
Single-Loop Architecture for JPEG 2000

David Barina, Ondrej Klima, and Pavel Zemcik

Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic
{ibarina,iklima,zemcik}@fit.vutbr.cz

Abstract. We present a novel and very efficient software architecture
designed for JPEG 2000 coders. The proposed method employs a strip-
based data processing technique while performing a single-pass multi-
scale wavelet transform. The overall compression chain is driven by in-
coming data while the fragments of the resulting bitstream are produced
immediately after loading the corresponding data and additionally in
parallel. The method is friendly to the CPU cache and nicely exploits
the SIMD capabilities of the modern CPUs. Implanted into reference
OpenJPEG implementation, our method has significantly better perfor-
mance in terms of the execution time.

Keywords: Discrete wavelet transform, lifting scheme, JPEG 2000

1 Introduction

The discrete wavelet transform (DWT) is a signal-processing method suitable
for decomposition of a signal into several scales. It is often used as a basis for so-
phisticated compression algorithms. Particularly, JPEG 2000 is an image coding
system based on this wavelet compression technique. The format has wide appli-
cation, especially with professional use cases. For example, Digital Cinema Initia-
tives established uniform specifications for digital cinemas in which JPEG 2000 is
the only accepted compression format. Other applications include medical imag-
ing, meteorology, image archiving (printed books, handwritten manuscripts), or
aerial documentation.

Unfortunately, several major issues exist with the efficient implementation of
the JPEG 2000 codec. This is especially true for images with high resolution (4K,
8K, aerial imagery) decomposed into a number of scales. For high resolution data
decomposed into several scales using a typical separable transform, immensely
many CPU cache misses occur. These cache misses significantly slow down the
overall calculation. Furthermore, by following the typical data processing, the
fundamental coding units of the JPEG 2000 format (referred to as code-blocks)
are generated in the order that corresponds to scales. Consequently, it is not
possible to produce a bitstream fragment which corresponds to a spatial image
region earlier than the complete DWT decomposition is finished. Following the
decomposition procedure as defined in the standard, the coefficients of a single
resolution appears all at once. Therefore, the entropy coder (EBCOT) needs to

mailto:ibarina@fit.vutbr.cz


2 David Barina, Ondrej Klima, and Pavel Zemcik

once again return to the data already touched. Finally, current implementations
are built using 1-D transform which is unable to fully exploit the potential of
modern CPUs.

This paper presents an efficient architecture for JPEG 2000 encoders. Our
approach generates multi-scale wavelet transform coefficients in a purely single
pass maner and even on the code-block basis. Our fundamental processing core
nicely fits contemporary SIMD instruction sets (e.g., SSE).

The rest of the paper is organized as follows. The Related Work section
summarizes the state of the art, especially efficient software realizations. The
proposed approach is presented in Single-Loop Design section. Additionally, Per-
formance section provides a performance evaluation. Finally, Conclusion section
summarizes the paper.

2 Related Work

Many constructions of wavelets have been introduced in past three decades. As
a key advance for image compression, Cohen–Daubechies–Feauveau [4] (CDF)
biorthogonal wavelets provided several families of symmetric biorthogonal wavelet
bases. As another important element, S. Mallat [7] demonstrated the orthogo-
nal wavelet representation of images, today referred to as the 2-D DWT. It
was originally computed with a pyramidal algorithm based on convolutions with
quadrature mirror filters. In mid-1990s, W. Sweldens [9,5] presented the lifting
scheme which speeded up such decomposition. He had shown how any discrete
wavelet transform can be decomposed into a sequence of simple filtering steps
(lifting steps). Finally, D. Taubman [10] proposed a new image compression al-
gorithm – Embedded Block Coding with Optimized Truncation (EBCOT). The
algorithm was quickly adopted into JPEG 2000 standard finalized in 2000.

