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Abstract— This paper presents results of an exploratory study
comparing various modalities employed in an industrial-like
robot-human shared workplace. Experiments involved 39 par-
ticipants who used a touch table, a touch display, hand gestures,
a 6D pointing device, and a robot arm to show the robot how to
assemble a simple product. To rule out a potential dependence
of results on the number of misrecognized actions (resulting,
e.g., from unreliable gesture recognition), a controlled amount
of interaction errors was introduced. A Wizard-of-Oz setting
with three user groups differing in the amount of simulated
recognition errors helped us to show that hand gestures and
6D pointing are the fastest modalities that are also generally
preferred by users for setting parameters of certain robot
operations.

I. INTRODUCTION

Industrial robots were traditionally used mainly in a large-
scale production. This was primarily due to the large price
of the automation and low flexibility requiring long and
costly adaptation for new products. Recently, EU-supported
projects as SMErobotics1 and EuRoC2 emerged to support
development of easily reconfigurable cognitive robots able
to achieve flexibility required for small to medium scale
manufacturing. Such flexibility must be supported by easy
to use and effective human-robot interaction substituting
traditional ways of programming industrial robots requiring
expert-level knowledge.

Our long-term goal is to create a shared-space environment
similar to the experimental setup shown in Figure 1 where
a human operator can cooperate with a semi-autonomous
cognitive robot using multi-modal interaction and augmented
reality: ARTable. The robot within the envisioned solution
could be programmed once and then perform independently
or it may continuously provide assistance to the operator.
There was a research on what modalities are appropriate for
what most common operations [1] in such a system. As a
first step towards ARTable we were interested in how various
modalities would perform in a similar experiment however
under realistic conditions. Therefore we designed a WoZ
experiment where input modalities were not always working
perfectly and participants had to face interaction errors. The
aim of the experiment was to uncover whether there is
dependence between preference for using particular modality
for setting particular parameter and amount of experienced
interaction errors. Secondarily, we were interested in how
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Fig. 1: Prototype of the human-robot shared-space environ-
ment with augmented reality user interface (image edited).

task completion times will be influenced by used modality
and amount of errors as a time-effective human-robot inter-
action will be of paramount importance for a practical usage
of such system. Video summary of the experiment can be
seen at https://youtu.be/LtiDc3pGjug.

II. RELATED WORK

Robot manipulators used to be programmed by experts at
a low level making them less flexible to production changes.
Recently, approaches allowing high-level programming by
end users appeared. One of these approaches is programming
by demonstration [2] also referred to as kinesthetic teaching
[3], where an operator programs a robot by positioning its
end-effector while learning poses [4] and/or forces [5]. Ex-
isting solutions can be divided into those allowing so called
offline programming where a robot is programmed once [6],
[7], those allowing a continuous human-robot collaboration
[8] and those allowing both [9] modes. The interface may
be for instance projected [10] or integrated into a hand-held
device with augmented reality [6], [7]. Interaction also may
happen in a virtual reality [9]. Alternatively to positioning a
robot’s end-effector, a human operator may demonstrate the
task by actually performing it [11] or by giving high-level
instructions using one [8] or more modalities [6].

Errors in interaction can be according to [12] divided into
following types: misunderstandings, non-understandings and



misconceptions. For our experiment, we choose to simulate
misunderstandings with third-turn repair of the errors. Deal-
ing with errors is often limited to resolving problems during
program execution [13]. The experiment with social robot
programming [14] where gesture and speech-based interfaces
and even the robot’s software were not perfectly reliable has
shown importance of the provided feedback. However, those
errors were not simulated and thus their amount was not
controllable. The framework to support WoZ studies from
[15] allows to insert given amount of random misrecognition
errors, however it is limited to the speech-based interfaces.

Misunderstandings may be caused by a non-perfect input.
For instance the pointed object estimation from [16] is
reported to have 83% success rate despite usage of a prior
information about location of the objects. Another approach
to detection of pointing directions [17] achieved ±10◦ angu-
lar and 93% distance error. The speech recognition system
from [18] achieved 16% error in a noisy environment with
background TV or radio. It can be speculated that amount
of errors would be higher in an industrial environment.

