
Deliverable-2.4

RINA Simulator; basic functionality
Deliverable Editor: Vladimir Vesely, FIT-BUT

Publication date: 31-January-2015
Deliverable Nature: Software/Report
Dissemination level
(Confidentiality):

PU (Public)

Project acronym: PRISTINE
Project full title: PRogrammability In RINA for European Supremacy of

virTualIsed NEtworks
Website: www.ict-pristine.eu
Keywords: Simulator, OMNeT++, RINA, event-based
Synopsis: This document describes the RINA Simulator for OMNeT

++ a.k.a. RINASim.

The research leading to these results has received funding from the European Community's Seventh Framework
Programme for research, technological development and demonstration under Grant Agreement No. 619305.

Deliverable-2.4

2

Copyright © 2014-2016 PRISTINE consortium, (Waterford Institute of Technology, Fundacio Privada
i2CAT - Internet i Innovacio Digital a Catalunya, Telefonica Investigacion y Desarrollo SA, L.M.
Ericsson Ltd., Nextworks s.r.l., Thales Research and Technology UK Limited, Nexedi S.A., Berlin
Institute for Software Defined Networking GmbH, ATOS Spain S.A., Juniper Networks Ireland Limited,
Universitetet i Oslo, Vysoke ucenu technicke v Brne, Institut Mines-Telecom, Center for Research and
Telecommunication Experimentation for Networked Communities, iMinds VZW.)

List of Contributors

Deliverable Editor: Vladimir Vesely, FIT-BUT
bruno: Thomas Hykel, Marcel Marek, Vladimir Vesely, Ondrej Lichtner, Ondrej Rysavy
i2cat: Eduard Grasa
cn: Kewin Rausch

Disclaimer

This document contains material, which is the copyright of certain PRISTINE
consortium parties, and may not be reproduced or copied without permission.

The commercial use of any information contained in this document may require a
license from the proprietor of that information.

Neither the PRISTINE consortium as a whole, nor a certain party of the PRISTINE
consortium warrant that the information contained in this document is capable of
use, or that use of the information is free from risk, and accept no liability for loss or
damage suffered by any person using this information.

Deliverable-2.4

3

Executive Summary
Simulation often serves for validating and verifying new technologies, which do not
have yet implementation. Simulation also finds weak-points and drawbacks during
test runs and subsequently allows one to enhance development process based on
feedbacks. Hence, the implementation of the Recursive Internet Architecture Simulator
(RINASim) is a natural step to support the design and development of the RINA SDK.
This document introduces RINASim implemented as a framework for the OMNeT++
discrete event simulator. This framework allows the creation of simulation experiments
to study RINA mechanisms and policies as well as possible RINA applications. The
document consists of an installation walk-through, a high-level concept introduction,
key components description and a demonstration of topologies delineation.

Deliverable-2.4

4

Table of Contents
1. Introduction ... 5
2. Installation and configuration .. 6

2.1. OMNeT Installation .. 6
2.2. RINASim Installation ... 7
2.3. OMNeT Handbook ... 9

3. High Level Design ... 15
3.1. Nodes ... 15
3.2. DAF Design ... 19
3.3. DIF Design ... 20
3.4. Policies .. 21

4. Components .. 25
4.1. Application Entity ... 26
4.2. Common Distributed Application Protocol ... 28
4.3. DIF Allocator .. 31
4.4. IPC Resource Manager ... 33
4.5. Flow Allocator ... 35
4.6. Resource Allocator ... 38
4.7. RIB Daemon ... 46
4.8. Delimiting ... 48
4.9. Error and Flow Control Protocol ... 50
4.10. Relaying and Multiplexing Task ... 61

5. Demonstration Scenarios ... 65
5.1. Two Hosts Example .. 65
5.2. Simple Relay Example .. 72
5.3. Small Network Example ... 81
5.4. All Nodes Example ... 90
5.5. Fat Tree Example ... 97

6. Conclusions ... 108
Glossary ... 109
Bibliography ... 116

Deliverable-2.4

5

1. Introduction

During the last two decades, the Internet has become a major communication medium.
Its ongoing expansion leads to deployment of a variety of different technologies,
which in order to achieve a required functionality, add significant complexity. New
technologies bring solutions to new requirements and problems, thus introducing new
mechanisms and policies. Mechanism development and its deployment is an exhaustive
process that requires the combination of testing, validation and verification. In order
to accelerate the discovery of design flaws, it is advisable to create a proof of concept
in, e.g., a simulation environment (before creating a real implementation). OMNeT is
a powerful and widely used discrete event simulator, which provides ideal foundations
for the RINA Simulator implementation. Currently, the largest and most exhaustive
model development in OMNeT is represented by models for IP networks (INET library)
and wireless communication (MANET library). These two initiatives to provide general
and highly customizable models enabling to simulate current IP-based networking
demonstrate the capabilities of a modern simulation environment. Encouraged by this
fact, our aim is to implement RINASim as the third large modeling and simulation
library for OMNeT, enabling anyone to analyze the properties of RINA by means of
intrinsic mechanisms or policies and also to perform simulation experiments with
RINA applications. This report describes the current status of RINASim development.
Though far from being complete, RINASim currently implements most of the basic
mechanisms and can be used for demonstration of RINA behavior, simple application
scenarios and the initial simulation work that has to be carried out by PRISTINE
researchers in Work Package 3.

This report is structured as follows: Chapter 2 describes how to install and run OMNeT
with RINASim. Chapter 3 provides a high-level concept overview of RINA nodes
and components. Chapter 4 thoroughly describes all the implementation specifics of
low-level components. Chapter 5 presents four embedded RINA simulator scenarios,
explains their setup and what behavior could be observed in a simulation. The report
is summarized in Chapter 6.

Deliverable-2.4

6

2. Installation and configuration

The section explains how to install, configure and deploy the RINASim environment.
RINASim is developed as a stand-alone framework for the OMNeT discrete event
simulator. The current version is developed for OMNeT v4.5 from 16th July 2014.
Nevertheless, no incompatibility problems of RINASim on OMNeT 4.6 have been
encountered. However, its full migration towards newer version and further integration
testing is on the roadmap for M14.

2.1. OMNeT Installation

RINASim is developed in OMNeT 4.5 but its source codes are fully backward
compatible with OMNeT 4.4. The following subsections contain a cookbook that
explain where to download, how to install and run the OMNeT IDE for Windows
and Linux platforms. Nevertheless, OMNeT is even ported to more developer exotic
environments, e.g., Mac or BSD.

2.1.1. Windows installation

1. Download source codes from the official webpages [omnetpp-dwnld]. Beware that
in case of 64-bit platform, the simulator and its libraries are still compiled for a 32-
bits architecture.

2. Unpack the source code archive. Preferably to a folder residing on the hard disk
root (like C:\omnetpp-45).

3. Execute the mingwenv.cmd program.

4. In an open MinGW prompt, type ./configure . Check whether you have all the
prerequisites.

5. Execute make , then wait until the whole project successfully builds itself.

6. Run OMNeT++ IDE from MinGW prompt by typing omnetpp , or use shortcut in
<install-dir>\ide\omnetpp.exe

7. If you plan to run outside IDE simulations, then you have to add <install-dir>\bin
\ to the PATH .

8. You cannot benefit from the parallel build feature on a Windows platform. Please
turn it off in menu Project → item Properties, tab C/C++ Build → subtab Behavior,
tick off Enable parallel build.

Deliverable-2.4

7

Figure 1. OMNeT IDE Parallel Build

2.1.2. Linux installation

1. Among prerequisities are the following packages: build-essential gcc g

++ bison flex perl tcl-dev tk-dev libxml2-dev zlib1g-dev

default-jre doxygen graphviz libwebkitgtk-1.0-0 openmpi-bin

libopenmpi-dev libpcap-dev

2. Download source codes from the official webpages [omnetpp-dwnld].

3. Unpack the source code archive with tar xvfz omnetpp-4.5-src.tgz .

4. Type . setenv to add the directory to PATH.

5. Execute ./configure && make , then wait until the whole project successfully
builds itself.

6. Optionally create shortcuts by running make install-menu-item and make
install-desktop-icon

7. Run the OMNeT IDE by typing omnetpp or using shortcut.

8. Enjoy the parallel build feature and a native 64-bit environment.

2.2. RINASim Installation

Stable RINASim source codes are periodically published on OpenSourceProjects
repository. The reader is encouraged to clone repository localy:

Deliverable-2.4

8

git clone https://opensourceprojects.eu/git/p/pristine/

rinasimulator/rinasim pristine-rinasimulator-rinasim

FIT-BUT provides support for the newest stable version release. Users can:

1. contact developers via mail (each filename should be accompanied with the author’s
email);

2. try to post problems as a new tickets via [ops-rinasimtickets] webpage;

3. join shared developers Skype group chat and send
him/her message (just past the following text into
Skype skype:?chat&blob=ucdWTg4wJEILgDahhm9tTuUxGQ8Yr3F2UJTH-

n6lE8qVZfOJKdVUREJ4YyTb91lKEZ3JoOgS9biF003e) ;

Apart from the stable version release, more ad hoc and thematic source codes are
available on the GitHub repository [github-kvetak]. Usually new features are available
there sooner than in stable versions. However, no support is provided for those source
codes.

Once you have any version of RINASim source codes then you can start with RINASim
installation:

1. Open the OMNeT IDE and start project import, menu item File → Import….

2. Chose General and option Existing Projects into workspace.

3. Depending on the form of your source codes, chose either Select root directory or
Select achive file.

https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim
https://opensourceprojects.eu/git/p/pristine/rinasimulator/rinasim

Deliverable-2.4

9

Figure 2. Import Wizard

1. Conclude import via Finish button. Now RINASim should be available in the Project
explorer under folder rina

Figure 3. Project Explorer

2.3. OMNeT Handbook

OMNeT is a discrete event simulator that is freely available for academic purposes. A
page dedicated to the simulator and its community is [omnetpp-main]. It is a general

Deliverable-2.4

10

simulator that is easily extensible because of its modular nature. Additional frameworks
include:

• INET and ANSAINET - wired computer networks [omnetpp-inet] and [omnetpp-
ansa]

• INETMANET and MIXIM - wireless and mobile computer networks [omnetpp-
mixim]

• OverSim - peer-to-peer computer networks [omnetpp-oversim]

• Veins - traffic and mass transportation networks [omnetpp-veins]

• Castalia - wireless sensor networks [omnetpp-castalia]

A comprehensive OMNeT manual covering simulation core is available at [omnetpp-
manual] or for people familiar with simulation is more suitable its quick-reference
variant [omnetpp-ide].

2.3.1. Basics

OMNeT is using a hierarchical structure of simulation modules. Top level system
modules consist of submodules or so called compound modules that could be either
further divided according to a child-parent scheme, or that are undividable and thus
named simple modules.

Figure 4. OMNeT module structure

OMNeT is object oriented simulator that leverages two languages: 1) NED for network
topology description and modules interconnections; 2) C++ for simulation modules
behavior. Modules communicate with each other by sending messages (either in form of
PDUs or timer notifications). Messages could be received either from neighbor modules
or from the same module (self-messages). A module may contain input (for receiving)
and output (for sending) gates. Connections are created between gates. Connection can
exist between sibling modules or modules with parent-child relationship.

Deliverable-2.4

11

Figure 5. Parent/children modules

Simple modules

The NED language describes module´s structure (file with *.ned extension) and C++
implements its functionality (files with *.cc and *.h extensions).

Figure 6. Example of a simple module

Keyword simple defines module´s name TestModule where expected implementation
should be in TestModule.cc and TestModule.h. Module contains two subsections -
parameters and gates - where both are optional. In parameters section, different
properties and variables (int, string, double, xml, etc.) are set. Parameters could be
set on fixed value here, or dynamically in omnetpp.ini file that accompanies every
simulation. Section gates consists of gates definitions (in demo there are two gates, one
input gate called in and one output gate called out).

Compound modules

Compound modules aggregate multiple modules into a larger comprehensive unit.

Figure 7. Example of a compound module

Deliverable-2.4

12

The name of a compound module follows after the keyword "module" (in the example
it is Router). Section parameters and gates have the same semantics as in the case
of any simple module. Section submodules define references together with the name
of imported submodules. Section connections define how input and output gates are
bound together (for instance the IP layer gate named tcpOut is connected with TCP’s
ipIn). The output gate is marked as #-, the input as -→ and bidirectional connections
as ←→.

Network modules

The highest level of abstraction is provided by network modules that describe the whole
topology of different compound and simple modules. Once again it is described in the
NED language but with the different starting keyword "network".

Figure 8. Example of a network module

The previous snippet is an example of a simulation network with four routers
interconnected in a ring topology.

Figure 9. Four routers topology

2.3.2. Simulator and IDE

OMNeT uses the following component architecture:

Deliverable-2.4

13

Figure 10. OMNeT component architecture

• Sim - Discrete event simulator core;

• Envir - Libraries shared by any user code consisting of event scheduler and
dispatcher. Catches and handles exceptions;

• Cmdenv/Tkenv - Libraries for graphical or command line user interface. Allow
interactive execution of simulations with step-by-step debugging and logging;

• Model Component Library - User implemented simulation modules;

• Executing Model - Compiled model of a given simulation scenario.

The OMNeT IDE is using Eclipse since version 4. A basic IDE introduction is available
at ???. The most relevant keyboard shortcuts consist of:

• Ctrl + B = build (compile) simulation modules inside project;

• Ctrl + F11 = run target simulation (either NED file or omnetpp.ini);

• Ctrl + Tab = switching between NED description and associated C++ source codes;

• Alt + Left/Right Arrow = switching between tabs;

• Ctrl + Space = Intelligent helper.

The following picture describes basic OMNeT++ IDE parts:

Deliverable-2.4

14

Figure 11. Basic OMNeT++ parts

Tcl/Tk environment starts after a simulation is successfully compiled and executed. The
first window is for simulation visualization, the second windows is for event logging:

Figure 12. Event logging window

Deliverable-2.4

15

3. High Level Design

This chapter outlines a design of RINA high-level simulation modules, such as the
modules modeling the behavior of IPC, data transfer, end or intermediate nodes.
The detailed description of submodules of these high-level components is provided
in next chapter. In general, a structure of RINASim models follows the structure
proposed in the RINA specification. This intentional correspondence enables anyone
understanding the RINA specifications to easily orient in RINASim too. Though
this structure does not always stand for the most natural representation of RINA
concepts in simulation models, it provides a framework for evaluating properties of
the architecture and to identify missing or inaccurate information in the original
specification. During the design of simulation models we were able to identify
several places where specifications should be refined to provide more complete and
unambiguous information.

3.1. Nodes

RINASim offers a variety of high-level modules simulating the behavior of independent
computing system. Based on the RINA specifications, we can distinguish between the
following node types:

• Host nodes which represent devices or systems that run Distributed Applications.
These nodes implement the full RINA stack and in addition contains an application
process.

• Routers (intermediate nodes) which can be either interior or border. A router is a
device that interconnects different underlaying DIFs and often does not run user
applications.

In the following subsections we describe the RINASim models that represent host
and router devices. These models can be used to quickly set up RINA application
simulation experiments. Through parameterization and extension it may be possible
to test different deployments and settings without the necessity to implement new host
or router models. Full support for extension mechanisms will be released in the next
version of RINASim.

3.1.1. Hosts

Host modules represent end-devices that can run Application Processes (AP). AP
instances are configured to communicate with each other to simulate the behavior

Deliverable-2.4

16

of an arbitrary RINA application. Currently, there are several predefined host nodes
depending on the number of APs:

• Host1AP - Host with only a single Application Process. This nodes is suitable
for experimenting with internal RINA mechanisms or for learning about RINA
mechanisms without incurring additional complexity that stems from simulation of
application processes.

Figure 13. Host1AP

• Host2AP - Host with exactly two Application Processes. This type of node uses two
application processes; which is intended for the simulation of scenarios where two
application processes may interact in a way that can affect the underlaying RINA
stack.

