paper, we
use the mean relative error:

fmre :=

∑
∀i

∣∣∣O(i)
orig−O

(i)
approx

∣∣∣
max(1,O

(i)
orig)

2Ni
, (1)

where O(i)
orig is the decimal representation of the i-th circuit

correct output and O
(i)
approx is the individual’s i-th output. In

addition to that, we constrain the worst absolute and relative
errors.

E. Power Estimation

In order to estimate the power consumption of a candidate
circuit, we propose to use a method based on the switching
activity.

The power consumption of digital circuits can be divided
into two different parts: dynamic and static power components.
The first one occurs every time the output of a gate changes
its logic value. In fact a low resistance path between the power
rails is created during switching. Static power consumption is
caused mainly by the leakage current which exists even when
the circuit is in a stable state, i.e. not switching. Although the
static power component has always been present, it has gained
importance in sub-micrometer and nanometer devices [20].

Thus, the total power consumption has to be optimized
by reducing static as well as dynamic part of the power
consumption.

The power consumption P = Ps +Pd of a candidate circuit
is calculated as follows. Because the static part of the power
consumption depends only on a function of a logic gate, the
total static power consumption Ps can be obtained by summing
static leakage for all gates of the candidate circuits. The
leakage of each gate is defined by the technology specification
file (so-called liberty file) for the target technology. The
dynamic part Pd is defined as follows:

Pd = 0.5× Cload × V 2
dd × f × E(transitions), (2)

where Cload is the total load capacitance of the output (i.e. the
sum of all input capacitances of the connected inputs defined
in the liberty file), Vdd is the supply voltage, f is target
frequency and E(transitions) is the expected value of the
output transitions per global clock cycle (switching activity)
[8].

We have used zero-delay model, i.e. glitches are not con-
sidered. Thus, the switching activity can be obtained using
simulation of all input vectors, which is done during the



function verification. Total switching activity of a gate is
calculated as follows:

E(transitions) = 2 · (p0 · p1) = 2 · p1 · (1− p1), (3)

where p0 is probability that output of a considered gate is
equal to logical zero, similarly p1 is probability that the output
is equal to logical one. There are more ways to determine
transition probabilities. The simplest approach is to use the
simulation and count the number of cases for which the output
value was equal to 1.

F. Propagation Delay Estimation

The delay of a candidate circuit is calculated using the
parameters defined in the liberty timing file available for
the utilized semiconductor technology. The delay td of a
cell ci is modeled as a function of its input transition time
ts and capacitive load Cl on the output of the cell, i.e.
td(ci) = f(tcis , C

ci
l ). The delay of the circuit C is determined

as the delay of the longest path:

Delay(C) = max
∀p∈path

∑
ci∈p

td(ci). (4)

The capacitive load on the circuit outputs is chosen to be
equal to the input capacitance of a buffer cell. The transition
time on primary inputs corresponds to the transition time on
the output of a buffer cell.

IV. EXPERIMENTAL RESULTS

In this section, experiments regarding the multi-objective
design of arithmetical circuits are presented. The method
was evaluated in the task of approximate 8-bit adders and
multipliers design. The CGP parameters were set as follows:
500 individuals in the population, 5000000 generations, 10
islands, mutation rate 5 %, number of rows Nr = 1. The
number of columns was Nc = 200 in the case of the adders
and Nc = 1000 in the case of the multipliers.

The circuits were designed with respect to 3 objectives –
the mean relative error (MRE), the power consumption of
the circuit and the delay. The MRE was constrained to be
at most 10 %, the worst case error was constrained to be at
most 5 % of the output range and the worst case relative error
was limited to 1000 %, i.e. all candidate solutions violating
these requirements are discarded.

A. Initial population

In our previous research, we used random initial population
to design simple digital circuits from scratch [5], [4]. For
complex circuits, we seeded the initial population with a single
known solution and optimized the circuit using CGP [12], [11],
[15].

In this paper, we use a set of conventional circuits as the
initial population. CGP chromosomes for 13 different adder
and 6 different multiplier architectures were generated [19].
The power, area and delay estimates of those circuits can be
found in Tables II, III. The adders include Ripple-Carry Adder
(RCA), Carry-Select Adder (CSA), Carry-Lookahead Adder

Architecture Power Area Delay
Ripple-Carry Adder 100.00 % 100.00 % 100.00 %

Carry-Select Adder 201.18 % 174.78 % 61.15 %
Carry-Lookahead Adder 414.74 % 334.78 % 61.99 %

HVTA (Brent-Kung) 286.00 % 201.74 % 68.52 %
HVTA (Han-Carlson) 286.00 % 201.74 % 68.52 %
HVTA (Kogge-Stone) 371.48 % 257.39 % 59.77 %

HVTA (Sklansky) 305.07 % 215.65 % 60.45 %
TA (Brent-Kung) 282.99 % 201.74 % 67.25 %

TA (Han-Carlson) 295.74 % 212.17 % 61.87 %
TA (Knowles) 362.25 % 257.39 % 59.94 %

TA (Kogge-Stone) 342.20 % 243.48 % 57.68 %
TA (Ladner-Fischer) 282.99 % 201.74 % 67.25 %

TA (Sklansky) 298.34 % 212.17 % 57.84 %

TABLE II
POWER, DELAY AND AREA OF VARIOUS CONVENTIONAL 8-BIT ADDERS

COMPARED TO RIPPLE-CARRY ADDER.