III. USER STUDY DESIGN

The main goal of this study was to find out how errors
affect user preference of input modality while programming
a robot. We were interested in three industrial use cases:
assembly, pick&place and welding of points and seams.
These use cases were transformed into a simple product man-
ufacturing scenario, better fitting our laboratory settings. A
Wizard-of-Oz approach was utilized to avoid implementation
specific errors. Without participant’s knowledge, a man in a
separated room (wizard) observed the scene through a set
of cameras and simulated system responses and a feedback.
Moreover, WoZ allowed us to simulate certain amount of
errors in interaction.

The experimental setup consisted of a table with a top-
mounted Kinect v2 sensor and a projector, a robotic platform
(PR2) and a touch screen computer besides the table. All
sensors were used only for surveillance purposes. During the
experiment, the robot was immobile but it helped to create
impression of a real robotic workspace.

A simple GUI was created to give users feedback through
the projector mounted above the table. There was a bounding
box around each object on the table and a label with its
name. The selected object was highlighted and points and
lines on the objects (selected by a user) were displayed in
a different color. The user interface contained a back button
used for stepping back, when the system made an error. The
button was projected on the table as a red arrow for each
modality except the touch screen (there was an on-screen
one). Moreover, there was an area dedicated to projecting
additional information, animations etc.

A. Input Modalities

Touch table (A) An object is selected by clicking on its
projected description. Welding points and seams are selected
on a projected image of the object. Assembly constraints are
not set with this modality.

Touch screen (B) An object is selected by clicking on
it on a screen. Welding points and seams are selected on
a zoomed picture of the object. Assembly constraints are
not set with this modality. Theoretically there should not
be errors in determination of user intention (e.g. where user
clicked), but in such a complex system, there could always
raise an error, or a user can accidentally click on a wrong
place.

Gesture (C) Objects and welding points are selected by
pointing on them with the index finger. Welding seams are
selected by hovering over a desired seam with the index
finger. A gesture used to specify assembly constraint was
up to the user. Hand gesture recognition and hand pointing
direction recognition is widely studied problem [19], [20].
Recent research shows that 75 to 98% recognition rate is
achievable [16], [17].

6D pointing device (D) Similar to C, but instead of
the index finger a 6D pointing device was used. Although
detection of pose and orientations of this device is more
precise and robust than detection of a hand, there still may
be errors caused by a user, who can point on a wrong object,
or point imprecisely.

Direct robotic arm programming (E) Selecting of ob-
jects and welding points and seams was done by pointing on
them with a robot’s gripper. Just like the 6D pointing device,
determining of pose and orientation of a robotic arm is very
precise, due to reading arms actuators’ internal state, but it
can suffer from the same user errors.

Compared to [1], a direct robotic arm programming and a
touch table were added. A speech was considered inappropri-
ate as it is probably not sufficiently robust for noisy industrial
environments. Our goal was to perform experiment under
realistic conditions and we expected participants (mostly uni-
versity students) to not believe speech programming without
predefined vocabulary could work. Moreover, in [1] speech
was the lowest rated modality.

Direct robot arm programming (kinesthetic teaching) is
commonly used [3], [21], however we are using this tech-
nique in a different manner (e.g. selecting objects instead
of teaching robot how to grasp them). Touch-sensitive table
could be an advantageous alternative to a touchscreen in an
industrial environment, as the feedback, system information
and interaction with system is held in the user’s working
space and due to the fact, a user is not forced to divide
attention between more places.