Efficient realization of JPEG 2000 transform was outlined in [11]. The author
described his implementation built with 16-bit fixed-point numbers. However,
he did not provide much implementation details and he did not consider any
friendliness to the CPU cache nor the SIMD set. Nevertheless, he expressed the
memory requirements for multi-scale DWT as (4 + 2S)M samples, where S is
the number of lifting steps, and M is the width of the image. As the transform
coefficients have to be arranged into code-blocks, the total memory requirements
for JPEG 2000 codec are (4+2S+3×2cn)M samples, where 2cn is the code-block
height. The initial 4 term corresponds to 2 lines per one decomposition scale.
This imposes that his implementation generates all code-blocks at the same time,
not one after another. Here we would like to make a short comment. According to
the description in [11], their implementation does not process the data in a single
loop. However, for a moment, let us assume that their implementation would do
so. Still, this strategy is fundamentally different from the architecture proposed
in this paper which generates individual blocks sequentially while reusing the
same memory area for output coefficients all the time. Regarding the input
processing, we have compared these two strategies (line-based and block-based)
in [1]. They were almost equally fast. However, the line-based processing does not



Single-Loop Architecture for JPEG 2000 3

fit the JPEG 2000 code-blocks, does not allow the parallel code-block processing,
and does not allow to reuse the memory for HL, LH, and HH sub-bands. The
motivation behind our work is to overcome these issues.

Many authors have tried to find an efficient schedule for 2-D DWT calcula-
tion. In [2], the authors proposed several cache-related optimizations of DWT
phase. Although they still kept separated 1-D filtering, they interleaved the ver-
tical pass of multiple columns. They also stored the LL sub-band contiguously
in memory which is suitable for the next level of decomposition. Also, the au-
thors [3] proposed several cache-related improvements and SIMD vectorization of
DWT. At first, they used three specific memory layouts to improve cache local-
ity under the multi-scale decomposition. Then, they used the same technique as
the authors of [2] for interleaving the 1-D filtering on several adjacent columns.
Finally, they vectorized the only the horizontal filtering using SSE instruction
set. In [8], P. Meerwald et al. observed many cache misses especially when using
large images with a width equal to a power of two. In order to overcome this
problem, they have considered two improvements. Firstly, they added padding
after each image row leading to a better utilization of limited set-associativity
cache. Secondly, they filtered several adjacent columns concurrently as the au-
thors of [3] and [2]. In [6], R. Kutil focused on the 2-D transform in which he
merged vertical and horizontal passes into the single loop. Two nested loops
(an outer vertical and an inner horizontal loop) are considered as the single loop
processing all pixels of the image. His single-loop approach is line-based and vec-
torized using SSE set. However, they did not extend its approach to the whole
multi-scale wavelet transform.

In [1], we have proposed a stand-alone unit able to transform the image in the
single loop. Using this core, one can instantly produce the wavelet coefficients
while the input data are visited only once. The processing of a particular scale
can be suspended anytime and appropriate portions of the subsequent transform
scale can be executed. In this paper, we extend this approach into a multi-scale
single-loop approach on the code-block basis. This newly proposed approach is
further parallelized and vectorized.

3 Single-Loop Design

In this section, we describe the single-loop core and its adaptation into the JPEG
2000 system. The established strip-based transform directly produces the code-
blocks one by one. The processing of code-blocks is then chained together to
progressively produce the multi-scale transform. On any level, such processing
can be further parallelized in such a manner that the code-blocks are generated
in parallel. As a consequence, this parallelism involves interleaving of the DWT
and Tier-1 stages. Finally, the core is vectorized using the most widely used
SIMD extensions.

The transform employed in JPEG 2000 decomposes the input image(
LL0

m0,n0

)
(0,0)≤(m0,n0)<(M0,N0)

(1)



4 David Barina, Ondrej Klima, and Pavel Zemcik

of size M0×N0 pixels into J > 0 scales giving rise to the resulting wavelet bands(
HLjmj ,nj

)
,
(

LHj
mj ,nj

)
,
(

HHj
mj ,nj

)
,
(

LLjmj ,nj

)
,

∣∣∣∣
(0,0)≤(mj ,nj)<(Mj ,Nj)

(2)

at scales 0 < j < J , and the residual LL band(
LLJmJ ,nJ

)
(0,0)≤(mJ ,nJ )<(MJ ,NJ )

, (3)

at the topmost scale J . Such decomposition is performed using the 2 × 2 core
with a lag F = 3 samples in both directions proposed in [1]. For each scale
0 ≤ j < J , the core requires an access to two auxiliary buffers(

MBjmj

)
0≤mj<Mj

,
(
NBjnj

)
0≤nj<Nj

. (4)

These buffers hold intermediate results of the underlying lifting scheme. The size
of the buffer can be expressed as M × 4 (x-buffer) and N × 4 coefficients (y-
buffer), where 4 is the number of values that have to be passed between adjacent
1-D cores. Taken together, the 2× 2 core needs the access to 8 values in x-buffer
and 8 values in y-buffer.