Deliverable-2.4

17

Figure 14. Host2AP

• HostNAP - Host with a configurable number of Application Processes. This host can
be useful in more complex scenarios where complex application interaction among
multiple processes needs to be analyzed and incorporated in simulation models.

Figure 15. HostNAP

As it can be seen, each host consists of a single DIF Allocator process and a number of
IPC processes depending on the depth of RINA stack. In the presented cases, there are
two IPC processes. However, it is possible to create nodes with RINA stack of arbitrary
depth.

3.1.2. Interior Routers

Interior routers represent devices interconnecting (N-1)-DIFs over a coomon (N)-DIF.
Depending on the number of physical interfaces (each one connected to rank 0-DIF),
there are a couple simulation modules available:

Deliverable-2.4

18

• InteriorRouter2Int - Router with a single relay IPC. This IPC operates at 1-DIF layer
and represents a bridge over two 0-DIF IPCs. This router represent the simplest
possible intermediate device that can perform DIF routing. The simulator also
contains models for routers with 3 and 4 interfaces.

Figure 16. Interior router with 2 interfaces

• InteriorRouterNInt - Router with a single relay IPCP operating over rank 1-DIF
and configurable number of 0-DIF IPCs. This is the generic version that enables to
configure the number of underlaying interfaces. While it subsumes other variants of
interior router models it should be used in scenarios where more than 4 interfaces
are necessary. In other case the specialized variants provide a better option as their
structure is fixed and easier to work with.

Figure 17. Interior router with N interfaces

Deliverable-2.4

19

3.1.3. Border Routers

Border routers represent devices capable of interconnecting (N-1)-DIFs over mutual
(N)-DIF, where some of (N-1)-DIF(s) is/are reachable via (N-2)-DIFs. Currently there
is only one Border router model available. A border router with single relay IPC
operating over 2-DIF, three 1-DIFs and a single 0-DIF have the following structure:

Figure 18. Border router

Of course, there are many more possible combinations of host and router
configurations than the ones currently defined in RINASim. However, the aim of
providing predefined node models is not to cover all of possible combinations but
rather to offer the most used ones enabling to quickly set up simulation scenarios.
Certain parameterization can be provided to easier specifying nodes with different
configurations, e.g., number of IPC processes at a single layer. As defining new node
or router with required structure is not a complicated task the present collection of
prepared models seems to be enough.

3.2. DAF Design

Among currently implemented DAF components, there are:

• DIF Allocator,

• Common Distributed Application Protocol (CDAP) Module,

• IPC Resource Manager, and

• Application Process with Application Entities.

Deliverable-2.4

20

Each computing system must have one IPC Resource Manager and one DIF Allocator
submodules. There may be one or more Application Processes (AP), where each AP may
contain one or more Application Entities.

3.3. DIF Design

Each DIF is represented by an IPC process (IPCP) within the boundaries of a single
node regardless whether this node is a host or a router. Each IPCP contains a set
of components that are mainly responsible for data transfer and IPC management
(including enrollment, allocation, etc.). The following figure shows IPC Process
structure, where each subcomponent is described in detail in the following chapter.

Figure 19. Internal components of the IPC Process

The presented structure includes the following building blocks:

• Flow Allocator (FA), which handles (de)allocation requests from the IPC
Resource manager or the RIB daemon. FA itself is structured into the flow table and
flow management modules.

• RIB Deamon (RIBd), which receives and sends CDAP messages and notifies
other submodules about changes in the Resource Information Base (RIG). This
module maintains the state information of the IPCP.

• Resource Allocator (RA), which is the manager of the resources within the IPC
Process. It monitors the operation of the IPC Process and makes adjustments to its
operation to keep it within the specified operational range.

Deliverable-2.4

21

• Error and Flow Control Protocol (EFCP), which in essence provide the
functions of error detection and flow control of data sent and received by the IPCP.
The exact function of this module varies with actual policies associated to each flow
instance.

• Relaying and Multiplexing Task (RMT) is a crossroad for flows within an
IPCP. It multiplexes outgoing PDUs from N-EFCP connections to N-1 ports, and
demultiplexes incoming PDUs from N-1 ports into N-EFCP connections or relays
those PDUs to outgoing N-1 ports if the are directed to other IPC Processes.

3.4. Policies

RINA specifications present the proposed network architecture as a generic framework
where mechanisms are intended to perform basic common functionality and policies
are defined to select the most appropriate implementation of variable functionality.
Thus, it is desired to design RINASim in a way that allows for the definition of
policies and their easy integration in the simulation models. Rather than providing
an exhaustive implementation of policies for each parametrized function, RINASim
provides an interface that is used by the core implementation to call functions defined
by the selected policy. Users are able to write their own policies and , using a
configuration file, plug their policies into the simulation model.

3.4.1. Description

RINASim provides support for user-modifiable policies specifying behavior of
miscellaneous parts of RINA stack functionality. An overview of such policies can
be found in the documentation of each RINASim component. The separation of
mechanism and policy is achieved by splitting the policy procedures into their own
separate modules — i.e. each policy invocation is done by calling a method inside the
proper policy’s module.

Deliverable-2.4

22

Figure 20. Policy modules

To minimize the need of modifying existing C++/NED source codes, the RINASim
policy framework is based on OMNeT NED module interfaces. Instead of placing
a simple module with a policy implementation inside the simulation topology, a
placeholder interface module is used. The type of desired policy implementation is then
determined at the network setup phase by a parameter placed in an INI config file. This
allows for potentially unlimited amount of user policy implementations to be defined
and easily switchable via the configuration files.

3.4.2. Using the policy framework

Each policy consists of a NED interface (e.g. "policies/DIF/RA/QueueAlloc/
IntQueueAlloc.ned") and a base C++ class (e.g. "policies/DIF/RA/QueueAlloc/
QueueAllocBase.{cc,h}").

In case of creating a new policy implementation, the policy writer has to

• create a new simple NED module implementing the policy’s interface, and

• implement this module by creating a new C++ class inheriting from the base C++
class and redefining desirable methods.

Multiple examples of such polices can be found in "policies/DIF/RMT/" and "policies/
DIF/RA".

A new policy implementation can be loaded by setting a proper
parameter of the encompassing module in the configuration file (e.g.
"host.ipcProcess0.resourceAllocator.queueAllocPolicyName = "QueuePerNFlow"").
The parameter value has to match the name of the NED policy implementation module,
otherwise the simulation framework will issue a fatal error in the initialization phase
of the simulation.

Deliverable-2.4

23

3.4.3. Example usage

Use case: A user is working with the simulation scenario SimpleRelay[PingFC]. In the
default setting, each policy of each submodule uses its default policy implementation
specified in the encompassing submodule’s NED file (this default policy is usually a no-
op placeholder). Excerpt from RelayAndMux.ned:

string schedPolicyName = default("LongestQFirst");

string qMonitorPolicyName = default("SimpleMonitor");

string maxQPolicyName = default("TailDrop");

Default policies loaded by the simulation:

Figure 21. Default policy settings

The user wishes to modify a simulation scenario configuration so that the top IPC
process of the interior router uses RED queuing discipline, by which some of the PDUs
get dropped to prevent congestion. The RED algorithm can be simulated in RINA by
two of the RMT policies: QMonitorPolicy (reference implementation "REDMonitor")
and MaxQPolicy (reference implementation "REDDropper").

The policy reconfiguration then consist of two steps:

1) making sure the desired implementations are present in their correct policy folders
("src/policies/DIF/RMT/Monitor" and "src/policies/DIF/RMT/MaxQueue"), and

2) Overriding the default policy implementation settings in simulation configuration
file omnetpp.ini:

**.interiorRouter.relayIpc.relayAndMux.maxQPolicyName = "REDDropper"

**.interiorRouter.relayIpc.relayAndMux.qMonitorPolicyName = "REDMonitor"

Deliverable-2.4

24

Now, when a simulation is run, it uses the specified RED policies:

Figure 22. Overriden policy settings

Deliverable-2.4

25

4. Components

This chapter contains the description of the currently implemented and supported
components. They are based on the current version of RINA specifications and
implemented basic mechanics and policies. They are carefully designed with respect to
its extendability and parameterization. It is assumed that for experimenting with RINA
concepts these components will be extended with the required policies depending on
the character and goals of the target experiments. As mentioned in previous chapters,
these components also compose predefined RINA nodes used for experimental
simulation models to demonstrate properties of different RINA applications. Thus, the
information provided in this chapter may be interesting to anyone who participates
on RINA design and wants to perform experiments with different mechanisms and
policies.

Each component is described using the following set of information:

1. Visual representation of component structure

2. Narrative description of the functionality provided by the component

3. List of the component’s submodules

4. Relevant source files containing code of the component’s implementation

5. NED design structure (e.g., used dynamic and static gates, registered signals,
configurable parameters and properties)

6. Available policies (a list of available user-definable policies)

7. C++ implementation notes (e.g., interface, base class, children classes, notable
methods and attributes)

8. Overview of current limitations and future development plans

Deliverable-2.4

26

4.1. Application Entity

4.1.1. Image

Figure 23. Application Entity

4.1.2. Narrative description

The Application Entity (AE) is created for each flow representing a connection between
two applications. The AE is responsible for:

• enforcing access control, i.e., to evaluate whether the requesting Application Process
has access to the requested Application Process,

• monitoring and managing the associated flow during its duration.

4.1.3. Submodules

The AE consists of two submodules:

• Interface for the AE module "iae" - AE module interface,

• Common Distributed Application Protocol module
"commonDistributedApplicationProtocol". This module sends and receives CDAP
messages on behalf of "iae".

4.1.4. Source codes

Component sources are located in /src/DAF/AE

It consists of following files:

Deliverable-2.4

27

Filename(s) Description

"ApplicationEntity.ned" Compound module holding all the AE
functionality submodules

"IAE.ned" OMNeT++ NED interafce definition

"AEBase.h/.cc" Base class for general AE functionality
intended for inheritance and extensions

"AE.ned" AE simple module generally with one-
flow scheduling flow (de)allocation

"AE.h/.cc" Implementation of AE core functionality

"AEListeners.h/cc" AE listeners

"AEPing.ned" AEPing simple module

"AEPing.h/.cc" AE with Ping-like application behavior

4.1.5. NED design

The IAE is specified before implementation starts. Default AE type is AE.ned.

parameters:

 string aeType = default("AE");

submodules:

 iae: <aeType> like IAE

4.1.6. C++ Implementation

Registered signals that the AE module is emitting:

SIG_AE_AllocateRequest

SIG_AE_DeallocateRequest

SIG_AE_DataSend

SIG_AERIBD_AllocateResponsePositive

SIG_AERIBD_AllocateResponseNegative

Registered signals that the AE module is receiving:

SIG_CDAP_DateReceive

SIG_FAI_AllocateRequest

SIG_FAI_DeallocateRequest

SIG_FAI_DeallocateResponse

Deliverable-2.4

28

SIG_FAI_AllocateResponsePositive

SIG_FAI_AllocateResponseNegative

4.1.7. Future work

1. Revisiting the interfaces would be necessary to adjust interfaces to recent
development.

2. Create new streaming application capable of congesting the resources allocated for
the flow within the DIF.

4.2. Common Distributed Application Protocol

4.2.1. Image

Figure 24. CDAP module

4.2.2. Narrative description

The Common Distributed Application Protocol (CDAP) provides a simple object-based
protocol for distributed applications. Currently, it is the part of RIBDaemon and
ApplicationEntity compound modules. It prepares CDAP messages to be sent and
processes received CDAP messages on behalf of other modules.

4.2.3. Submodules

CDAP is modeled as compound module consisting of five main submodules:

• The Common Application Connection Establishment (CACE) module
"cace". This module is responsible for the establishment phase of the
communication.

Deliverable-2.4

29

• The Authentication (Auth) module "auth". This module provides the means for
secure authentication of communicating parties during connection initialization.

• The Common Distributed Application Protocol (CDAP) module "cdap". This
module processes CDAP messages from/to AE.

• CDAP messages splitter module "cdapSplitter". The splitter delivers appropriate
CDAP message to responsible submodules.

• CDAP messages logger module "cdapMsgLog". The logger module is used for
debugging and accounting purposes of incoming/outgoing messages.

4.2.4. Source codes

Relevant sources for this component are located in /src/DAF/CDAP.

Filename(s) Description

"CommonDistributedApplicationProtocol.ned"CDAP compound module that is part
of ApplicationEntity and RIBDaemon
modules

"CACE.ned" CACE simple module

"CACE.h/.cc" Implementation of CACE core
functionality

"Auth.ned" Auth simple module

"Auth.h/.cc" Implementation of Auth core
functionality

"CDAP.ned" CDAP simple module

"CDAP.h/cc" Implementation of CDAP core
functionality

"CDAPListeners.h/cc" Listeners that catch signals, which CDAP
later processes

"CDAPSplitter.ned" CDAP splitter module

"CDAPSplitter.h/cc" Implementation of a CDAP splitter that
forwards them to the appropriate CDAP
module according to the CDAP message
type.

"CDAPMsgLog.ned" CDAP simple module

"CDAPMsgLog.h/cc" Implementation of CDAP message logger
functionality which records incoming/

Deliverable-2.4

30

Filename(s) Description

outgoing messages that pass through
"cdapSplitter".

"CDAPMsgLogEntry.h/cc" Single CDAP message logger entry with
all of its properties

"CDAPMessage.msg" OMNeT++ CDAP message definition file

"CDAPMessage_m.h/.cc" C++ implementation of CDAP message
classes

4.2.5. NED design

Data-path of interconnected gates for messages:

cdapSplitter.caceIo

cdapSplitter.authIo

cdapSplitter.cdapIo

cdapSplitter.southIo

caceIo.splitterIo

authIo.splitterIo

cdapIo.splitterIo

4.2.6. C++ implementation

Registered signals that the CDAP module is emitting:

SIG_CDAP_DateReceive

Registered signals that the CDAP module is processing:

SIG_AE_DataSend

SIG_RIBD_DataSend

4.2.7. Side notes

Limitations

1. CACE and Auth are placeholders.

2. CDAP is a stub.

Deliverable-2.4

31

Future work

1. Define interface for CDAP;

2. Implement CACE and Auth module.

4.3. DIF Allocator

4.3.1. Image

Figure 25. DIF Allocator

4.3.2. Narrative description

The DIF Allocator (DA) component is the successor of component called InterDif
Directory (IDD), which is now obsolete in RINA specification. DA is responsible for
locating a destination application based on its name. tHe DA is a component of the
DAP’s IPC Management that takes Application Naming Information and access control
information and returns a list of DIF-names through which the requested application
is available.

4.3.3. Submodules

The DA is a compound module containing following five submodules:

• Naming Information module "namingInformation" that provides associating
synonyms to APNs.

• Directory module "directory" that provides a list of supporting DIFs for each AP
(defined as a APN-ACL tuple).

• Search Table module named "searchTable" that provides mapping between APN
and the next DA where to continue the search (DA APN).

Deliverable-2.4

32

• Neighbor Table module named "neighborTable" that provides mapping between
IDD’s peer (IDD APN) and the list of neighboring IDD APNs. This allows RINASim
to work as a "oraculum", which knows how the connectivity graph looks like.

• DIF allocator core module "da" that implements the DIF allocator logic and
provides access interface.

4.3.4. Source codes

Relevant sources for this component are located in /src/DAF/DA.

Filename(s) Description

"DIFAllocator.ned" DIF Allocator compound module that is
part of every node

"DA.ned" DA core simple module

"DA.h/.cc" Implementation of DA core functionality

"NamingInformation.ned" Synonyms naming table simple module

"NamingInformation.h/.cc" Implementation of Synonyms naming
table functionality

"NamingInformationEntry.h/.cc" Single record for naming table, basically
APN as key and list of assigned
synonyms (other APNs)

"Directory.ned" Directory mapping simple module

"Directory.h/.cc" Implementation of Directory mapping
functionality

"DirectoryEntry.h/.cc" Single directory record, which contains
APN as primary key and list of Addresses

"SearchTable.ned" Searching table simple module

"SearchTable.h/.cc" Implementation of Searching table
functionality

"SearchTableEntry.h/.cc" Implementation of Auth core
functionality

"NeigborTable.ned" Neighbor table simple module

"NeigborTable.h/.cc" Implementation of Neighbor table
functionality

"NeigborTableEntry.h/.cc" Implementation of Auth core
functionality

Deliverable-2.4

33

4.3.5. NED design

DA does not have any interconnection between its submodules to send and handle
messages.