B. Tasks

Each participant was told to program the robot to make a
simple assembly and packing in a scenario imitating the most
common industrial tasks. The scenario was divided into four
tasks, each consisting of ten steps (setting ten parameters) in
total:

• Assembly: select two objects (e.g. plastic cover and
aluminum profile) and set an assembly constraint(s)
(e.g. cover orientation)

• Pick&place: select an object and select a place where
to put it



• Welding point: select an object, select four points on its
top side (to glue stickers in our scenario)

• Welding seam: select an object, select four edges on its
top side (to seal boxes with tape)

Each task consisted of ten steps meaning that participant
had to set ten parameters: i.e. five times select an object and
place where to put it in the pick&place task or select and
object and according of its type select one or two assembly
constraints in assembly task (see Figure 2). According to
participant’s group, there were zero, one and three (i.e. 0, 10
and 30%) errors in each task. For instance, in 30% error-level
group the system randomly misrecognized three parameters
from ten during each of the four tasks. The errors were
generated automatically by our WoZ application and were
not influenced by the wizard. Order of tasks and steps was
the same for all participants.

We see 0% error rate (used for experiment in [1]) as
an ideal state however hardly achievable with most of the
modalities. 10% seems to be a current realistic level. 30%
was selected as the worst case scenario. We assume it to be
the worst error ratio probably acceptable by users.

C. Methodology

The SUXES evaluation method for subjective evaluation
of multimodal systems has been adopted [22]. It is based
on collecting user’s expectation and experience and provides
means to analyze various interaction methods. The method-
ology divides experiment into following four phases:

1) Background Information: The experiment is briefly
introduced to the subject by a conducter, who is with the
subject during the whole experiment. Then, a background
information about subject (i.e. age, technical knowledge etc.)
is collected.

2) User Expectation: The conductor introduces the shared
workspace, all input modalities and the feedback provided by
the projector. The subject is allowed to ask questions and to
try any modality. Then the subject fills in the questionnaire
about his or her expectations based on the introduction.

3) Experiment and User Experience: The conducter
guides the subject through four strictly defined tasks: the
subject is told what is the current task and step and what to
do when error occurs. The task itself is performed solely by
the participant. Each subject performs those four tasks with
all five modalities (with exception of assembly task, where
modalities A and B are skipped). The order of modalities
is random for each subject to prevent a learning effect.
After that, the subject answers the same questions as in the
previous step.

4) Feedback: The subject answers questions about the
system using Likert scale rating (see Figures 3 and 4). Most
of the subjects also filled valuable fulltext responses.

D. Participants

The experiment has been conducted with 39 participants
assigned randomly into three groups. There were eleven
males and two females in each group. Participants were
mainly university students and researchers with mean age

of 23.7 (CI: 22.5 to 24.9) years. Most of them (30) marked
themselves as PC experts and at the same time beginners
(23) or advanced (15) in robotics. Majority of participants
knew what a touchless interface stands for but never used
one (31), some indicated that they already used this kind of
interface (7) and only one did not know something like this
exists.

The whole experiment took approximately 45 minutes for
each participant and the interaction itself was recorded by a
video camera. Participants’ answers have been collected into
a spreadsheet.

IV. RESULTS

Participants from all groups (0, 10 and 30% of interaction
errors) ordered modalities according to their preference for
setting a given parameter before (expectation) and after the
experiment (experience). Mean of the order from expectation
phase is denoted as rB and from experience phase as rA.
Statistically significant differences between rB and rA within
one group were tested using paired t-test (pt p). Differences
for a particular modality across the groups were tested
using Kruskal–Wallis test with Dunn’s multiple comparisons
test pWd . The same test was also used to compare task
completion times. Confidence level of 95% was used for all
tests. Experience from all participants (all groups) is denoted
as rAo.

A. Parameters

From the Table I showing users’ self-reported data it can
be seen for which modality and which parameter there were
significant differences between rB and rA. Moreover, it can be
seen which modality was the most preferred for a given task
regardless the amount of errors (rAo). It should be noted that
rB of C differs between 0% and 30% groups (pWd = 0.028).