In detail, the core consumes a 2× 2 fragment of the input signal and imme-
diately produces a four-tuple of coefficients (LL, HL, LH, HH). The produced
coefficients have a lag of 3 samples in the vertical as well as the horizontal direc-
tion with respect to the input coordinate system. In the JPEG 2000 coordinate
system, the core consumes the fragment of the input starting on odd (m,n) coor-
dinates. Every code-block starts on even (m,n) coordinates (the LL coefficient).
Note that any shorter lag is not possible due to the nature of CDF 9/7 lifting
scheme. To simplify relations, we also introduce two functions

Θ(m,n) = (m+ F, n+ F ), and Ω(m,n) = (dm/2e, dn/2e). (5)

The function Θ(m,n) maps core output coordinates onto core input coordinates
with a lag F . The function Ω(m,n) maps the coordinates at the scale j onto
coordinates at the scale j+ 1 with respect to the JPEG 2000 coordinate system.
The 2×2 core transforms the fragment Im,n of an input signal onto the fragment
Om,n of an input signal

Im,n =
(

LLjΘ(m,n) LLjΘ(m+1,n) LLjΘ(m,n+1) LLjΘ(m+1,n+1)

)T
, (6)

Om,n =
(

LLj+1
Ω(m,n) HLj+1

Ω(m+1,n) LHj+1
Ω(m,n+1) HHj+1

Ω(m+1,n+1)

)T
, (7)

while updating the two auxiliary buffers. Finally, operations performed inside
the core can be described using a matrix C as

y = Cx (8)



Single-Loop Architecture for JPEG 2000 5

with the input vector

x = Im,n ‖MBjm ‖
MBjm+1 ‖

NBjn ‖
NBjn+1 (9)

and the output vector

y = Om,n ‖MBjm ‖
MBjm+1 ‖

NBjn ‖
NBjn+1, (10)

where ‖ denotes the concatenation operator.
As a next step, we have encapsulated the processing of the code-blocks into

monolithic units. These units are evaluated in horizontal ”strips” due to the
assumed line-oriented processing order. Inside the code-block unit, the 2 × 2
core can be used. Moreover, the unit requires access to two auxiliary buffers
(one for each direction). The size of the buffer can be expressed as 2cm × 4 (for
the x-buffer) and 2cn × 4 (for the y-buffer). As we are using the strip-based
processing with a granularity of the code-block size, the y-buffer is straightly
passed to the subsequent code-block processing unit. The x-buffer will be used
by a strip of code-blocks lying below. At the beginning of the strip, the y-buffer
contains arbitrary values. The first code-block unit initializes this buffer and
passes it to the subsequent unit in x-direction. The transform of this subsequent
unit is started not earlier than the EBCOT on the current unit has been finished.
This allows for reusing the memory for HL, LH, and HH sub-bands.

The above-described procedure is in effect friendly to the cache hierarchy.
The processing engine uses several memory regions of a different purpose. (1)
The resulting code-block sub-bands occupy a few KiB of memory likely settled
in the top-level cache. (2) The y-buffer occupies several hundreds of bytes. (3)
The fragments of x-buffers occupy the same size as the total size of y-buffer.
However, these are used only for short time and then can be evicted from all
levels of the cache hierarchy. (4) The input strip can be simply streamed into
the same memory region which may be in part mirrored in the cache. (5) The
temporary LL bands can be partially mirrored as well. For a smaller resolution,
there is a good chance that the entire working set can fit into the cache hierarchy.