4.3.6. C++ implementation

DA is currently not receiving/emitting any signals. Usage of DA components is done
via direct function calls.

4.3.7. Side notes

Limitations

1. SearchTable does not have any impact on current RINASim functionality.

Future work

1. Define interface for DIF allocator;

2. Implement NSM interface with local cache holding DIF allocator responses.

4.4. IPC Resource Manager

4.4.1. Image

Figure 26. IPC Resource Manager

4.4.2. Narrative description

IPC Resource Manager (IRM) is complex component that is part of each IPC process.
It has five main tasks:

Deliverable-2.4

34

1. to query the DIF Allocator in order to localize destination applications,

2. to manage flows with one or more DIFs,

3. to initiate a DAF joining process,

4. to initiate a creation of a new DAF if configured to do so, and

5. to act appropriately when a DIF/DAF is created/lost.

Most notably from the perspective of RINASim, the IRM handles all the application
requests imposed on an IPC.

4.4.3. Submodules

The IPC Resource Manager consists of two submodules:

• IRM - This module acts as a broker between APs and IPCs and handles AP flow
(de)allocation calls

• Connection Table - This module maintains the necessary state for IRM correct
functionality (the state of the N-1 flows).

4.4.4. Source codes

Component sources are located in /src/DAF/IRM. It consists of following files:

Filename(s) Description

"IPCResourceManager.ned" IPC Resource Manager compound
module that is part of Host nodes

"IRM.ned" IRM simple module

"IRM.h/.cc" Implementation of IRM core
functionality

"IRMListeners.h/cc" Listeners that catches signals, which
IRM should process

"ConnectionTable.ned" Connection Table simple module

"ConnectionTable.h/.cc" Connection Table implementation as a
table storing state of AP communication

"ConnectionTableEntry.h/.cc" Single Connection Table entry with all its
properties

Deliverable-2.4

35

4.4.5. NED design

Data-path of interconnected gates for messages from AP to IPC:

IPCResourceManager.northIo

IRM.aeIo

IRM.southIo_

IPCResourceManager.southIo

4.4.6. C++ Implementation

Registered signals that IRM module is emitting:

IRM-AllocateRequest

IRM-DeallocateRequest

IRM handles direct API calls from AP, mainly the ones that are related to the flow
(de)allocation data-path.

4.4.7. Side notes

Future work

1. Define interfaces for both IRM and Connection Table;

2. Change "IRM.aeIo" gate name to something more meaningful.

4.5. Flow Allocator

4.5.1. Image

Figure 27. Flow Allocator

Deliverable-2.4

36

4.5.2. Narrative description

The flow Allocator handles flow (de)allocation requests either from the IPC Resource
Manager or the RIB Daemon.

4.5.3. Submodules

The Flow Allocator consists of three submodules:

• Main Flow Allocator module "fa" acts as the core handler of direct or indirect API
calls (through listeners). It instantiates FAIs and delegates program control to them.

• FA-instance mapping table module "faiTable", which maintains the necessary
state information about which flow is bound to which FAI.

• FA-instance module "fai_<PortId>_<CEPId>" which handles the whole flow
lifecycle including IRM and EFCP gates (dis)connection.

4.5.4. Source codes

Component sources are located in /src/DIF/FA. It consists of following files:

Filename(s) Description

"FlowAllocator.ned" Flow Allocator compound module
holding submodule

"FABase.h/.cc" Base class for general FA functionality
intended for inheritance and extensions

"FA.ned" FA simple module

"FA.h/.cc" Implementation of FA core functionality

"FAListeners.h/cc" FA listeners

"FAI.ned" FA Instance simple module

"FAI.h/.cc" Connection Table implementation as a
table storing state of AP communication

"FAITable.ned" FAITable simple module

"FAITable.h/.cc" Interface for FAITable entries adding,
removing and lookups

"FAITableEntry.h/.cc" Single Connection Table entry with all its
properties

"FAIListeners.h/cc" FAI Listeners

Deliverable-2.4

37

4.5.5. NED design

FAIs are dynamically created and deleted according to the flow lifecycle.

4.5.6. C++ Implementation

Registered signals that FA module is emitting:

SIG_FA_CreateFlowResponseNegative

SIG_FA_CreateFlowRequestForward

SIG_FA_CreateFlowResponseForward

Registered signals that FA module is receiving:

SIG_IRM_AllocateRequest

SIG_IRM_DeallocateRequest

SIG_FAI_AllocateResponsePositive

SIG_RIBD_CreateRequestFlow

SIG_RIBD_CreateFlowResponsePositive

Registered signals that FAI module is emitting:

SIG_FAI_AllocateRequest

SIG_FAI_DeallocateRequest

SIG_FAI_DeallocateResponse

SIG_FAI_AllocateResponsePositive

SIG_FAI_AllocateResponseNegative

SIG_FAI_CreateFlowRequest

SIG_FAI_DeleteFlowRequest

SIG_FAI_CreateFlowResponsePositive

SIG_FAI_CreateFlowResponseNegative

SIG_FAI_DeleteFlowResponse

Registered signals that FAI module is receiving:

SIG_toFAI_AllocateRequest

SIG_toFAI_AllocateResponseNegative

SIG_AERIBD_AllocateResponsePositive

SIG_RIBD_CreateRequestFlow

SIG_RIBD_CreateFlowResponsePositive

SIG_RIBD_CreateFlowResponseNegative

SIG_RIBD_DeleteRequestFlow

Deliverable-2.4

38

SIG_RIBD_DeleteResponseFlow

4.5.7. Side notes

Future work

1. Define interfaces for both FA and FAI;

2. Improve flow lifecycle management (e.g., handling multiple allocation calls).

4.6. Resource Allocator

4.6.1. Image

Figure 28. Resource Allocator

4.6.2. Narrative description

The Resource Allocator is one of the most important components of an IPC Process.
It monitors the operation of the IPC Process and makes adjustments to its operation
to keep it within the specified operational range. Its forwarding and queueing
functionality is customizable by policies. In RinaSim, all the functionality of RA
including a policy architecture is encompassed in a single compound module named
"resourceAllocator" which is present in every IPC process.

4.6.3. Submodules

The Resource Allocator consists of multiple simple modules of various types, namely:

Deliverable-2.4

39

• ra, the central logic of Resource Allocator that manages connections to other IPC
processes via (N-1)-flows as well as the local RMT (i.e. queue allocation and policy
adjustments)

• pduForwardingTable, a forwarding table containing the mapping of destination
addresses and QoS-ids to output ports that is used by the relaying functionality of
the RMT

• pduFwdTabGenerator(abbreviated PDUFTG), a component which, reacting to
defined events, uses custom policies to manage pduForwardingTable entries.

• PDUFTGPolicy, the current policy used by pduFwdTabGenerator in order to
correctly populate/update the pduForwardingTable.

• nm1FlowTable, a table containing information about the active (N-1)-flows.

• queueAllocPolicy, a policy handling RMT queue allocation.

• queueIdGenerator, a policy generating queue IDs from Flow information and PDUs.

4.6.4. Source codes

Component sources are located in /src/DIF/RA.

Filename(s) Description

"NM1FlowTable.cc" implementation of (N-1)-flow table

"NM1FlowTable.ned" (N-1)-flow table simple module

"NM1FlowTableItem.cc" implementation (N-1)-flow table entry

"PDUForwardingTable.cc" implementation of PDU Forwarding
Table

"PDUForwardingTable.ned" PDU Forwarding Table simple module

"PDUForwardingTableEntry.cc" implementation of PDU Forwarding
Table entry

"PDUFTGInfo.cc" PDUFTG module information of the
network state

"PDUFTGListeners.cc" Listeners for events catched by the
PDUFwdTabGenerator module

"PDUFTGUpdate.cc" PDUFTG update message information

"PDUFwdTabGenerator.cc" implementation of PDU Forwarding
Table Generator

"PDUFwdTabGenerator.ned" PDU Forwarding Table simple module

Deliverable-2.4

40

Filename(s) Description

"RA.cc" implementation of RA

"RA.ned" RA simple module

"RABase.cc" abstract class for RA implementation

"RAListeners.cc" signal listeners for RA

"ResourceAllocator.ned" RA wrapper (compound module)

4.6.5. NED design

ResourceAllocator parameters:

Parameter Description

"queueAllocPolicyName" module name of desired QueueAlloc
policy

"queueIdGenName" module name of desired QueueIDGen
policy

"pduftgPolicyName" module name of the desired PDUFTG
policy

RA parameters:

Parameter Description

"qoscubesData" XML configuration of QoS cubes
supported by this IPC process

"flows" XML configuration of (N-1)-flows to be
allocated at the beginning of simulation

4.6.6. Policies

The following policies are currently supported:

Policy folder Description

"policies/QueueAlloc/" a folder for QueueAlloc implementations

"policies/QueueIDGen/" a folder for QueueIDGen
implementations

"policies/Forwarding/" a folder for PDUFTG implementations

"policies/Forwarding/StaticRouting" implementation of PDUFTG policy for
static routing

Deliverable-2.4

41

Policy folder Description

"policies/Forwarding/DistanceVector" demo implementation of a Distance
Vector forwarding policy

See RINASim policy architecture description1 for more details.

4.6.7. C++ Implementation

Emitted signals:

"RA-CreateFlowPositive" "RA-CreateFlowNegative"

4.6.8. Side notes

Future work

• Any kind of IPC process performance monitoring is currently nonexistent and shall
be implemented when there are clear demands

• Fine-grained handling of mapping between (N)-QoS and (N-1)-QoS

• Multicast/Broadcast support for PDUFT

4.6.9. PDU Forwarding Table Generator

Image

Figure 29. PDU Forwarding Table Generator

1 D24-Policies

D24-Policies
D24-Policies

Deliverable-2.4

42

Narrative description of functionality

The PDU Forwarding Table Generator (from now on abbreviated as PDUFTG) is a
component of the DIF Resource Allocator. The component is in charge of populating
the PDU Forwarding Table (PDUFT). The PDUFT is used by the RMT module in order
to successfully deliver incoming/outgoing PDUs to the right destination. There are
different execution flows which lead to the using of the table entries: whenever traffic
from EFCP instances, ports or from the RIB daemon is generated, the RMT looks up the
PDUFT in order to resolve the PDU next hop to its destination. What the PDUFT offers
is the port to select in order to reach a selected destination with given QoS restrictions.
Traffic to the same destination with different QoS requirements will be represented by
different entries in the forwarding table.

Policy framework

The PDUFTG comes with a framework which allows developers to implement their own
routing policies. The framework reacts at some important events which occur in the
PDUFTG. Such events are: the creation of a flow and the receiving of forwarding update
information messages (which identifies when your neighbor decided to exchange
information of its vision of the network). The Generator handles only one policy per
time. A policy can be assigned at startup, using Omnetpp configuration files, or changed
at runtime using the public procedures present in the PDUFTG. When a policy is
removed, or unpublished, then the forwarding table is automatically discarded. When
a policy is published, then it must perform an initial population of the forwarding table
with the Network and Neighbor information present in the PDUFTG (if any).

In order to develop a new routing policy, the developer shall extend the base
PDUFTGPolicy class, create the associated Ned module and implement the related
functionalities. For compatibility purposes a Static Routing policy has already been
implemented using the new routing framework. Such policy allows running simulations
where the network routing is statically configured.

A simple Distance Vector (RIP-like) policy is also included in the simulator. Such
policy allows to test the network in a more realistic situation, where the IPCPs in the DIF
must exchange information in order to allow communication. Note that this policy has
been implemented for educational purposes, in order to provide an example to follow
to build new routing logics and as such it is not optimized for performance.

Deliverable-2.4

43

Sub modules list

Network state list

The Network State is a set of information related to the vision of the network from the
side of certain IPCP. The network state is populated by the routing policy and describes
how IPCPs see the DIF. Such information can be sent later to other IPCPs. It’s a matter
of policy decide when, what and with whom a certain node IPCP share its network state.

Neighbors state list

The Neighbor State is list of the active neighbors of an IPCP. This set is usually
populated by the routing policy when a new flow with some other IPCP has been
established. This set is separate from the Network state because it contains the technical
information about the port to use to reach such neighbor. These information are later
used to populate the Forwarding table.

PDUFTG policy

The PDUFTG policy is a custom implementation of the decision taken when certain
events occurs in the PDUFTG. Policies can deny to react at all to those events, or
build sophisticated actions in order to calculate an efficient routing graph. It is all up
to the implementation to decide what to do, how to populate network or neighbors
information and when to send such information.

Relevant source code files

File path Description

Src/policies/DIF/RA/Forwarding/
DistanceVector/DistanceVectorPolicy.cc

Distance Vector policy

Src/policies/DIF/RA/Forwarding/
DistanceVector/DistanceVectorPolicy.h

Distance Vector policy

Src/policies/DIF/RA/
Forwarding/DistanceVector/
DistanceVectorPolicy.ned

Distance Vector policy

Src/policies/DIF/RA/Forwarding/
DistanceVector/DVPInfo.h

Distance Vector policy message

Src/policies/DIF/RA/Forwarding/
DistanceVector/DVPInfo.cc

Distance Vector policy message

Deliverable-2.4

44

File path Description

Src/policies/DIF/RA/Forwarding/
StaticRouting/StaticRoutingPolicy.cc

Static Routing policy

Src/policies/DIF/RA/Forwarding/
StaticRouting/StaticRoutingPolicy.h

Static Routing policy

Src/policies/DIF/RA/Forwarding/
StaticRouring/StaticRoutingPolicy.ned`

Static Routing policy

Src/policies/DIF/RA/Forwarding/
PDUFTGPolicy.cc

Generic PDUFTG policy

Src/policies/DIF/RA/Forwarding/
PDUFTGPolicy.h

Generic PDUFTG policy

Src/policies/DIF/RA/Forwarding/
PDUFTGPolicy.ned

Generic PDUFTG policy

Src/DIF/RA/PDUFTGInfo.cc Network base information

Src/DIF/RA/PDUFTGInfo.h Network base information

Src/DIF/RA/PDUFTGListeners.cc Listeners for the PDUFTG module

Src/DIF/RA/PDUFTGListeners.h Listeners for the PDUFTG module

Src/DIF/RA/PDUFTGNeighbor.cc PDUFTG view of a neighbor node

Src/DIF/RA/PDUFTGNeighbor.h PDUFTG view of a neighbor node

Src/DIF/RA/PDUFTGUpdate.cc PDUFTG update message

Src/DIF/RA/PDUFTGUpdate.h PDUFTG update message

Src/DIF/RA/PDUFwdTabGenerator.cc PDU Forwarding Table Generator

Src/DIF/RA/PDUFwdTabGenerator.h PDU Forwarding Table Generator

Src/DIF/RA/PDUFwdTabGenerator.ned PDU Forwarding Table Generator

NED design structure

Signals

• RIBD-ForwardingUpdateReceived. The PDU Forwarding Table Generator
module receive signal from the RIB daemon. Such signals are invoked when an
incoming CDAP Write message which contains Network information which shall
be elaborated. The PDUFTG will dispatch such information to the currently active
policy.

Deliverable-2.4

45

• PDUFTG-ForwardingInfoUpdate. The PDU Forwarding Table Generator
module invokes a Forwarding Info Update signal when the currently active
forwarding policy decide it’s time to send such data to a node. The PDUFTG provides
a specialized procedure which will take care of the invocation details, and only need
an FSUpdateInfo class instance as argument. Such class will contains the necessary
information to dispatch the message.