Considering the number of significant differences between
rB and rA from all groups, C and D were ranked significantly
better six times, B and E were both worse once and A was
worse four times. There are no significant differences in
rB between groups meaning that participants from different
groups had similar expectations (with one exception of C
in 0% group, parameter select an object). Moreover, there
are also no differences in rA. From these results it seems
that number of errors in interaction does not have strong
impact on preferred modality. In other words, participants
from different groups had similar expectations (rB) as well
as experience (rA). Overall, it seems that participants mostly
preferred modalities C, D, followed by A, B and the least
preferred was E. Figure 3 shows how participants evaluated
expectation and experience for all modalities overall (regard-
less task).

B. Task Completion Times

Before performing a task the participants were told all
relevant information. During the task, only the next step
was reminded by the conducter. When beginning the task
a participant pressed the ”Start” button and then the ”Stop”
one when finished. We use time between those presses as



(a) User selects plastic cap to be
assembled with aluminum pro-
file.

(b) User performs step back as
a tape was selected instead of
the profile.

(c) Now the intended object
(profile) was selected.

(d) Animation shows how the
robot understood user’s assem-
bly demonstration.

Fig. 2: An example of a typical interaction for the assembly task using the robot arm as an input modality.

modality group select an object select a place select a point select a line assembly constraint
rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo rB rA pt p rAo

A
0% 3.7 3.3 -

3.3
4.3 3.2 0.015

3.5
3.0 2.9 -

3.2
3.2 3.1 -

3.3
2.8 NA -

NA10% 4.4 3.4 0.012 4.6 3.9 - 3.5 3.1 - 3.8 3.3 - 2.9 NA -
30% 4.1 3.3 0.0024 4.6 3.5 <0.001 2.9 3.5 - 3.0 3.4 - 2.4 NA -

B
0% 3.2 2.1 0.02

2.9
2.8 2.1 -

2.7
3.2 2.3 -

2.8
2.9 2.3 -

2.9
3.2 NA -

NA10% 3.7 3.1 - 3.1 2.9 - 3.5 2.9 - 3.7 3.2 - 3.0 NA -
30% 4.2 3.5 - 3.3 3.2 - 3.5 3.2 - 3.2 3.2 - 2.9 NA -

C
0% 4.2 4.2 -

3.8
3.7 3.7 -

3.6
2.7 3.7 0.021

3.6
3.0 3.8 -

3.7
3.9 4.0 -

4.110% 2.9 3.6 - 2.9 3.5 - 2.4 3.9 0.0031 2.8 3.9 0.012 3.6 4.5 0.035
30% 2.7 3.6 0.046 2.7 3.6 0.027 2.9 3.3 - 3.4 3.4 - 3.8 3.9 -

D
0% 2.3 3.5 <0.001

3.3
2.5 3.6 0.0045

3.4
3.7 4.0 -

3.7
3.6 3.7 -

3.5
2.3 3.5 0.011

3.410% 2.1 3.4 0.0018 2.5 3.5 0.012 3.6 3.9 - 3.2 3.4 - 1.9 3.9 <0.001
30% 2.7 3.1 - 2.9 3.0 - 3.8 3.2 - 3.5 3.5 - 2.2 2.9 -

E
0% 1.7 1.9 -

1.7
1.7 2.5 -

1.9
2.4 2.1 -

1.7
2.2 2.2 -

1.6
2.8 2.6 -

2.610% 2.0 1.5 - 2.0 1.4 - 2.0 1.3 - 1.6 1.2 - 3.6 2.5 0.021
30% 1.4 1.5 - 1.5 1.7 - 1.9 1.9 - 1.9 1.5 - 3.7 2.9 -

TABLE I: Participants ordered modalities for each parameter separately from the most preferred (5) to the least (1) before
(rB) and after (rA) the experiment. Where significant difference was found between rB and rA p-value is given. rAo stands
for preference after the experiment regardless of the group (0, 10 or 30%).

an objective measure. The Table II shows those times as
well as found significant differences between groups for each
modality. Differences between modalities are noted below.

The assembly task (consisting of select an object and
assembly constraint parameters) was performed only using
C, D and E modalities. In all groups there are significant
differences between C and E (0%: pWd = 0.003, 10%:
pWd < 0.001, 30%: pWd < 0.001) and between D and E (0%:
pWd = 0.034, 10%: pWd < 0.001, 30%: pWd = 0.002).