Architecture Power Area Delay
Ripple-Carry Array 100.00 % 100.00 % 100.00 %

Carry-Save Array using RCA 102.30 % 100.00 % 71.16 %
Carry-Save Array using CSA 108.42 % 106.16 % 62.03 %

Wallace Tree using RCA 104.29 % 107.39 % 68.91 %
Wallace Tree using CLA 116.10 % 148.48 % 51.26 %
Wallace Tree using CSA 120.12 % 122.35 % 53.28 %

TABLE III
POWER, DELAY AND AREA OF VARIOUS CONVENTIONAL 8-BIT

MULTIPLIERS COMPARED TO RIPPLE-CARRY ARRAY MULTIPLIER.

(CLA), multiple Tree Adder (TA) and Higher Valency Tree
Adder (HVTA) architecures. The multipliers include Ripple-
Carry Array, multiple Carry-Save Array and Wallace Tree
architectures. All parameters in this section are related to the
Ripple-Carry Adder and Ripple-Carry Array Multiplier archi-
tectures, since they are the most power efficient conventional
architectures.

B. Results

Figure 4 shows 473 Pareto optimal 8-bit approximate adders
evolved from the initial population of 13 conventional adders.
Parameters of 9 selected evolved circuits can be found in
Table IV. It can be seen that the Ripple-Carry Adder is optimal
in terms of power consumption among the conventional archi-
tectures, but significant savings can be achieved when relaxing

MRE Power Delay
0.000 % 244.78 % 38.92 %
0.135 % 89.81 % 79.93 %
0.273 % 85.99 % 99.73 %
0.396 % 79.08 % 96.29 %
0.678 % 71.89 % 73.06 %
0.942 % 61.70 % 59.59 %
1.918 % 47.66 % 46.12 %
2.939 % 35.97 % 33.92 %
4.280 % 33.39 % 33.92 %

TABLE IV
PARAMETERS OF EVOLVED APPROXIMATE 8-BIT ADDERS.
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Fig. 4. Pareto front of evolved approximate 8-bit adders.
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Fig. 5. Pareto front of evolved approximate 8-bit multipliers.



the requirement of perfect functionality. The delay of the Tree
Adder with Sklansky architecture was overcome with multiple
evolved circuits (at the cost of increasing the delay). The most
efficient 8-bit adders have power consumption 33–36 % of the
RCA with MRE of 3–4 %.

Similarly, Figure 5 shows 433 Pareto optimal 8-bit ap-
proximate multipliers that were evolved from 6 conventional
circuits. Table V shows the parameters of 11 selected evolved
multipliers. The Ripple-Carry Array Multiplier architecture
was not overcome in terms of the power consumption when
considering no error. The delay of Wallace Tree multipliers
was improved to 48.23 % at the cost of a higher power
consumption. The power savings are lower in comparison with
the adders, for the same savings the error must be higher.

MRE Power Delay
0.000 % 110.52 % 48.23 %
0.813 % 88.70 % 130.51 %
0.951 % 83.69 % 113.02 %
1.511 % 76.15 % 120.06 %
3.092 % 71.61 % 96.79 %
4.177 % 66.19 % 90.54 %
5.334 % 59.66 % 80.60 %
6.579 % 51.01 % 84.70 %
8.218 % 40.98 % 33.94 %
10.000 % 33.74 % 38.02 %

TABLE V
PARAMETERS OF EVOLVED APPROXIMATE 8-BIT MULTIPLIERS.

V. CONCLUSIONS

Recently, complex digital circuits were optimized by means
of evolutionary algorithms [12]. Both single-objective and
multi-objective approaches were applied to design approxi-
mate circuits from scratch [16], [4].

In this paper, the multi-objective approach was improved by
seeding the initial population with a set of conventional fully
working circuits instead of starting with a single conventional
circuit or a random initial population. The method uses CGP
for circuit representation and NSGA-II algorithm to handle
multiple objectives.

The proposed method was evaluated in the task of approx-
imate 8-bit adders and multipliers design. The circuits were
designed with respect to three objectives – mean relative error,
power consumption and delay. Contrasted to previous work,
the method was able to evolve hundreds of Pareto optimal
circuits with significant power consumption savings.

In our future research, we will focus on increasing the scal-
ability of the method in order to design complex circuits. For
that purpose, the use of formal methods will be investigated.
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