Parameters

• netStateVisible. Boolean parameter: this parameter allows to show during the
simulation the current situation of the Network state set. Usually these information
are shown as a compact table with destination and assigned metric.

• netStateMod. String parameter: this parameter allows to select, with a
cmodule::getModuleByPath() compatible syntax, the module level where the
network state compact report will be seen.

• netStateAlign. String parameter: set the alignment of the network state compact
report table. Can be set left, right or top the module selected with netStateMod
parameter.

Policies

• StaticRoutingPolicy. This policy does not perform any adaptive routing. When
a new flow is created, this policy just adds an entry to the PDU Forwarding Table
using as an input a static network configuration file.

• DistanceVectorPolicy. This policy has been implemented for demo purposes.
Its job is to relay flow information of each node to its neighbors, incrementing the
hop count by one if similar information is not already present in a node network
state. If an information with a more performing metric is detected (less hops), then
the information is exchanged and the PDU Forwarding table is updated to the new
next hop. This is not a complete policy, but can react to the basic topology changes
(insertion of new nodes). The policy does not support a crashed link; for the moment
it simply does not react or realize that a node goes down.

C++ implementation notes

• PDUFTG_PRIVATE_DEBUG. PDUFTG comes with a logging mechanism.
Defining this preprocessor symbol at the top the PDUFwdTabGenerator header (the
actual version of the simulator has been shipped with such symbol commented), you
will find a pduftg.log file in your simulation directory. This file will contains all and
only the debugging information produced by PDUFTG module.

Deliverable-2.4

46

• reportBubbleInfo. This procedures allow you to produce bubbles information
during Oment simulation. These bubbles will be spotted at the same level of
netStateMod module variable (see NED Parameters above).

Current limitation and future development plans

Limitations

The notification system of the PDUFTG is limited to flow creation/destruction and
update message received.

Future development

We plan to extend the granularity of the PDUFTG plugin architecture following on
the policy creators requests. Depending on the requests the Generator will be adapted
to support other types of events. This will allow the creation of more complex and
complete policies in the future.

4.7. RIB Daemon

4.7.1. Image

Figure 30. RIB Daemon

4.7.2. Narrative description

The RIBDaemon (RIBd) is the DIF management heart. It receives/sends CDAP
management messages and notifies other submodules about management changes.

Deliverable-2.4

47

4.7.3. Submodules

RIBDaemon consists of two submodules:

• RIBDaemon module "ribd" is a core module implementing functionality of
RIBDeamon.

• Common Distributed Application Protocol module
"commonDistributedApplicationProtocol" which implements processing of CDAP
messages for "ribd";

4.7.4. Source codes

Component sources are located in /src/DIF/RIBD. It consists of following files:

Filename(s) Description

"RIBDaemon.ned" Compound module holding all RIBd
functionality submodules

"RIBdBase.h/.cc" Base class for general RIBd functionality
intended for inheritance and extensions

"RIBd.ned" RIBd processing CDAP messages and
delegating them to RA and FA/FAIs

"RIBd.h/.cc" Implementation of RIBd core
functionality

"RIBdListeners.h/cc" RIBd listeners

4.7.5. NED design

RIBd simulation module design is similar to AE. CDAppP is connected via its southIo
gate to RMT.

4.7.6. C++ Implementation

Registered signals that RIBd module is emitting:

SIG_RIBD_DataSend

SIG_RIBD_CreateRequestFlow

SIG_RIBD_DeleteRequestFlow

SIG_RIBD_DeleteResponseFlow

Deliverable-2.4

48

SIG_AERIBD_AllocateResponsePositive

SIG_AERIBD_AllocateResponseNegative

SIG_RIBD_CreateFlow

SIG_RIBD_CreateFlowResponsePositive

SIG_RIBD_CreateFlowResponseNegative

SIG_RIBD_ForwardingUpdateReceived

Registered signals that RIBd module is receiving:

SIG_FA_CreateFlowRequestForward

SIG_FAI_CreateFlowRequest

SIG_FAI_DeleteFlowRequest

SIG_FAI_DeleteFlowResponse

SIG_FA_CreateFlowResponseNegative

SIG_FAI_CreateFlowResponseNegative

SIG_FAI_CreateFlowResponsePositive

SIG_FA_CreateFlowResponseForward

SIG_CDAP_DateReceive

SIG_FAI_AllocateRequest

SIG_RA_CreateFlowPositive

SIG_RA_CreateFlowNegative

SIG_PDUFTG_FwdInfoUpdate

4.7.7. Side notes

Future work

1. Define RIBd interface;

2. Define CDAP message processing interface.

4.8. Delimiting

4.8.1. Image

Figure 31. Delimiting

Deliverable-2.4

49

4.8.2. Narrative description

The delimiting Module is responsible for generating payloads for EFCP PDUs from
incoming SDUs (by fragmenting or concatenating them) at the sending side; and to
recompose the original SDUs at the receiving side. This module is dynamically created
as part of the EFCPI compound module. There is usually one Delimiting module for
each flow.

4.8.3. Submodules

This module has not submodules.

4.8.4. Source codes

Component sources are located in /src/DIF/Delimiting. It consists of following files:

Filename(s) Description

"Delimiting.ned" Delimiting Module

"Delimiting.cc" Delimiting implementation

4.8.5. NED design

Data-path of interconnected gates for messages from FAI to EFCPI:

northIo - towards FAI

southIo[] - towards EFCPI

4.8.6. C++ Implementation

Delimiting submodule is not sending nor receiving any signals.

4.8.7. Side notes

Limitations

Future work

1. Generate fragments in case SDU.size exceeds MAX_SDU_SIZE on this flow

2. Handle messages from multiple EFCP instances

Deliverable-2.4

50

4.9. Error and Flow Control Protocol

4.9.1. Image

Figure 32. Empty EFCP module without any EFCP instance

Figure 33. EFCP module with dynamically created Delimiting and EFCP instance modules

4.9.2. Narrative description

The Error and Flow Control Protocol (EFCP) is modeled as one compound module.
This module dynamically creates EFCP Instances.Dynamic modules consist of one
Delimiting2 module and (possibly) multiple EFCPI modules per one flow. This EFCPI
module itself is a compound module and contains one static module "DTP" and if the
flow (QoS requirements) requires control, then there is one "DTCP" module.

4.9.3. Submodules

EFCP compound module consists of two static modules:

• EFCP module - Creates and deletes EFCPI instances.

• EFCPTable module - Holds bindings between Delimiting and EFCPI (DTP and
DTCP).

• Delimiting module

2 D24-Rinasim-Delimiting

D24-Rinasim-Delimiting
D24-Rinasim-Delimiting

Deliverable-2.4

51

• EFCP Instance module - Implements the EFCP protocol processing logic for a
single EFCP connection.

4.9.4. Source codes

Component sources are located in /src/DIF/EFCP. It consists of following files:

Filename(s) Description

"EFCPModule.ned" EFCP compound module that resides in
IPC module

"EFCP.ned" EFCP module creates and deletes
Delimiting and EFCP instancies modules

"EFCP.cc/h" EFCP module implementation

"EFCP_defs.h" EFCP related definitions

"EFCPI.ned" EFCPI module represents active instance
of EFCP

"EFCPTable/EFCPTable.cc/h" EFCP Table implementation

"EFCPTable/EFCPTableEntry.cc/h" Entry class for EFCP Table

4.9.5. NED design

Data-path of interconnected gates for messages going through EFCP Compound
module:

northIo - towards ipc northIo

delimiting.northIo

delimiting.southIo

efcpi_<cep>.northIo

efcpi_<cep>.southIo

southIo - towards RMT

4.9.6. C++ Implementation

No registered signals

4.9.7. Side notes

Future work

Implement module layout scheme for meaningful visualization.

Deliverable-2.4

52

4.9.8. EFCP

Image

Figure 34. EFCP module

Narrative description

The EFCP module is responsible for: . Creating a Delimiting instance if it is not
already present for this Flow; . Creating EFCPI module; . Creating DTCP module (if
necessary); . Create/updating entry in EFCPTable; . Deleting EFCPI and Delimiting on
DeallocateFlow request from FA.

Source codes

Component sources are located in /src/DIF/EFCP. It consists of following files:

Filename(s) Description

"EFCP.ned" EFCP module creates and deletes EFCP
instancies

"EFCP.cc/h" EFCP module implementation

NED design

The EFCP module does not have any gates.

C++ Implementation

The EFCP module does not have any registered signals.

Side notes

Limitations

There are several configurable policies for DTP and DTCP modules. These policies are
applied to ALL flows created within this DIF. This way, users can temporarily specify
non-default policies without the need to change source code.

Deliverable-2.4

53

Future work

1. Move the policy specification to QoS Cube

4.9.9. EFCPTable

Image

Figure 35. EFCP Table

Narrative description

The EFCPTable stores relations between EFCPI and Delimiting modules.

Source codes

Component sources are located in /src/DIF/EFCP/EFCPTable. It consists of following
files:

Filename(s) Description

"EFCPTable.ned" EFCP Table simple module

"EFCPTable.cc/h" EFCP Table implementation

"EFCPTableEntry.cc/h" Entry class for EFCP Table

NED design

EFCP Table does not have any gates.

C++ Implementation

EFCP Table does not have any registered signals.

Side notes

EFCP Table is there mainly to support switching between EFCP Instances in case we
hit seqNum threshold.

Deliverable-2.4

54

4.9.10. EFCP Instance

Image

Figure 36. EFCP Instance module at design time

Figure 37. EFCP Instance module runtime, containing
a dynamically created policy object and a DTCP object.

Narrative description

Most notably from perspective of RINASim, EFCPI holds together the modules
responsible for Data Transfer on a certain flow. It may consist of just a DTP module or
DTP, DTCP, DTCPState and a number policies.

Submodules

The EFCP Instance module consists of one static submodule:

• DTP - Module provides Data Transfer Protocol.

and several dynamic modules:

• DTCP - Provides the control part of the data transfer.

• DTCPState - Holds state information for DTCP.

Deliverable-2.4

55

• <name>Policy - If some policy of DTP or DTCP module is specified (ecnPolicy on
picture above), this module performs its actions.

Source codes

the compound module itself does not have a implementation, only a NED definition.
It consists of following files:

Filename(s) Description

"EFCPI.ned" EFCPI module represents active instance
of EFCP

NED design

Data-path of interconnected gates for messages going through EFCPI module:

northIo - towards delimiting

dtp.northIo

dtp.southIo

southIo - towards EFCP Compound Module southIo

C++ Implementation

The component does not have any registered signals.

Side notes

Future work

1. Create empty transient modules for better positioning connection to south and
north gate.

4.9.11. DTP

Image

Figure 38. DTP Module

Deliverable-2.4

56

Narrative description

The Data Transfer Protocol accepts user-data fields from the Delimiting module,
generates PDUs, and pass them to RMT. If necessary it asks DTCP to perform
Retransmission and Flow Control.

Policies

The DTP module is associated with following policies:

• DTPRcvrInactivityPolicy - If no PDUs arrive in this time period, the receiver
should expect a DRF in the next Transfer PDU. If not, something is very wrong. It
should generally be set to 2(MPL+R+A).

• DTPSenderInactivityPolicy - This policy is used to detect long periods of no
traffic, indicating that a DRF should be sent. If not, something is very wrong. It
should generally be set to 3(MPL+R+A).

• DTPInitialSeqNumPolicy - This policy allows some discretion in selecting the
initial sequence number, when DRF is going to be sent.

Source codes

Component sources are located in /src/DIF/EFCP/DTP. It consists of following files:

Filename(s) Description

"DTP.ned" DTP module

"DTP.cc/h" DTP Implementation

"DTPTimers.msg" DTP related timers definition

"DTPState.cc/h" Holds state information for DTP (DT-
SV)

"DataTransferPDU.msg" Definition of Data Transfer PDU used to
transmit data

"DataTransferPDU.cc/h" Customized `DataTransferPDU’s base
class.

NED design

Data-path of interconnected gates for messages going through EFCPI:

<efcpi>.northIo

Deliverable-2.4

57

northIo - towards EFCPI's northIo

southIo - towards EFCPI's southIo

<efcpi>.southIo

C++ Implementation

DTP handles incoming SDU from delimiting and produces PDU and send them to RMT.
DTP also handles PDUs (Data Transfer and Control) from RMT task. Depending on
QoS for this flow delegates DTCP to perform Flow Control and retransmission.

Side notes

The method for receiving PDUs from RMT does not work with maxSeqNumRcvd as it
seemed superfluous - need to investigate it more.

Future work

1. Make DTPState standalone module (same as DTCP State).

2. Finish implementation for Allowable gap.

3. Finish implementation for A-Timer.

4.9.12. DTCP

Image

Figure 39. DTCP Module

Narrative description

The Data Transfer Control Protocol (DTCP) handles retransmission and flow control
related tasks. From the perspective of RINASim, DTCP is a module that runs policies to
update the DTCP state. Policies implement different reactions to situation when error
recovery and flow control is expected.

Policies

The DTCP module is associated with following policies:

Deliverable-2.4

58

• DTCPECNPolicy - This policy is invoked upon receiving PDU with DRF set in
header.

• DTCPRcvrFCPolicy - This policy is invoked when a Transfer PDU is received to
give the receiving PM an opportunity to update the flow control allocations.

• DTCPRcvrAckPolicy - This policy is executed by the receiver of the PDU and
provides some discretion in the action taken. The default action is to either Ack
immediately or to start the A-Timer and Ack the LeftWindowEdge when it expires.

• DTCPReceivingFCPolicy - This policy is invoked by the receiver of PDU in case
there is a Flow Control present, but no Retransmission Control. The default action
is to send FlowControl PDU.

• DTCPSendingAckPolicy - This policy is executed upon A-Timer expiration in
case there is DTCP present. The default action is to update Receiver Left Window
Edge, invoke delimiting and to send Ack/FlowControl PDU.

• DTCPLostControlPDUPolicy - This policy determines what action to take when
the PM detects that a control PDU (Ack or Flow Control) may have been lost. If this
procedure returns True, then the PM will send a Control Ack and an empty Transfer
PDU. If it returns False, then any action is determined by the policy.

• DTCPRcvrControlAckPolicy - This policy is executed by the receiver of Control
Ack PDU. Its purpose is to faster recover from PM inconsistency.

• DTCPSenderAckPolicy - This policy is executed by the Sender and provides
the Sender with some discretion on when PDUs may be deleted from the
ReTransmissionQ. This is useful for multicast and similar situations where one
might want to delay discarding PDUs from the retransmission queue.

• DTCPFCOverrunPolicy - This policy determines what action to take if the
receiver receives PDUs but the credit or rate has been exceeded. If this procedure
returns True, then the PDU is discarded; otherwise PDU processing is allowed to
continue normally.

• DTCPNoOverridePeakPolicy - This policy allows rate-based flow control to
exceed its nominal rate. Presumably this would be for short periods and policies
should enforce this. Like all policies, if this returns True it creates the default action
which is no override.

• DTCPTxControlPolicy - This policy is used when there are conditions that
warrant sending fewer PDUs than allowed by the sliding window flow control, e.g.
the ECN bit is set.

Deliverable-2.4

59

• DTCPNoRateSlowDownPolicy - This policy is used to momentarily lower the
send rate below the rate allowed.

• DTCPReconcileFCPolicy - This policy is invoked when both Credit and Rate
based flow control are in use and they disagree on whether the PM can send or
receive data. If it returns True, then the PM can send or receive; if False, it cannot.

• DTCPRateReductionPolicy - This policy is executed in case of Rate-based Flow
Control and if a condition of local shortage of buffers occurs or when the condition is
opposite and buffers are less full than a given threshold so that rate can be increased
to the rate agreed during the connection establishment.

Source codes

Component sources are located in /src/DIF/DTCP. It consists of following files:

Filename(s) Description

DTCP.ned DTCP module

DTCP.cc/h DTCP Implementation

DTCPTimers.msg DTCP related timers definition

ControlPDU.msg Definition of Control PDUs used in Flow
Control and Retransmission

NED design

The DTCP module does not have any gates.