The entire process can be efficiently parallelized. We have in mind the coarse-
grained parallelism using the threads. The key idea is to split the strip process-
ing into several independent regions. Thus, a single thread is responsible for
several adjacent code-blocks. Each thread holds its private copy of y-buffer and
the memory region for the resulting sub-bands (HL, LH, HH). Therefore, sev-
eral EBCOT coders can work in parallel. Moreover, the threads are completely
synchronization-free (they do not need to exchange any data). At the begin-
ning of the strip processing, each thread initializes its y-buffer using a short
prolog phase. There is only simplified core (without the vertical pass and the
output phase) run in this phase. Thanks to the omission of the vertical pass,
the x-buffer is not touched here and no interaction between threads is required.
After the prolog, the processing continues in the usual way. Disjoint fragments
of the x-buffer are accessed by all threads. In our implementation,1 we have

1 available on demand



6 David Barina, Ondrej Klima, and Pavel Zemcik

parallelized the wavelet decomposition as well as Tier-1 encoding. On parallel
architectures, it is also possible to encode every single code-block of the strip
in parallel. However, the parallelization of our implementation is constrained by
the number of computing units. Note that more sophisticated implementations
could parallelize almost entire compression chain.

4 Performance

In the previous section, we have described our design of wavelet transform engine
with the compatibility to JPEG 2000 standard. In this section, we evaluate its
performance and compare it to the competitive solutions.

Let us now focus on physical memory demands. The input image is consumed
gradually using strips with height of 2 × 2cm lines. No more input data are
required to be placed in physical memory at the same moment. For the output
sub-bands, memory for only 4× 2cm+cn coefficients is allocated (considering all
four sub-bands). This memory is reused by all code-blocks in the transform (or
a processing thread). Additionally, we need to allocate two auxiliary buffers of
size Mj × 4 and Nj × 4 coefficients for each decomposition level j. Note that
Mj+1 = dMj/2ecm and Nj+1 = dNj/2ecn , where d.ec denotes ceiling to the next
multiple of 2c; initially M0 = M and N0 = N . For each auxiliary LL band
(excluding the input and the final one), the window of physical memory can be
maintained and progressively mapped onto the right place in the virtual memory.
The size of such window is roughly 3× 2cn ×Mj+1. Note that we need 3 instead
of 2 code-block strips due to the periodic symmetric extension on the image
borders, additionally, a lag of F = 3 lines from the input to the output of the
core. Roughly speaking, the code-blocks of the subsequent scales do not exactly
fit each other. Taken together, our solution requires

(2S + 3× 2cn)M (11)

samples populated into the physical memory. Please note that these memory
requirements are the same as outlined in [11].

Our solution was compared to C/C++ libraries listed on the official JPEG
committee web pages. The OpenJPEG, FFmpeg, and JasPer libraries are dis-
tributed under the terms of open-source licences. Thus, these could be analyzed
through their source code in detail. Note that OpenJPEG and JasPer are ap-
proved as reference JPEG 2000 implementations. The Kakadu implementation
is a heavy optimized closed-source library. To ensure reproducible experiments,
we list versions used – JasPer version 1.900.1, OpenJPEG 2.1.0, and FFmpeg
2.8. The OpenJPEG, JasPer (enforced the 32-bit type), and FFmpeg libraries
implement the transform using 32-bit fixed-point format. Our implementation
is based on 32-bit floating-point format.

The overview of the above described libraries is shown in Table 1. The naive
approach refers to processing the entire image at once while keeping the horizon-
tal and vertical passes as well as the transform scales separated. Furthermore,



Single-Loop Architecture for JPEG 2000 7

library algorithm

our solution strip-based, scales interleaved
OpenJPEG naive
JasPer naive
FFmpeg naive
Kakadu line-based, scales interleaved

Table 1. Software overview in terms of the transform stage.

inside the horizontal and vertical passes, the lifting steps are processed sequen-
tially. As a consequence, samples of the tile are visited many times while being
over and over again evicted from the cache. Unlike the naive approach, the other
two approaches use sophisticated technique where the processing of consecutive
scales is interleaved. Moreover, in case of our strip-based processing, the horizon-
tal and vertical passes were fused into the single loop. Regarding the strip-based
processing, the input is consumed using strips, one by one. The subsequent scales
are recursively processed as soon as enough data is available. For the line-based
processing, no details were provided [11] about the processing of the horizontal
and vertical lifting steps.