The pick&place task consisted of setting select an object
and select a place parameters. In all groups there are signifi-
cant differences between E and each of rest of the modalities
(with max. pWd = 0.049).

The welding point task consisted of setting select an object
and select a point parameters. In 0% group, time for B differs
from C (pWd = 0.0091) and D (pWd = 0.023). E differs
from C and D (pWd < 0.001). In 10% group, time for A,
C and D differs from E (pWd < 0.001). The 30% group
shows differences between E and A (pWd = 0.0018) and C,
D (pWd < 0.001).

The welding seam task consisted of setting select an object
and select a line parameters. In 0% group, there is significant

difference only between C and E (pWd = 0.0029). 10% group
shows difference between E and A, C, D (pWd < 0.001) and
30% group between E and A (pWd = 0.0105), B (pWd =
0.014), C, D (pWd < 0.001).

For most of the tasks C and D were the fastest modalities
followed by A and B. E seems to be unsuitable to the sort
of tasks as those in this experiment as even 10% of errors
affects performance in three of four tasks. It seems that for
other modalities a little amount of errors does not play crucial
role.

C. System Opinion

The last phase of the SUXES evaluation contains opinion
questions. We used the same questions as in [1], with
addition of those related to the erroneous behavior (see
Figure 4).

Regardless of the group, participants were satisfied with
ease of completing the tasks and with time needed to do so.
Participants also claimed it was not difficult to understand
how to use different modalities. The results are highly similar
to those of [1].
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mean

time [s]
significant
differences

mean
time [s]

significant
differences

mean
time [s]

significant
differences

mean
time [s]

significant
differences

A
0% NA

-
34.7 (27.9, 41.5)

0/30: 0.0017
10/30: 0.038

36.8 (31.2, 42.4)
0/30: 0.003

10/30: 0.0022

33.6 (26.1, 41.0)
0/30: <0.001
10/30: 0.0056

10% NA 37.4 (33.5, 41.3) 35.2 (31.6, 38.9) 37.0 (33.4, 40.5)
30% NA 47.5 (42.3, 52.6) 49.1 (43.8, 54.4) 53.13 (47.6, 58.6)

B
0% NA

-
32.8 (28.7, 36.8)

0/30: <0.001
10/30: 0.04

38.4 (34.6, 42.1)
0/30: <0.001
10/30: 0.0047

36.9 (31.7, 42.1)
0/30: <0.00110% NA 41.2 (36.9, 45.4) 41.6 (37.3, 45.9) 44.2 (41.2, 47.2)

30% NA 52.3 (47.1, 57.4) 54.5 (50.1, 58.9) 53.6 (48.0, 59.3)

C
0% 54.8 (46.2, 63.5)

0/30: 0.03
28.0 (25.7, 30.3)

0/30: <0.001
28.3 (24.8, 31.8)

0/30: <0.001
10/30: 0.033

27.6 (24.6, 30.6)
0/30: <0.001
10/30: 0.019

10% 60.4 (47.9, 73.0) 33.7 (29.4, 38.0) 31.9 (27.6, 36.2) 34.8 (30.9, 38.7)
30% 70.5 (61.8, 79.2) 40.9 (37.0, 44.8) 41.2 (36.3, 46.1) 47.4 (41.1, 53.7)

D
0% 61.5 (45.4, 77.6)

0/30: 0.03
10/30: 0.044

28.8 (25.1, 32.5)
0/30: <0.001
10/30: 0.0037

29.3 (25.1, 33.4)
0/30: <0.001
10/30: 0.002

31.0 (26.6, 35.4)
0/30: <0.001
10/30: 0.0023

10% 61.0 (50.8, 71.2) 32.3 (29.8, 34.9) 31.9 (28.6, 35.3) 36.7 (32.2, 41.1)
30% 88.0 (69.3, 106.6) 43.9 (39.1, 48.6) 44.5 (40.6, 48.3) 52.8 (47.9, 57.7)