C++ Implementation

Side notes

Limitations

MPL and RTT are configurable only through change in source.

Future work

1. Integrate all attributes from FlowControl and Retransmission modules into
DTCPState (DTCP-SV);

2. Make configurable timers (MPL, RTT)

Deliverable-2.4

60

3. Implement RTT policy

4.9.13. DTCP State

Image

Figure 40. DTCP State Module

Narrative description

The DTCP State (DTCP-SV) holds properties related to the control part of data transfer.
In RINASim, the DTCPState module stores the Retransmission queue and the Closed
window queue.

Source codes

Component sources are located in /src/DIF/EFCP/DTCP. It consists of following files:

Filename(s) Description

"DTCPState.ned" DTCP State simple module

"DTCPState.cc/h" DTCP State implementation

NED design

This module does not have any gates.

C++ Implementation

Dynamically created with DTCP module. No registered signals.

Side notes

Future work

1. Integrate all parameters from Flow Control and Retransmission

Deliverable-2.4

61

4.10. Relaying and Multiplexing Task

4.10.1. Image

Figure 41. Relaying and Multiplexing Task with three RMT policies

4.10.2. Narrative description

The Relaying and Multiplexing Task represents a stateless function that takes incoming
PDUs and relay them within current IPC or pass them to outgoing port. In particular
the RMT takes PDUs from (N-1)-port ids, consults their address fields and perform one
of the following actions:

• If the address is not an address (or synonym) for this IPC Process, it consults the
forwarding table and posts it to the appropriate (N-1)-port-id.

• If the address is one assigned to this IPC Process, the PDU is delivered to either the
appropriate EFCP flow or to the RIB Daemon.

• Outgoing PDUs from EFCP-instances or the RIB Daemon are posted to the
appropriate (N-1)-port-id.

In RINASim, all functionality of the RMT including a policy architecture is
encompassed in a single compound module named "relayAndMux" which is present in
every IPC process.

4.10.3. Submodules

relayAndMux consists of multiple simple modules of various types, some of which are
instantiated only dynamically at runtime.

Deliverable-2.4

62

Static modules:

• rmt, the central logic of Relaying And Multiplexing task that decides what should be
done with messages passing through the module.

• rmtModuleAllocator, a control unit for dynamic modules that provides an API for
adding, deleting and reconfiguring RMT queues and ports.

• schedulingPolicy, the scheduler policy which is invoked on events related to
servicing of I/O queues.

• queueMonitorPolicy, the monitor policy which is invoked on events related to queue
monitoring.

• maxQueuePolicy, the policy used for deciding what to do when queue lengths are
overflowing their threshold lengths.

Dynamic modules:

• RMTPort, a representation of one endpoint of an (N-1)-flow.

• RMTQueue, a representation of either input or output queue (the number of
RMTQueues per (N-1)-port is a matter of Resource Allocator policies).

4.10.4. Source codes

Component sources are located in /src/DIF/RMT.

Filename(s) Description

"RelayAndMux.ned" RMT wrapper (compound module)

"RMT.{cc,h}" implementation of RMT

"RMT.ned" RMT simple module

"RMTBase.{cc,h}" abstract class for RMT implementation

"RMTModuleAllocator.{cc,h}" implementation of RMTModuleAllocator

"RMTModuleAllocator.ned" RMTModuleAllocator simple module

"RMTListeners.{cc,h}" signal listeners for RMT

"RMTPort.{cc,h}" implementation of RMTPort

"RMTPort.ned" RMTPort simple module

"RMTQueue.{cc,h}" implementation of RMTQueue

"RMTQueue.ned" RMTQueue simple module

Deliverable-2.4

63

4.10.5. NED design

RelayAndMux parameters:

Parameter Description

"schedPolicyName" module name of desired scheduling
policy

"qMonitorPolicyName" module name of desired monitor policy

"maxQPolicyName" module name of desired maxqueue
policy

"TxQueuingTime" simulated transmit time for output
queues

"RxQueuingTime" simulated transmit time for input queues

"defaultMaxQLength" default maximum queue size

"defaultThreshQLength" default threshold queue size

4.10.6. Policies

Policy folder Description

"policies/DIF/RMT/Monitor/" a folder for RMTQMonitorPolicy
implementations

"policies/DIF/RMT/Maxqueue/" a folder for MaxQPolicy
implementations

"policies/DIF/RMT/Scheduler/" a folder for RMTQMonitorPolicy
implementations

4.10.7. C++ Implementation

Emitted signals:

• "RMT-NoConnId" by RMT on received PDU with CEP-id that doesn’t match any
local EFCP instance

• "RMT-QueuePDURcvd" by a queue on PDU arrival

• "RMT-QueuePDUSent" by a queue on PDU departure

• "RMT-PortPDURcvd" by a port on PDU arrival (coming from a queue)

• "RMT-PortPDUSent" by a port on PDU departure (leaving for an (N-1)-DIF)

Deliverable-2.4

64

• "RMT-PortReadyToServe" (by a port)

4.10.8. Side notes

Future work

• Get rid of management-only port queues (currently in use only because CDAP
messages are piggy-backed on data flows)

• Separation of mechanism and policy for forwarding decisions

• Cooperation with (N-1)-EFCP on pushback

Deliverable-2.4

65

5. Demonstration Scenarios

The following subsections describe several illustrative scenarios. Each description is
accompanied with a list of scheduled events that provide additional information on
what can be observed during the simulation run. An interested reader may try them in
order to learn more not just about RINASim but also about RINA itself. It is possible
to change the parameters or employ different policies to test the various scenarios.

Each example has a fixed structure that contains the following items:

1. Brief motivation could be observed in scenario

2. Picture of the scenario

3. List of high-level components employed

4. Initial simulation settings

5. Static XML configuration used to initialize RINA environment

6. Description of the events that may of interest for user

These examples are bundled with RINASim and thus they are easily accessible just by
downloading the RINASim package and opening it in the OMNeT++ environment.

5.1. Two Hosts Example

5.1.1. Motivation

This scenario introduces the mechanics of flow allocation and deallocation in RINA on
the simplest possible connectivity graph with two directly connected end-hosts.

5.1.2. Scenario

Figure 42. Two directly connected computing systems

Deliverable-2.4

66

5.1.3. High-level components

2× Host1AP.ned

5.1.4. Simulation settings in omnetpp.ini

Settings contain the following setup of parameters:

• Used AE type is AEPing

• APs have assigned APN

• IPCs are assigned an address and DIF name thus creating a unique IPC APN

• DIF allocators are bound with static configuration of mappings

• Two ping scenarios exist. In each one, AP with AEPing on Host1 is communicating
with Host2’s AEPing AP

[General]

network = TwoCSs

debug-on-errors = true

**.host1.applicationProcess1.apName = "App1"

**.host2.applicationProcess1.apName = "App2"

**.iae.aeName = "Ping"

**.applicationEntity.aeType = "AEPing"

#Static addressing

**.host1.ipcProcess0.ipcAddress = "1"

**.host1.ipcProcess0.difName = "Layer0"

**.host1.ipcProcess1.ipcAddress = "11"

**.host1.ipcProcess1.difName = "Layer1"

**.host2.ipcProcess0.ipcAddress = "2"

**.host2.ipcProcess0.difName = "Layer0"

**.host2.ipcProcess1.ipcAddress = "22"

**.host2.ipcProcess1.difName = "Layer1"

#DIF Allocator settings

**.host1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host1']/DA")

**.host2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host2']/DA")

#QoS settings

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

Deliverable-2.4

67

#PingApp setup

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 20s

[Config Ping-AppQos]

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 20s

**.applicationEntity.iae.forceOrder = true

**.applicationEntity.iae.averageBandwidth = 1000000bps

**.applicationEntity.iae.maxAllowGap = 10

**.applicationEntity.iae.delay = 10000 us

5.1.5. Static configuration in config.xml

The following configuration introduces:

• DIF Allocator Directory mappings for APs and IPCs

◦ AP App1 is reachable via DIF with name Layer1 and IPC with address 11

◦ AP App2 is reachable via DIF with name Layer1 and IPC with address 22

◦ IPC with address 11 in DIF Layer1 is reachable via DIF with name Layer0 and
IPC with address 1

◦ IPC with address 22 in DIF Layer1 is reachable via DIF with name Layer0 and
IPC with address 2

◦ Synonym for App2 is AppErr

• All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>

<Configuration>

 <Host id="host1">

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer1" ipcAddress="11" />

 </APN>

 <APN apn="11_Layer1">

Deliverable-2.4

68

 <DIF difName="Layer0" ipcAddress="1" />

 </APN>

 <APN apn="App2">

 <DIF difName="Layer1" ipcAddress="22" />

 </APN>

 <APN apn="22_Layer1">

 <DIF difName="Layer0" ipcAddress="2" />

 </APN>

 </Directory>

 <NamingInfo>

 <APN apn="App2">

 <Synonym apn="AppErr" />

 </APN>

 </NamingInfo>

 </DA>

 </Host>

 <Host id="host2">

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer1" ipcAddress="11" />

 </APN>

 <APN apn="11_Layer1">

 <DIF difName="Layer0" ipcAddress="1" />

 </APN>

 <APN apn="App2">

 <DIF difName="Layer1" ipcAddress="22" />

 </APN>

 <APN apn="22_Layer1">

 <DIF difName="Layer0" ipcAddress="2" />

 </APN>

 </Directory>

 <NamingInfo>

 <APN apn="App2">

 <Synonym apn="AppErr" />

 </APN>

 </NamingInfo>

 </DA>

 </Host>

 <QoSCubesSet>

 <QosCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

Deliverable-2.4

69

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 </QosCube>

 <QosCube id="2">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 </QosCube>

 </QoSCubesSet>

</Configuration>

5.1.6. Scenario description

Scenario Ping has the following phases:

• at t=10s:

◦ Host1.applicationProcess1.ae initiaties AllocationRequest.

◦ Host1.ipcResourceManager.irm processes AllocationRequest. It resolves
destination APN to the appropriate IPC Process. Then it forwards
AllocationRequest towards local IPC Process in the same DIF.

Deliverable-2.4

70

◦ Host1.ipcProcess1.flowAllocator.fa processes AllocationRequest.
Because N-1 flow to reach the destination does not exist, it recursively requests
the allocation of this flow to the N-1 IPC Process.

◦ Host1.ipcProcess0.flowAllocator.fa processes flow
AllocationRequest that should connects it with underlaying N-1 IPC on Host2.
In order to do that, it sends signal to RIBd.

◦ Host1.ipcProcess0.ribDaemon.ribd sends M_CREATE(flow) message.

◦ Host2.ipcProcess0.ribDaemon.ribd receives M_CREATE(flow)
message and delegates AllocationRequest towards
Host2.ipcProcess1.ribd .

◦ Host2.ipcProcess1.ribDaemon.ribd accepts allocation and notifies
Host2.ipcProcess0 FA.

◦ Host2.ipcProcess0.flowAllocator.fa creates application connection
between Host2.ipcProcess1 and Host2.ipcProcess0 and confirms
allocation by triggering M_CREATE_R(flow) on local RIBd.

◦ Connection between Host1.ipcProcess0 and Host2.ipcProcess0 is
successfully established. Host1.ipcProcess1 may continue with originial
flow allocation and sends its own M_CREATE(flow).

◦ As message passes through Host1.ipcProcess0 , it is encapsulated into
DataTransferPDU. It is delivered to Host2.ipcProcess0 , where is
decapsulated and forwarded towards Host2.ipcProcess1 .

◦ Host2.ipcProcess1.ribDaemon.ribd processes message and local FA
notifies destination Host2.applicationProcess1.ae about pending
allocation.

◦ Host2.applicationProcess1.ae confirms allocation and requests
Host1.ipcResourceManager.irm to create an application connection

between Host2.applicationProcess1 and Host2.ipcProcess1 .

◦ Host2.applicationProcess1 honors this request and upon
successful completion it triggers M_CREATE_R(flow) sending in
Host2.ipcProcess1.ribDaemon.ribd .

◦ M_CREATE_R(flow) traverses through Host2.ipcProcess1 , where it is
encapsulated into DataTransferPDU. It is send to Host1.ipcProcess0 ,
where it is decapsulated and delivered to Host1.ipcProcess1 .

Deliverable-2.4

71

◦ Upon M_CREATE_R(flow) reception,
Host1.ipcProcess1.flowAllocator.fa notifies
Host1.applicationProcess1.ae about successful flow allocation.

◦ Host1.applicationProcess1.ae asks
Host1.ipcResourceManager.irm to finish interconnection. Complete

data-path exists between Host1.applicationProcess1 and
Host2.applicationProcess1 .

• at t=15s:

◦ Host1.applicationProcess1.ae sends its first of five M_READ(name)
messages.

◦ Host1.applicationProcess2.ae responds to it with M_READ_R(name)
messages.

• at t=20s:

◦ Host1.applicationProcess1.ae initiaties DeallocationRequest.

◦ Host1.ipcResourceManager.irm processes DeallocationRequest. It
resolves destination APN to appropriate IPC. Then it forwards AllocationRequest
towards local IPC in same DIF.

◦ Host1.ipcProcess1.flowAllocator.fa processes DeallocationRequest
and commands Host1.ipcProcess1.ribDaemon.ribd to send
M_DELETE(flow).

◦ M_CREATE(flow) passes through data-path until it reaches
Host2.ipcProcess1.ribDaemon.ribd where it triggers deallocation

process in the local FA.

◦ DeallocationRequest is delegated to Host2.applicationProcess1.ae ,
which asks Host2.ipcResourceManager.irm to disconnect its portion of
the data-path.

◦ Upon successful completation, Host2.ipcProcess1.flowAllocator.fa
replies with M_DELETE_R(flow).

◦ When M_DELETE(flow) is delivered to
Host1.ipcProcess1.ribDaemon.ribd , where it triggers final state of

deallocation.

◦ Host1.applicationProcess1.ae is informed about successful
deallocation and governs Host1.ipcResourceManager.irm to disconnect
its portion of the data-path.

Deliverable-2.4

72

5.2. Simple Relay Example

5.2.1. Motivation

This scenario is similar to the previous demo and also shows the basic flow allocation
and deallocation mechanics in RINA with a scenario that has been extended to include
an interiorRouter between two end-hosts.