The measurements presented in this paper were obtained on Intel Core2
Quad Q9000 running at 2.0 GHz. The CPU has 32 KiB of level 1 data cache and
3 MiB of level 2 shared cache (two cores share one cache unit). The system is
running on 64-bit Linux. All the algorithms below were implemented in the C
language, possibly using the SIMD compiler intrinsics. In all cases, a 64-bit code
compiled using GCC with -march=native -O3 flag was used. The performance
was measured using the clock gettime call. We measured the average time
required to produce a single transform coefficient for various range of image
resolutions.

Considering our test implementation, we have vectorized our processing en-
gine using widely spread SIMD extensions. Since we have built our implementa-
tion over the 32-bit floating point numbers, we used primarily the SSE (Stream-
ing SIMD Extensions) instruction set. The processing inside the 2 × 2 core is
separable into series of 1-D filtering steps. The first idea was to extend the core
to fit the 4-way 128-bit SSE registers. This way, we obtained the 4×4 core inside
which all of the filtering steps are performed using 4-way parallelism through the
128-bit SSE register. This case was also studied in [1]. Unfortunately, an issue
appears when storing the resulting coefficients into separated memory areas. In
detail, the 4 × 4 core produces four 2 × 2 fragments of the output sub-bands.
This operation does not fit the SSE instruction set and consequently degrades
the performance. For this reason, we decided to construct 8 × 8 ”supercore”
consisting of four adjacent 4 × 4 cores. The supercore does not suffer from the
above-described issue and provides a slightly better performance. The 8×8 core
naturally fits into 8-way 256-bit AVX registers. In this case, the storage of the
resulting coefficients is performed in fragments of 4× 4 coefficients which again
do not fit the AVX registers. This second issue is not possible to solve because



8 David Barina, Ondrej Klima, and Pavel Zemcik

4× 4 is the smallest possible code-block size required by the standard. In other
words, a theoretical 16×16 core would produce the 8×8 fragments of sub-bands
which might not fit the 4× 4 code-blocks. We have used the OpenMP interface
to parallelize our code; however, many other implementations are possible.

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

140.0 

100.0k 1.0M 10.0M 100.0M 1.0G

ti
m

e
 [

n
s]

resolution [pel]

proposed
OpenJPEG

JasPer
FFmpeg

Fig. 1. Performance comparison of major libraries. Time per pixel for the transform
stage only. DCI 4K and 8K UHD resolutions indicated by the vertical lines.

We have extracted the transform stage from the libraries described above in
order to get accurate results. This stage was then subject of measurements. The
results are plotted in Fig. 1. As observed also in [6,1], the single-loop processing
has stable performance regardless the input resolution. The proposed implemen-
tation was measured using 4 threads and SSE extensions. However, the SSE or
AVX extensions boost the performance by at most 5 %.

single scale multiple scales

threads time [ns/pel] speedup time [ns/pel] speedup

1 3.08 1.00 5.60 1.00
2 1.59 1.94 3.44 1.62
3 1.22 2.53 2.68 2.09
4 0.97 3.16 2.56 2.19

Table 2. Parallel processing, streaming input. 4096×2160 input, 64×64 code-blocks.
The tile was decomposed into a single (J = 1) and multiple (J = 8) scales.

We have evaluated the possibility of parallel processing. The original single-
loop approach [1] scaled almost linearly with the number of threads. The JPEG
2000 processing has coarser granularity (code-blocks instead of cores) and it is
performed in multiple scales. Higher scales of the decomposition have, unfortu-
nately, significantly lower resolutions in comparison with the input tile. For this
reason, the parallelization is not as efficient as in case of the original approach.
The results of our measurement are shown in Table 2. It can be seen that the



Single-Loop Architecture for JPEG 2000 9

single-scale decomposition scales slightly less than linearly with the number of
threads. As it might be expected, the multi-scale decomposition is not as close
to the linear relationship.

implementation time [ns/pel] original speedup proposed speedup

original 528.73 1.00 —
proposed 1 398.36 1.33 1.00
proposed 2 210.77 2.51 1.89
proposed 3 175.27 3.02 2.27
proposed 4 142.09 3.72 2.80

Table 3. The proposed method inside of OpenJPEG library. 4K resolution.