E
0% 90.2 (71.2, 109.2)

0/10: 0.013
0/30: <0.001

43.7 (40.5, 46.9)
0/10: 0.0059
0/30: <0.001

42.9 (38.1, 47.7)
0/10: 0.014

0/30: <0.001

42.6 (35.7, 49.4)
0/30: <0.001
10/30: 0.044

10% 129.6 (112.2, 146.9) 60.6 (54.9, 66.2) 58.9 (54.1, 63.6) 58.4 (52.7, 64.1)
30% 156.7 (127.6, 185.8) 75.3 (69.2, 81.4) 83.0 (68.2, 97.8) 85.1 (68.9, 101.3)

TABLE II: Task completion mean times (with 95 % confidence intervals) for all modalities, groups and tasks. For each
modality, significant differences between times are noted where found in form of groupx/groupy : pWd .

Fig. 3: User’s assessment how experience matched expecta-
tion.

Most of the subjects rated modalities C and D similar,
however had a stronger believe in 6D pointing device as
they expect it to be more precise than gesture, despite there
was the same amount of errors. Participants were also often
distracted by the fact, that feedback was always projected on
the real objects on the table and not on the place they were
working with. Especially, for B most of them would prefer
feedback (e.g. selected object) to be shown on the screen and
not only on the table. This was however done by purpose,
to ensure each modality has exactly the same feedback and
participants were noticed about this in advance.

In questions related to erroneous behavior a difference can
be seen between error groups. With a growing amount of the
errors, perceived intuitiveness of the modalities decreases,
except for the touch screen, where it grows (see Figure 4).
This could be caused by the fact, that the touch screen is the

Fig. 4: System opinion

only control commonly used by the participants. Moreover,
the back button was on the screen, so the participants were
not forced to think about how to press projected button as
for other modalities. Modalities B and E were in general
evaluated as the least intuitive. Participants stated that with
growing amount of errors, programming was significantly
harder and that errors in communication complicated pro-
gramming.

A few of the participants found out that errors were made
by purpose or that some parts of system were simulated.
However, according to feedback and discussion with partic-
ipants, none of them found out the experiment was WoZ.

V. CONCLUSIONS

The aim of the conducted experiment was to explore
how different modalities used for setting common parameters



when programming a robot cope with interaction errors. Par-
ticipants were divided into three groups according to amount
of simulated errors. Their ranking of the modalities before
and after the experiment as well as answers from feedback
phase were analyzed as subjective measures. Moreover, task
completion times were recorded and analyzed as an objective
measure.

The gesture and 6D pointing device modalities were the
most preferred and fastest modalities in all groups. Touch-
sensitive table and display were in general preferred similarly
and similar task completion times were obtained. With
respect to the task completion times as well as feedback
from participants (system opinion) the robot arm seems to
be inappropriate as a pointing device for tasks as those in
this study and its usage should be reconsidered. It seems
that order of preferred input modalities for a given task is
not affected by amount of interaction errors. Obtained results
support our prior speculation of 10% to be an acceptable
level of errors and 30% to be a worst case scenario as
especially task completion times grow dramatically.

According to the results, multi-modal interaction based on
gestures with complementary usage of a 6D pointing device
seems to be promising. We also see touch-sensitive table as a
perspective modality however it will be necessary to improve
interaction and solve setting more complicated parameters
as the assembly constraint. The robot arm has advantage
of no additional cost however, its usage is physically more
demanding than other modalities and for our use-case with
relatively simple tasks it had no added value. However, for
different types of tasks, e.g. requiring high precision, it could
be more useful.

It should be noted that our study simulated the same
amount of errors for all modalities. In practice, it can be
expected that for instance robot arm modality will be less
error-prone than gesture recognition.

As a future work, we will extend the ARTable prototype.
The projected interface will provide more information and be
fully interactive in conjunction with a touch-sensitive table.
Instead of a touch display, a hand-held device or a see-
through video glasses with augmented reality will be used.
We will also experiment further with robot arm as it could
be useful for complex tasks.
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