5.2.2. Scenario

Figure 43. Simple Relay Scenario

5.2.3. High-level components

2× Host1AP.ned 1x InteriorRouter2Int.ned

5.2.4. Simulation settings in omnetpp.ini

Settings contain following setup of parameters:

• Used AE type is AEPing

• APs have assigned APN

• IPCPs are assigned an address and DIF name thus creating unique IPC APN

• DIF allocators are bound with static configuration of mappings

• Compared to the TwoCS demo we also have an Interior Router placed between the
two hosts

Deliverable-2.4

73

• Four ping scenarios exist. In each one, AP with AEPing on Host1 is communicating
with Host2’s AEPing AP

◦ Scenario Ping is a basic communication example

◦ Scenario PingWithPreallocation demonstrates preallocation of specified
(N-1)-flows on the beginning of simulation (instead of allocating them
recursively on the go)

◦ Scenario PingWithCongestion demonstrates one way of handling queues
that are overflowing with PDUs

◦ Scenario PingWithDiffServ demonstrates different kinds of RMT queue
allocation strategies

[General]

network = SimpleRelay

debug-on-errors = true

**.host1.applicationProcess1.apName = "App1"

**.host2.applicationProcess1.apName = "App2"

**.applicationEntity.aeType = "AEPing"

**.iae.aeName = "Ping"

#Static addressing

**.host1.ipcProcess0.ipcAddress = "1"

**.host2.ipcProcess0.ipcAddress = "2"

**.interiorRouter.ipcProcess0.ipcAddress = "3"

**.interiorRouter.ipcProcess1.ipcAddress = "4"

**.host1.ipcProcess1.ipcAddress = "11"

**.host2.ipcProcess1.ipcAddress = "22"

**.interiorRouter.relayIpc.ipcAddress = "33"

**.host1.ipcProcess0.difName = "Layer01"

**.interiorRouter.ipcProcess0.difName = "Layer01"

**.host2.ipcProcess0.difName = "Layer02"

**.interiorRouter.ipcProcess1.difName = "Layer02"

**.host*.ipcProcess1.difName = "Layer11"

**.interiorRouter.relayIpc.difName = "Layer11"

#DIF Allocator settings

**.host1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host1']/DA")

Deliverable-2.4

74

**.host2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host2']/DA")

**.interiorRouter.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='interiorRouter']/DA")

#QoS Cube sets

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

fingerprint = "9943-e9e1"

#PingApp setup

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 25s

#Specify AEPing message size

**.host1.applicationProcess1.applicationEntity.iae.size = 256B

#Specify timeout of CreateRequest message

**.fa.createRequestTimeout = 2s

[Config PingWithPreallocation]

fingerprint = "5ce1-13ca"

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 100s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 200s

flows to allocate at the beginning

**.interiorRouter.relayIpc.resourceAllocator.ra.flows = \

 xmldoc("config.xml", "Configuration/Router[@id='interiorRouter']/

IPC[@id='relayIpc']/RA/Flows")

[Config PingWithCongestion]

fingerprint = "5ce1-13ca"

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 300s

**.host1.applicationProcess1.applicationEntity.iae.rate = 80

Deliverable-2.4

75

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 500s

make one of the bottom router IPCs become easily congested

**.host1.ipcProcess0.relayAndMux.TxQueuingTime = 50000ms

use RED as an example congestion control algorithm

**.interiorRouter.ipcProcess1.relayAndMux.qMonitorPolicyName =

 "REDMonitor"

**.interiorRouter.ipcProcess1.relayAndMux.maxQPolicyName = "REDDropper"

increase the FA M_CREATE timeout so it doesn't give up too early

**.fa.createRequestTimeout = 100s

[Config PingWithDiffServ]

fingerprint = "5ce1-13ca"

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App2"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 100s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 200s

make all RMTs except the ones in relay IPCs differentiate PDUs by (N)-

flow

**.ipcProcess*.resourceAllocator.queueAllocPolicyName = "QueuePerNFlow"

**.ipcProcess*.resourceAllocator.queueIdGenName = "IDPerNFlow"

make relay IPCs' RMTs differentiate PDUs by their QoS

**.relayIpc.resourceAllocator.queueAllocPolicyName = "QueuePerNQoS"

**.relayIpc.resourceAllocator.queueIdGenName = "IDPerNQoS"

5.2.5. Static configuration in config.xml

The following configuration introduces:

• DIF Allocator Directory mappings for APs and IPCs

◦ AP App1 is reachable via DIF with name Layer11 and IPC with address 11

◦ AP App2 is reachable via DIF with name Layer22 and IPC with address 22

◦ IPC with address 11 in DIF Layer11 is reachable via DIF with name Layer01
and IPC with address 1

◦ IPC with address 22 in DIF Layer11 is reachable via DIF with name Layer02
and IPC with address 2

Deliverable-2.4

76

◦ IPC with address 33 in DIF Layer11 is reachable via DIFs Layer01 and
Layer02 and IPCs with addresses 3 and 4

◦ Neighbour table for both hosts that tells them that they can reach each other
through IPC with address 33 in DIF Layer11

◦ Synonym for App2 is AppErr

• All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>

<Configuration>

 <Host id="host1">

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer11" ipcAddress="11" />

 </APN>

 <APN apn="App2">

 <DIF difName="Layer11" ipcAddress="22" />

 </APN>

 <APN apn="11_Layer11">

 <DIF difName="Layer01" ipcAddress="1" />

 </APN>

 <APN apn="22_Layer11">

 <DIF difName="Layer02" ipcAddress="2" />

 </APN>

 <APN apn="33_Layer11">

 <DIF difName="Layer01" ipcAddress="3" />

 <DIF difName="Layer02" ipcAddress="4" />

 </APN>

 </Directory>

 <NamingInfo>

 <APN apn="App2">

 <Synonym apn="AppErr" />

 </APN>

 </NamingInfo>

 <NeighborTable>

 <APN apn="22_Layer11">

 <Neighbor apn="33_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host2">

 <DA>

Deliverable-2.4

77

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer11" ipcAddress="11" />

 </APN>

 <APN apn="App2">

 <DIF difName="Layer11" ipcAddress="22" />

 </APN>

 <APN apn="11_Layer11">

 <DIF difName="Layer01" ipcAddress="1" />

 </APN>

 <APN apn="22_Layer11">

 <DIF difName="Layer02" ipcAddress="2" />

 </APN>

 <APN apn="33_Layer11">

 <DIF difName="Layer01" ipcAddress="3" />

 <DIF difName="Layer02" ipcAddress="4" />

 </APN>

 </Directory>

 <NamingInfo>

 <APN apn="App2">

 <Synonym apn="AppErr" />

 </APN>

 </NamingInfo>

 <NeighborTable>

 <APN apn="11_Layer11">

 <Neighbor apn="33_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Router id="interiorRouter">

 <IPC id="relayIpc">

 <RA>

 <Flows>

 <Flow apn="11_Layer11" qosCube="1"/>

 <Flow apn="22_Layer11" qosCube="1"/>

 </Flows>

 </RA>

 </IPC>

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer11" ipcAddress="11" />

 </APN>

 <APN apn="App2">

Deliverable-2.4

78

 <DIF difName="Layer11" ipcAddress="22" />

 </APN>

 <APN apn="11_Layer11">

 <DIF difName="Layer01" ipcAddress="1" />

 </APN>

 <APN apn="22_Layer11">

 <DIF difName="Layer02" ipcAddress="2" />

 </APN>

 <APN apn="33_Layer11">

 <DIF difName="Layer01" ipcAddress="3" />

 <DIF difName="Layer02" ipcAddress="4" />

 </APN>

 </Directory>

 </DA>

 </Router>

 <QoSCubesSet>

 <QoSCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 <QoSCube id="2">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

Deliverable-2.4

79

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 </QoSCubesSet>

</Configuration>

5.2.6. Scenario description

The scenario Ping has the following notable phases:

• at t=10s:

◦ Host1.applicationProcess1.ae initiaties AllocationRequest.

◦ Host1.ipcResourceManager.irm processes AllocationRequest. It resolves
destination APN to appropriate IPC. Then it forwards AllocationRequest towards
local IPCP in the same DIF.

◦ Host1.ipcProcess1.flowAllocator.fa processes AllocationRequest.
Because N-1 flow to reach destination does not exist, it recursively requests an
N-1 flow to the underlaying ICP Process.

◦ Host1.ipcProcess0.flowAllocator.fa processes flow
AllocationRequest that should connects it with underlaying N-1 IPC on
InteriorRouter. In order to that, it sends signal to RIBd.

◦ Host1.ipcProcess0.ribDaemon.ribd sends M_CREATE(flow) message.

◦ InteriorRouter.ipcProcess0.ribDaemon.ribd receives
M_CREATE(flow) message and delegates AllocationRequest towards
InteriorRouter.relayIpc.ribd .

◦ InteriorRouter.relayIpc.ribDaemon.ribd accepts allocation and
notifies InteriorRouter.ipcProcess0 FA.

◦ InteriorRouter.ipcProcess0.flowAllocator.fa creates connection
between InteriorRouter.relayIpc and
InteriorRouter.ipcProcess0 and confirms allocation by triggering

M_CREATE_R(flow) on local RIBd.

Deliverable-2.4

80

◦ Connection between Host1.ipcProcess0 and
InteriorRouter.ipcProcess0 is successfully established.
Host1.ipcProcess1 may continue with originial flow allocation and sends

its own M_CREATE(flow) directed at Host2.

◦ When InteriorRouter.relayIpc recieves the M_CREATE(flow) message
from Host1.ipcProcess1 it first needs to create a connection to the
Host2.ipcProcess1 .

◦ This happens the same way as when creating connection from
Host1 to InteriorRouter - by first creating a connection between
InteriourRouter.ipcProcess1 and Host2.ipcProcess0 .

◦ When this connection is created InteriorRouter.relayIpc

forwards the M_CREATE(flow) message from Host1.ipcProcess1 to
Host2.ipcProcess1 .

◦ Host2.ipcProcess1.ribDaemon.ribd processes message and local FA
notifies destination Host2.applicationProcess1.ae about pending
allocation.

◦ Host2.applicationProcess1.ae confirms allocation and bothers
Host2.ipcResourceManager.irm to create connection between
Host2.applicationProcess1 and Host2.ipcProcess1 .

◦ Host2.applicationProcess1 honors this request and upon
successful completation it triggers M_CREATE_R(flow) sending in
Host2.ipcProcess1.ribDaemon.ribd .

◦ Upon M_CREATE_R(flow) reception,
Host1.ipcProcess1.flowAllocator.fa notifies
Host1.applicationProcess1.ae about successful allocation.

◦ Host1.applicationProcess1.ae asks
Host1.ipcResourceManager.irm to finish interconnection. Complete

data-path exists between Host1.applicationProcess1 and
Host2.applicationProcess1 .

• at t=15s:

◦ Host1.applicationProcess1.ae sends its first ping request as a
M_READ(name) message.

◦ Host1.applicationProcess2.ae responds to it with M_READ_R(name)
messages.

Deliverable-2.4

81

• at t=25s:

◦ Host1.applicationProcess1.ae initiaties DeallocationRequest.

◦ Host1.ipcResourceManager.irm processes DeallocationRequest. It
resolves destination APN to appropriate IPC. Then it forwards
DeallocationRequest towards local IPC in same DIF.

◦ Host1.ipcProcess1.flowAllocator.fa processes DeallocationRequest
and commands Host1.ipcProcess1.ribDaemon.ribd to send
M_DELETE(flow).

◦ M_CREATE(flow) passes through data-path until it reaches
Host2.ipcProcess1.ribDaemon.ribd where it triggers deallocation

process in local FA.

◦ DeallocationRequest is delegated to Host2.applicationProcess1.ae ,
which asks Host2.ipcResourceManager.irm disconnect its portion of the
data-path.

◦ When M_DELETE(flow) is delivered to
Host1.ipcProcess1.ribDaemon.ribd , where it triggers final state of

deallocation.

◦ Host1.applicationProcess1.ae is informed about successful
deallocation and governs Host1.ipcResourceManager.irm to disconnect
its portion of the data-path.

5.3. Small Network Example

5.3.1. Motivation

This scenario introduces multiple interior routers between two communicating hosts.

Deliverable-2.4

82

5.3.2. Scenario

Figure 44. Small network scenario

5.3.3. High-level components

5× Host1AP.ned

3x InteriorRouter3Int.ned

5.3.4. Simulation settings in omnetpp.ini

Settings contain the following setup of parameters:

• Used AE type is AEPing

• APs have assigned APN

• DIF allocators are binded with static configuration of mappings

• There’s a single scenario present demonstrating communication between host1 and
host5

[General]

network = SmallNetwork

**.host1.applicationProcess1.apName = "App1"

**.host2.applicationProcess1.apName = "App2"

**.host3.applicationProcess1.apName = "App3"

**.host4.applicationProcess1.apName = "App4"

**.host5.applicationProcess1.apName = "App5"

**.applicationEntity.aeType = "AEPing"

Deliverable-2.4

83

**.iae.aeName = "Ping"

#Static addressing: lower IPC layer

**.host1.ipcProcess0.ipcAddress = "1"

**.host2.ipcProcess0.ipcAddress = "2"

**.host3.ipcProcess0.ipcAddress = "3"

**.host4.ipcProcess0.ipcAddress = "4"

**.host5.ipcProcess0.ipcAddress = "5"

**.router1.ipcProcess0.ipcAddress = "6"

**.router1.ipcProcess1.ipcAddress = "7"

**.router1.ipcProcess2.ipcAddress = "8"

**.router2.ipcProcess0.ipcAddress = "9"

**.router2.ipcProcess1.ipcAddress = "10"

**.router2.ipcProcess2.ipcAddress = "11"

**.router3.ipcProcess0.ipcAddress = "12"

**.router3.ipcProcess1.ipcAddress = "13"

**.router3.ipcProcess2.ipcAddress = "14"

**.host1.ipcProcess0.difName = "Layer01"

**.router1.ipcProcess0.difName = "Layer01"

**.host2.ipcProcess0.difName = "Layer02"

**.router1.ipcProcess1.difName = "Layer02"

**.router1.ipcProcess2.difName = "Layer03"

**.router2.ipcProcess0.difName = "Layer03"

**.router2.ipcProcess1.difName = "Layer04"

**.router3.ipcProcess0.difName = "Layer04"

**.router2.ipcProcess2.difName = "Layer05"

**.host3.ipcProcess0.difName = "Layer05"

**.router3.ipcProcess1.difName = "Layer06"

**.host4.ipcProcess0.difName = "Layer06"

**.router3.ipcProcess2.difName = "Layer07"

**.host5.ipcProcess0.difName = "Layer07"

#Static addressing: higher IPC layer

**.host1.ipcProcess1.ipcAddress = "101"

**.host2.ipcProcess1.ipcAddress = "102"

**.host3.ipcProcess1.ipcAddress = "103"

**.host4.ipcProcess1.ipcAddress = "104"

**.host5.ipcProcess1.ipcAddress = "105"

Deliverable-2.4

84

**.router1.relayIpc.ipcAddress = "106"

**.router2.relayIpc.ipcAddress = "107"

**.router3.relayIpc.ipcAddress = "108"

**.host*.ipcProcess1.difName = "Layer11"

**.router*.relayIpc.difName = "Layer11"

#DIF Allocator settings

**.host1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host1']/DA")

**.host2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host2']/DA")

**.host3.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host3']/DA")

**.host4.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host4']/DA")

**.host5.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='host5']/DA")

**.router1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Router[@id='router1']/DA")

**.router2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Router[@id='router2']/DA")

**.router3.difAllocator.configData = xmldoc("config.xml", "Configuration/

Router[@id='router3']/DA")

#Directory settings

**.host2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host1']/DA")

**.host3.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host1']/DA")

**.host4.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host1']/DA")

**.host5.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='host1']/DA")

**.router2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Router[@id='router1']/DA")

**.router3.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Router[@id='router1']/DA")

#QoS Cube sets

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

Deliverable-2.4

85

fingerprint = "bfa8-e8e3"

#PingApp setup

**.host1.applicationProcess1.applicationEntity.iae.dstApName = "App5"

**.host1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.host1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.host1.applicationProcess1.applicationEntity.iae.pingAt = 100s

**.host1.applicationProcess1.applicationEntity.iae.rate = 5

**.host1.applicationProcess1.applicationEntity.iae.stopAt = 200s

5.3.5. Static configuration in config.xml

The following configuration introduces:

• DIF Allocator Directory mappings for APs and IPCs

◦ AP App1 is reachable via DIF with name Layer11 and IPC with address 101

◦ AP App5 is reachable via DIF with name Layer11 and IPC with address 105

◦ IPC with address 101 in DIF Layer11 is reachable via DIF with name Layer01
and IPC with address 1

◦ IPC with address 105 in DIF Layer11 is reachable via DIF with name Layer07
and IPC with address 5

◦ IPC with address 106 in DIF Layer11 is reachable via DIFs Layer01, Layer02
and Layer03 and IPCs with addresses 6, 7 and 8

◦ IPC with address 107 in DIF Layer11 is reachable via DIFs Layer03, Layer04
and Layer05 and IPCs with addresses 9, 10 and 11

◦ IPC with address 108 in DIF Layer11 is reachable via DIFs Layer04, Layer06
and Layer07 and IPCs with addresses 12, 13 and 14

• Neighbor table entries describing applications/IPC processes accesible via
neighboring hosts