Since we have implemented only DWT stage of the JPEG 2000 codec, we have
decided to implant our code into OpenJPEG library replacing the original im-
plementation. Note that no part of OpenJPEG is optimized for the performance.
Because our implementation is built using the floating-point format and Open-
JPEG uses the fixed-point format, we have to convert the samples one by one
before and after the transform. The quantization and Tier-1 stage are performed
using the original OpenJPEG’s code. However, these parts of the compression
chain now run in parallel as these are linked to the transform of code-blocks. The
rest of the code remains unmodified and runs in sequence. Eight decomposition
levels, up to 4 threads, and SSE were used. As expected, the single-loop process-
ing has stable performance regardless of the input resolution. The measurement
is summarized in Table 3. It can be seen that the complete compression chain
scales better than the standalone transform stage.

5 Conclusion

We have introduced a new schedule for calculation of the discrete wavelet trans-
form with JPEG 2000 compatibility. In contrast to previously presented schemes,
the newly proposed scheme: generates the code-blocks one by one while reusing
the memory for the resulting coefficients; passes every single code-block to sub-
sequent Tier-1 coding before processing any next code-block (without evicting
the code-block from the cache); generates and encodes the code-blocks in parallel
(fragments of Tier-1 stage run simultaneously with fragments of the transform
stage); exploits SIMD capabilities of modern CPUs as the wavelet coefficients are
generated using 2-D processing unit instead of a conventional 1-D vectorization.

We have integrated our test implementation into OpenJPEG library (the
reference JPEG 2000 software). The performance of this implementation out-
performs the original code even if no parallelization and no SIMD extensions
are used. When the parallel processing is enabled, the performance increases
proportionally to the input size and number of processing threads.

In future work, we would like to implement a complete JPEG 2000 compres-
sion chain.



10 David Barina, Ondrej Klima, and Pavel Zemcik

Acknowledgements This work was supported by the Technology Agency of
the Czech Republic (TA CR) Competence Centres project V3C – Visual Com-
puting Competence Center (no. TE01020415), the Ministry of Education, Youth
and Sports from the National Programme of Sustainability (NPU II) project
IT4Innovations excellence in science (no. LQ1602), and Technology Agency of
the Czech Republic (TA CR) project TraumaTech (no. TA04011606).

References

1. Barina, D., Zemcik, P.: Vectorization and parallelization of 2-D wavelet lifting.
Journal of Real-Time Image Processing (in press)

2. Chatterjee, S., Brooks, C.D.: Cache-efficient wavelet lifting in JPEG 2000. In: IEEE
International Conference on Multimedia and Expo. vol. 1, pp. 797–800 (2002)

3. Chaver, D., Tenllado, C., Pinuel, L., Prieto, M., Tirado, F.: Vectorization of the
2D wavelet lifting transform using SIMD extensions. In: International Parallel and
Distributed Processing Symposium. p. 8 (2003)

4. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly sup-
ported wavelets. Communications on Pure and Applied Mathematics 45(5), 485–
560 (1992)

5. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Jour-
nal of Fourier Analysis and Applications 4(3), 247–269 (1998)

6. Kutil, R.: A single-loop approach to SIMD parallelization of 2-D wavelet lifting.
In: Proceedings of the 14th Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing (PDP). pp. 413–420 (2006)

7. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet repre-
sentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7),
674–693 (1989)

8. Meerwald, P., Norcen, R., Uhl, A.: Cache issues with JPEG2000 wavelet lifting.
In: Visual Communications and Image Processing. SPIE, vol. 4671, pp. 626–634
(2002)

9. Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal
wavelets. Applied and Computational Harmonic Analysis 3(2), 186–200 (1996)

10. Taubman, D.: High performance scalable image compression with EBCOT. IEEE
Transactions on Image Processing 9(7), 1158–1170 (2000)

11. Taubman, D.: Software architectures for JPEG2000. In: Proceedings of the IEEE
International Conference for Digital Signal Processing. pp. 197–200 (2002)


	Single-Loop Architecture for JPEG 2000