• All IPCP’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>

<Configuration>

 <Host id="host1">

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer11" ipcAddress="101" />

 </APN>

Deliverable-2.4

86

 <APN apn="App5">

 <DIF difName="Layer11" ipcAddress="105" />

 </APN>

 <APN apn="101_Layer11">

 <DIF difName="Layer01" ipcAddress="1" />

 </APN>

 <APN apn="105_Layer11">

 <DIF difName="Layer07" ipcAddress="5" />

 </APN>

 <APN apn="106_Layer11">

 <DIF difName="Layer01" ipcAddress="6" />

 <DIF difName="Layer02" ipcAddress="7" />

 <DIF difName="Layer03" ipcAddress="8" />

 </APN>

 <APN apn="107_Layer11">

 <DIF difName="Layer03" ipcAddress="9" />

 <DIF difName="Layer04" ipcAddress="10" />

 <DIF difName="Layer05" ipcAddress="11" />

 </APN>

 <APN apn="108_Layer11">

 <DIF difName="Layer04" ipcAddress="12" />

 <DIF difName="Layer06" ipcAddress="13" />

 <DIF difName="Layer07" ipcAddress="14" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="105_Layer11">

 <Neighbor apn="106_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="host2">

 <DA>

 </DA>

 </Host>

 <Host id="host3">

 <DA>

 </DA>

 </Host>

Deliverable-2.4

87

 <Host id="host4">

 <DA>

 </DA>

 </Host>

 <Host id="host5">

 <DA>

 <NeighborTable>

 <APN apn="101_Layer11">

 <Neighbor apn="108_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Router id="router1">

 <DA>

 <Directory>

 <APN apn="App1">

 <DIF difName="Layer11" ipcAddress="101" />

 </APN>

 <APN apn="App5">

 <DIF difName="Layer11" ipcAddress="105" />

 </APN>

 <APN apn="101_Layer11">

 <DIF difName="Layer01" ipcAddress="1" />

 </APN>

 <APN apn="105_Layer11">

 <DIF difName="Layer07" ipcAddress="5" />

 </APN>

 <APN apn="106_Layer11">

 <DIF difName="Layer01" ipcAddress="6" />

 <DIF difName="Layer02" ipcAddress="7" />

 <DIF difName="Layer03" ipcAddress="8" />

 </APN>

 <APN apn="107_Layer11">

 <DIF difName="Layer03" ipcAddress="9" />

 <DIF difName="Layer04" ipcAddress="10" />

 <DIF difName="Layer05" ipcAddress="11" />

 </APN>

 <APN apn="108_Layer11">

 <DIF difName="Layer04" ipcAddress="12" />

Deliverable-2.4

88

 <DIF difName="Layer06" ipcAddress="13" />

 <DIF difName="Layer07" ipcAddress="14" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="105_Layer11">

 <Neighbor apn="107_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <Router id="router2">

 <DA>

 <NeighborTable>

 <APN apn="105_Layer11">

 <Neighbor apn="108_Layer11" />

 </APN>

 <APN apn="101_Layer11">

 <Neighbor apn="106_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <Router id="router3">

 <DA>

 <NeighborTable>

 <APN apn="101_Layer11">

 <Neighbor apn="107_Layer11" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <QoSCubesSet>

 <QoSCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

Deliverable-2.4

89

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 <QoSCube id="2">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 </QoSCubesSet>

</Configuration>

Deliverable-2.4

90

5.4. All Nodes Example

5.4.1. Scenario

Figure 45. All Nodes Scenario

5.4.2. High-level components

4× Host1AP.ned , 2× BorderRouter.ned , 1× InteriorRouter2Int.ned

5.4.3. Simulation settings in omnetpp.ini

Settings contain the following setup of parameters:

• Used AE type is AEPing

• APs have assigned APN

• IPPCs are assigned an address and DIF name thus creating unique IPC APN

• DIF allocators are bound with static configuration of mappings

• Two ping scenarios exist. In each one, AP with AEPing on HostA1 is
communicating with HostB1’s AEPing AP

[General]

network = AllNodes

#Host AP config

**.HostA1.applicationProcess1.apName = "AppA1"

**.HostA2.applicationProcess1.apName = "AppA2"

**.HostB1.applicationProcess1.apName = "AppB1"

Deliverable-2.4

91

**.HostB2.applicationProcess1.apName = "AppB2"

**.applicationEntity.aeType = "AEPing"

**.iae.aeName = "Ping"

#Static DIF naming

**.Host*.ipcProcess1.difName = "LayerX"

**.BorderRouter*.relayIpc.difName = "LayerX"

**.HostA1.ipcProcess0.difName = "LayerA1"

**.BorderRouterA.ipcProcess1.difName = "LayerA1"

**.HostA2.ipcProcess0.difName = "LayerA2"

**.BorderRouterA.ipcProcess2.difName = "LayerA2"

**.HostB1.ipcProcess0.difName = "LayerB1"

**.BorderRouterB.ipcProcess1.difName = "LayerB1"

**.HostB2.ipcProcess0.difName = "LayerB2"

**.BorderRouterB.ipcProcess2.difName = "LayerB2"

**.BorderRouterA.ipcProcess3.difName = "LayerAB"

**.InteriorRouter.relayIpc.difName = "LayerAB"

**.BorderRouterB.ipcProcess3.difName = "LayerAB"

**.BorderRouterA.bottomIpc.difName = "LayerYA"

**.InteriorRouter.ipcProcess0.difName = "LayerYA"

**.BorderRouterB.bottomIpc.difName = "LayerYB"

**.InteriorRouter.ipcProcess1.difName = "LayerYB"

#Static IPC Addressing

**.HostA1.ipcProcess1.ipcAddress = "A1"

**.HostA2.ipcProcess1.ipcAddress = "A2"

**.HostB1.ipcProcess1.ipcAddress = "B1"

**.HostB2.ipcProcess1.ipcAddress = "B2"

**.BorderRouterA.relayIpc.ipcAddress = "BRA"

**.BorderRouterB.relayIpc.ipcAddress = "BRB"

**.HostA1.ipcProcess0.ipcAddress = "a1"

**.BorderRouterA.ipcProcess1.ipcAddress = "bra1"

**.HostA2.ipcProcess0.ipcAddress = "a2"

**.BorderRouterA.ipcProcess2.ipcAddress = "bra2"

**.HostB1.ipcProcess0.ipcAddress = "b1"

**.BorderRouterB.ipcProcess1.ipcAddress = "brb1"

**.HostB2.ipcProcess0.ipcAddress = "b2"

**.BorderRouterB.ipcProcess2.ipcAddress = "brb2"

**.BorderRouterA.ipcProcess3.ipcAddress = "A"

Deliverable-2.4

92

**.InteriorRouter.relayIpc.ipcAddress = "Z"

**.BorderRouterB.ipcProcess3.ipcAddress = "B"

**.BorderRouterA.bottomIpc.ipcAddress = "ya"

**.InteriorRouter.ipcProcess0.ipcAddress = "yza"

**.BorderRouterB.bottomIpc.ipcAddress = "yb"

**.InteriorRouter.ipcProcess1.ipcAddress = "yzb"

#DIF Allocator settings

**.HostA1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostA12']/DA")

**.HostA2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostA12']/DA")

**.HostB1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostB12']/DA")

**.HostB2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Host[@id='HostB12']/DA")

**.BorderRouterA.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterA']/DA")

**.BorderRouterB.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='BorderRouterB']/DA")

**.InteriorRouter.difAllocator.configData = xmldoc("config.xml",

 "Configuration/Router[@id='InteriorRouter']/DA")

#Directory settings

**.HostA1.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.HostA2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.HostB1.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.HostB2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.BorderRouterA.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.BorderRouterB.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

**.InteriorRouter.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Host[@id='HostA12']/DA")

#QoSCube setup

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

[Config Ping]

Deliverable-2.4

93

fingerprint = "478d-3ee3"

#PingApp setup

**.HostA1.applicationProcess1.applicationEntity.iae.dstApName = "AppB1"

**.HostA1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.HostA1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.HostA1.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.HostA1.applicationProcess1.applicationEntity.iae.rate = 5

**.HostA1.applicationProcess1.applicationEntity.iae.stopAt = 30s

**.BorderRouterA.bottomIpc.efcp.efcp.pduDroppingEnabled = false

**.HostA1.applicationProcess1.applicationEntity.iae.forceOrder = true

[Config PingWithDrop]

fingerprint = "90f6-7ce6"

#PingApp setup

**.HostA1.applicationProcess1.applicationEntity.iae.dstApName = "AppB1"

**.HostA1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.HostA1.applicationProcess1.applicationEntity.iae.startAt = 10s

**.HostA1.applicationProcess1.applicationEntity.iae.pingAt = 15s

**.HostA1.applicationProcess1.applicationEntity.iae.rate = 10

**.HostA1.applicationProcess1.applicationEntity.iae.stopAt = 50s

**.HostA1.ipcProcess1.efcp.efcp.pduDroppingEnabled = true

#**.BorderRouterA.bottomIpc.efcp.efcp.pduDroppingEnabled = true

**.HostA1.applicationProcess1.applicationEntity.iae.forceOrder = true

5.4.4. Static configuration in config.xml

The following configuration introduces:

• DIF Allocator Directory mappings for APs and IPCs

◦ AP App1 is reachable via DIF with name Layer1 and IPC with address 11

◦ AP App2 is reachable via DIF with name Layer1 and IPC with address 22

◦ IPC with address 11 in DIF Layer1 is reachable via DIF with name Layer0 and
IPC with address 1

◦ IPC with address 22 in DIF Layer1 is reachable via DIF with name Layer0 and
IPC with address 2

◦ Synonym for App2 is AppErr

• All IPC’s resource allocators are setup with two available QoS-cubes

<?xml version="1.0"?>

Deliverable-2.4

94

<Configuration>

 <Host id="HostA12">

 <DA>

 <Directory>

 <APN apn="AppA1">

 <DIF difName="LayerX" ipcAddress="A1" />

 </APN>

 <APN apn="AppA2">

 <DIF difName="LayerX" ipcAddress="A2" />

 </APN>

 <APN apn="AppB1">

 <DIF difName="LayerX" ipcAddress="B1" />

 </APN>

 <APN apn="AppB2">

 <DIF difName="LayerX" ipcAddress="B2" />

 </APN>

 <APN apn="A1_LayerX">

 <DIF difName="LayerA1" ipcAddress="a1" />

 </APN>

 <APN apn="A2_LayerX">

 <DIF difName="LayerA2" ipcAddress="a2" />

 </APN>

 <APN apn="B1_LayerX">

 <DIF difName="LayerB1" ipcAddress="b1" />

 </APN>

 <APN apn="B2_LayerX">

 <DIF difName="LayerB2" ipcAddress="b2" />

 </APN>

 <APN apn="BRA_LayerX">

 <DIF difName="LayerA1" ipcAddress="bra1" />

 <DIF difName="LayerA2" ipcAddress="bra2" />

 <DIF difName="LayerAB" ipcAddress="A" />

 </APN>

 <APN apn="BRB_LayerX">

 <DIF difName="LayerB1" ipcAddress="brb1" />

 <DIF difName="LayerB2" ipcAddress="brb2" />

 <DIF difName="LayerAB" ipcAddress="B" />

 </APN>

 <APN apn="A_LayerAB">

 <DIF difName="LayerYA" ipcAddress="ya" />

 </APN>

 <APN apn="B_LayerAB">

Deliverable-2.4

95

 <DIF difName="LayerYB" ipcAddress="yb" />

 </APN>

 <APN apn="Z_LayerAB">

 <DIF difName="LayerYA" ipcAddress="yza" />

 <DIF difName="LayerYB" ipcAddress="yzb" />

 </APN>

 </Directory>

 <NeighborTable>

 <APN apn="A1_LayerX">

 <Neighbor apn="BRA_LayerX" />

 </APN>

 <APN apn="A2_LayerX">

 <Neighbor apn="BRA_LayerX" />

 </APN>

 <APN apn="B1_LayerX">

 <Neighbor apn="BRA_LayerX" />

 </APN>

 <APN apn="B2_LayerX">

 <Neighbor apn="BRA_LayerX" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Host id="HostB12">

 <DA>

 <NeighborTable>

 <APN apn="A1_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 <APN apn="A2_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 <APN apn="B1_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 <APN apn="B2_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 </NeighborTable>

 </DA>

 </Host>

 <Router id="BorderRouterA">

 <DA>

 <NeighborTable>

Deliverable-2.4

96

 <APN apn="B1_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 <APN apn="B_LayerAB">

 <Neighbor apn="Z_LayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <Router id="BorderRouterB">

 <DA>

 <NeighborTable>

 <APN apn="A1_LayerX">

 <Neighbor apn="BRA_LayerX" />

 </APN>

 <APN apn="A_LayerAB">

 <Neighbor apn="Z_LayerAB" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <Router id="InteriorRouter">

 <DA>

 <NeighborTable>

 <APN apn="A1_LayerX">

 <Neighbor apn="BRB_LayerX" />

 </APN>

 </NeighborTable>

 </DA>

 </Router>

 <QoSCubesSet>

 <QoSCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

Deliverable-2.4

97

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 <QoSCube id="2">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QoSCube>

 </QoSCubesSet>

</Configuration>

5.5. Fat Tree Example

5.5.1. Motivation

This example introduce the DC Fat Tree topology with the application of dynamic
routing. During the execution of this scenario you will be able to see the messages
exchanged between IPCPs required to fill the routing table.

Deliverable-2.4

98

5.5.2. Scenario

Figure 46. Fat Tree Scenario

5.5.3. High-level components

2× Host1AP.ned 4x InteriorRouter4Int.ned 2x
InteriorRouter2Int.ned

5.5.4. Simulation settings in omnetpp.ini

• Used AE type is AEPing

• APs have assigned APN.

• IPCPs are assigned an address and DIF name thus creating unique IPC APN.

• DIF allocators are not bound with static configuration of mappings. The routes will
be computed at runtime.* *

◦ A smart summary of the information present in each node is showed during the
simulation.

• One scenario exists:

◦ FatTreeTopology scenario will start at second 130 a communication between
AE1(on Server1) and AE3(on Server3).

[General]

network = FatTreeTopology

Deliverable-2.4

99

sim-time-limit = 5min

seed-set = ${runnumber}

sim-time-limit = 5min

seed-set = ${runnumber}

debug-on-errors = true

#

Appliction entities naming:

#

**.Server1.applicationProcess1.apName = "App1"

**.Server2.applicationProcess1.apName = "App2"

**.Server3.applicationProcess1.apName = "App3"

**.Server4.applicationProcess1.apName = "App4"

**.applicationEntity.aeType = "AEPing"

**.iae.aeName = "Ping"

#

Server instances addressing:

#

Shims:

**.Server1.ipcProcess0.difName = "T1S1"

**.Server1.ipcProcess0.ipcAddress = "2"

DataCenter wide DIF.

**.Server1.ipcProcess1.difName = "DC"

**.Server1.ipcProcess1.ipcAddress = "S1"

Shims:

**.Server2.ipcProcess0.difName = "T1S2"

**.Server2.ipcProcess0.ipcAddress = "2"

DataCenter wide DIF.

**.Server2.ipcProcess1.difName = "DC"

**.Server2.ipcProcess1.ipcAddress = "S2"

Shims:

**.Server3.ipcProcess0.difName = "T2S3"

**.Server3.ipcProcess0.ipcAddress = "2"

DataCenter wide DIF.

**.Server3.ipcProcess1.difName = "DC"

**.Server3.ipcProcess1.ipcAddress = "S3"

Shims:

**.Server4.ipcProcess0.difName = "T2S4"

**.Server4.ipcProcess0.ipcAddress = "2"

DataCenter wide DIF.

**.Server4.ipcProcess1.difName = "DC"

**.Server4.ipcProcess1.ipcAddress = "S4"

Deliverable-2.4

100

#

TOR instances addressing:

#

Shims to aggregators:

**.TOR1.ipcProcess0.difName = "A1T1"

**.TOR1.ipcProcess0.ipcAddress = "2"

**.TOR1.ipcProcess1.difName = "A2T1"

**.TOR1.ipcProcess1.ipcAddress = "2"

Shims to servers:

**.TOR1.ipcProcess2.difName = "T1S1"

**.TOR1.ipcProcess2.ipcAddress = "1"

**.TOR1.ipcProcess3.difName = "T1S2"

**.TOR1.ipcProcess3.ipcAddress = "1"

DataCenter wide DIF.

**.TOR1.relayIpc.difName = "DC"

**.TOR1.relayIpc.ipcAddress = "TOR1"

Shims to aggregators:

**.TOR2.ipcProcess0.difName = "A1T2"

**.TOR2.ipcProcess0.ipcAddress = "2"

**.TOR2.ipcProcess1.difName = "A2T2"

**.TOR2.ipcProcess1.ipcAddress = "2"

Shims to servers:

**.TOR2.ipcProcess2.difName = "T2S3"

**.TOR2.ipcProcess2.ipcAddress = "1"

**.TOR2.ipcProcess3.difName = "T2S4"

**.TOR2.ipcProcess3.ipcAddress = "1"

DataCenter wide DIF.

**.TOR2.relayIpc.difName = "DC"

**.TOR2.relayIpc.ipcAddress = "TOR2"

#

Aggregators instances addressing:

#

Shims:

**.AS1.ipcProcess0.difName = "A1T1"

**.AS1.ipcProcess0.ipcAddress = "1"

**.AS1.ipcProcess1.difName = "A1T2"

**.AS1.ipcProcess1.ipcAddress = "1"

DataCenter wide DIF.

**.AS1.relayIpc.difName = "DC"

**.AS1.relayIpc.ipcAddress = "AS1"

Shims:

**.AS2.ipcProcess0.difName = "A2T1"

Deliverable-2.4

101

**.AS2.ipcProcess0.ipcAddress = "1"

**.AS2.ipcProcess1.difName = "A2T2"

**.AS2.ipcProcess1.ipcAddress = "1"

DataCenter wide DIF.

**.AS2.relayIpc.difName = "DC"

**.AS2.relayIpc.ipcAddress = "AS2"

#

Policy selection for DC Dif.

#

**.Server*.ipcProcess1.resourceAllocator.pduftgPolicyName =

 "DistanceVectorPolicy"

**.Server*.ipcProcess1.resourceAllocator.pduFwdTabGenerator.netStateVisible

 = true

**.Server*.ipcProcess1.resourceAllocator.pduFwdTabGenerator.netStateMod =

 "^.^.^"

**.TOR*.relayIpc.resourceAllocator.pduftgPolicyName =

 "DistanceVectorPolicy"

**.TOR*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateVisible =

 true

**.TOR*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateMod =

 "^.^.^"

**.AS*.relayIpc.resourceAllocator.pduftgPolicyName =

 "DistanceVectorPolicy"

**.AS*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateVisible =

 true

**.AS*.relayIpc.resourceAllocator.pduFwdTabGenerator.netStateMod = "^.^.^"

#

DIF Allocator settings

#

**.Server1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.Server2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.Server3.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.Server4.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.TOR1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.TOR2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

Deliverable-2.4

102

**.AS1.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

**.AS2.difAllocator.configData = xmldoc("config.xml", "Configuration/

Switch[@id='AS1']/DA")

#

Directory settings

#

**.Server1.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.Server2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.Server3.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.Server4.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.TOR1.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.TOR2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.AS1.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

**.AS2.difAllocator.directory.configData = xmldoc("config.xml",

 "Configuration/Switch[@id='AS1']/DA")

#

QoS Cube sets.

#

**.ra.qoscubesData = xmldoc("config.xml", "Configuration/QoSCubesSet")

#

Preallocated flow on hosts:

#

**.Server1.ipcProcess1.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Server[@id='Server1']/IPC[@id='ipcProcess1']/RA/Flows")

**.Server2.ipcProcess1.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Server[@id='Server2']/IPC[@id='ipcProcess1']/RA/Flows")

**.Server3.ipcProcess1.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Server[@id='Server3']/IPC[@id='ipcProcess1']/RA/Flows")

**.Server4.ipcProcess1.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Server[@id='Server4']/IPC[@id='ipcProcess1']/RA/Flows")

Deliverable-2.4

103

**.TOR1.relayIpc.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Switch[@id='TOR1']/IPC[@id='relayIpc']/RA/Flows")

**.TOR2.relayIpc.resourceAllocator.ra.flows = xmldoc("config.xml",

 "Configuration/Switch[@id='TOR2']/IPC[@id='relayIpc']/RA/Flows")

[Config FatTreeTopology]

fingerprint = "9be6-59a1"

#

AEs don't do anything. We're only evaluating the routing table now.

#

**.Server1.applicationProcess1.applicationEntity.iae.dstApName = "App3"

**.Server1.applicationProcess1.applicationEntity.iae.dstAeName = "Ping"

**.Server1.applicationProcess1.applicationEntity.iae.startAt = 130s

**.Server1.applicationProcess1.applicationEntity.iae.pingAt = 140s

**.Server1.applicationProcess1.applicationEntity.iae.rate = 5

**.Server1.applicationProcess1.applicationEntity.iae.stopAt = 200s

5.5.5. Static configuration in config.xml

The following configuration introduces:

• Each Node will establish a flow, during the first step of the simulation, with the
neighbors.

• The DIF Allocator of every node has the following information:

◦ Aggregator Switches (AS) are connected with Top of Racks (TORS) through their
own Shim DIFs(AnTm, where 'n' and 'm' are the AS and TOR number).

◦ Top of Racks(TORs) have Shims to the connected server(TmSo, where 'm' and
'o' are the TOR and Server number).

◦ Application Entities are connected with the Data Center DIF inside each Server
node.

• The two standard QoS cube are available.

<?xml version="1.0"?>

<Configuration>

 <Server id="Server1">

 <IPC id="ipcProcess1">

 <RA>

 <Flows>

 <Flow apn="TOR1_DC" qosCube="1"/>

 </Flows>

 </RA>

Deliverable-2.4

104

 </IPC>

 </Server>

 <Server id="Server2">

 <IPC id="ipcProcess1">

 <RA>

 <Flows>

 <Flow apn="TOR1_DC" qosCube="1"/>

 </Flows>

 </RA>

 </IPC>

 </Server>

 <Server id="Server3">

 <IPC id="ipcProcess1">

 <RA>

 <Flows>

 <Flow apn="TOR2_DC" qosCube="1"/>

 </Flows>

 </RA>

 </IPC>

 </Server>

 <Server id="Server4">

 <IPC id="ipcProcess1">

 <RA>

 <Flows>

 <Flow apn="TOR2_DC" qosCube="1"/>

 </Flows>

 </RA>

 </IPC>

 </Server>

 <Switch id="TOR1">

 <IPC id="relayIpc">

 <RA>

 <Flows>

 <Flow apn="AS1_DC" qosCube="1"/>

 <Flow apn="AS2_DC" qosCube="1"/>

 </Flows>

 </RA>

 </IPC>

 </Switch>

 <Switch id="TOR2">

 <IPC id="relayIpc">

 <RA>

 <Flows>

 <Flow apn="AS1_DC" qosCube="1"/>

 <Flow apn="AS2_DC" qosCube="1"/>

 </Flows>

Deliverable-2.4

105

 </RA>

 </IPC>

 </Switch>

 <Switch id="AS1">

 <!--

 This contains the whole mapping of the network.

 It can be used to the Dif Allocator of every element.

 -->

 <DA>

 <Directory>

 <!--

 How the DIF name are formatted?

 They contain, for reading purposes, the initial letter of the

 "upper"

 element in the simulation and the initial letter of the "bottom"

 element.

 Example: A1T1 means Aggregator1 to Tor1.

 -->

 <!-- Aggregator side naming of the Shims -->

 <APN apn="AS1_DC">

 <DIF difName="A1T1" ipcAddress="1"/>

 <DIF difName="A1T2" ipcAddress="1"/>

 </APN>

 <APN apn="AS2_DC">

 <DIF difName="A2T1" ipcAddress="1"/>

 <DIF difName="A2T2" ipcAddress="1"/>

 </APN>

 <!-- TOR side naming of the Shims -->

 <APN apn="TOR1_DC">

 <DIF difName="A1T1" ipcAddress="2"/>

 <DIF difName="A2T1" ipcAddress="2"/>

 <DIF difName="T1S1" ipcAddress="1"/>

 <DIF difName="T1S2" ipcAddress="1"/>

 </APN>

 <APN apn="TOR2_DC">

 <DIF difName="A1T2" ipcAddress="2"/>

 <DIF difName="A2T2" ipcAddress="2"/>

 <DIF difName="T2S3" ipcAddress="1"/>

 <DIF difName="T2S4" ipcAddress="1"/>

 </APN>

 <!-- Server side naming of the Shims -->

Deliverable-2.4

106

 <APN apn="S1_DC">

 <DIF difName="T1S1" ipcAddress="2"/>

 </APN>

 <APN apn="S2_DC">

 <DIF difName="T1S2" ipcAddress="2"/>

 </APN>

 <APN apn="S3_DC">

 <DIF difName="T2S3" ipcAddress="2"/>

 </APN>

 <APN apn="S4_DC">

 <DIF difName="T2S4" ipcAddress="2"/>

 </APN>

 <!-- AE side naming of the DC IPCs -->

 <APN apn="App1">

 <DIF difName="DC" ipcAddress="S1"/>

 </APN>

 <APN apn="App2">

 <DIF difName="DC" ipcAddress="S2"/>

 </APN>

 <APN apn="App3">

 <DIF difName="DC" ipcAddress="S3"/>

 </APN>

 <APN apn="App4">

 <DIF difName="DC" ipcAddress="S4"/>

 </APN>

 </Directory>

 </DA>

 </Switch>

 <Switch id="AS2">

 </Switch>

 <QoSCubesSet>

 <QosCube id="1">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>0</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

Deliverable-2.4

107

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QosCube>

 <QosCube id="2">

 <AverageBandwidth>12000000</AverageBandwidth>

 <AverageSDUBandwidth>1000</AverageSDUBandwidth>

 <PeakBandwidthDuration>24000000</PeakBandwidthDuration>

 <PeakSDUBandwidthDuration>2000</PeakSDUBandwidthDuration>

 <BurstPeriod>10000000</BurstPeriod>

 <BurstDuration>1000000</BurstDuration>

 <UndetectedBitError>0.01</UndetectedBitError>

 <MaxSDUSize>1500</MaxSDUSize>

 <PartialDelivery>0</PartialDelivery>

 <IncompleteDelivery>0</IncompleteDelivery>

 <ForceOrder>1</ForceOrder>

 <MaxAllowableGap>10</MaxAllowableGap>

 <Delay>1000000</Delay>

 <Jitter>500000</Jitter>

 <CostTime>0</CostTime>

 <CostBits>0</CostBits>

 <ATime>0</ATime>

 </QosCube>

 </QoSCubesSet>

</Configuration>

5.5.6. Scenario description

Scenario FatTreeTopology has the following phases:

• At t=0 the nodes pre-allocate flows with the neighbors.

• Every 30 seconds(default routing policy timeout) the nodes exchanges routing
information between themselves, updating their touring table.

• At t=130 AE1 , located in Server1 , begins a ping communication with AE3 ,
located in Server3 .

Deliverable-2.4

108

6. Conclusions

This report described the RINASim status as of M13 of PRISTINE project. It contains
information on how to obtain, install, configure, modify and run RINASim components
within the OMNeT environment. The RINASim architecture and all major simulation
blocks of RINASim are described to provide information to those who want to further
extend RINASim with more features or implement their own policies that may be
plugged in the architecture. The report also provided the description of demonstration
examples on RINASim applications. Trying these examples, the user should be able
to gain skills enabling her to create her own RINASim experiments. Though not
complete the current RINASim version provides solid foundations for modeling and
experimenting with different RINASim policies, e.g., policies for routing, security
or data transfer. During upcoming months, we will extend RINASim in several
directions: a) to overcome the current limitations of RINASim models that provide
only basic mechanisms in many areas; b) to incorporate additional features based on
requirements emerged from results of other WPs and c) to add new models and improve
current models according to partners suggestions. We plan to deliver the next version
of RINASim in M23 with a couple of previews enabling to evaluate the RINASim within
the consortium during the development period.

Deliverable-2.4

109

Glossary
1. List of definitions

AP or DAP
Application Process or (Distributed Application Process). The instantiation of a
program executing in a processing system intended to accomplish some purpose.
An Application Process contains one or more tasks or Application-Entities, as well
as functions for managing the resources (processor, storage, and IPC) allocated to
this AP.

CACEP
Common Application Connection Establishment Phase. CACEP provides the means
to establish an application connection between DAPs, allowing them to agree on
all the required schemes and conventions to be able to exchange information,
optionally authenticating each other.

CDAP
Common Distributed Application Protocol. CDAP enables distributed applications
to deal with communications at an object level, rather than forcing applications to
explicitly deal with serialization and input/output operations. CDAP provides the
application protocol component of a Distributed Application Facility (DAF) that
can be used to construct arbitrary distributed applications, of which the DIF is an
example. CDAP provides a straightforward and unifying approach to sharing data
over a network without having to create specialized protocols.

CEP-id
Connection-endpoint id. A Data Transfer AE-Instance-Identifier unique within the
Data Transfer AE where it is generated. This is combined with the destination’s CEP-
id and the QoS-id to form the connection-id.

DAF
Distributed Application Facility. A collection of two or more cooperating DAPs
in one or more processing systems, which exchange information using IPC and
maintain shared state. In some Distributed Applications, all members will be the
same, i.e. a homogeneous DAF, or may be different, a heterogeneous DAF.

DFT
Directory Forwarding Table. Sometimes referred to as search rules. Maintains a
set of entries that map application naming information to IPC process addresses.
The returned IPC process address is the address of where to look for the requested

Deliverable-2.4

110

application. If the returned address is the address of this IPC Process, then the
requested application is here; otherwise, the search continues. In other words,
either this is the IPC process through which the application process is reachable,
or may be the next IPC process in the chain to forward the request. The Directory
Forwarding table should always return at least a default IPC process address to
continue looking for the application process, even if there are no entries for a
particular application process naming information.

DIF
Distributed IPC Facility. A collection of two or more Application Processes
cooperating to provide Interprocess Communication (IPC). A DIF is a DAF that does
IPC. The DIF provides IPC services to Applications via a set of API primitives that
are used to exchange information with the Application’s peer.

DTCP
Data Transfer Control Protocol. The optional part of data transfer that provide the
loosely-bound mechanisms. Each DTCP instance is paired with a DTP instance to
control the flow, based on its policies and the contents of the shared state vector.

DTP
Data Transfer Protocol. The required Data Transfer Protocol consisting of tightly
bound mechanisms found in all DIFs, roughly equivalent to IP and UDP. When
necessary DTP coordinates through a state vector with an instance of the Data
Transfer Control Protocol. There is an instance of DTP for each flow.

DTSV
Data Transfer State Vector. The DTSV (sometimes called the transmission control
block) provides shared state information for the flow and is maintained by the DTP
and the DTCP.

EFCP
Error and Flow Control Protocol. The data transfer protocol required to maintain
an instance of IPC within a DIF. The functions of this protocol ensure reliability,
order, and flow control as required. It consists of a separate instances of DTP and
optionally DTCP, which coordinate through a state vector.

FA
Flow Allocator. The component of the IPC Process that responds to Allocation
Requests from Application Processes.

FAI
Flow Allocator Instance. An instance of a FAI is created for each Allocate Request.
The FAI is responsible for 1) finding the address of the IPC-Process with access
to the requested destination-application; 2) determining whether the requesting

Deliverable-2.4

111

Application Process has access to the requested Application Process, 3) selects the
policies to be used on the flow, 4) monitors the flow, and 5) manages the flow for
its duration.

PCI
Protocol Control Information. The string of octets in a PDU that is understood by
the protocol machine which interprets and processes the octets. These are usually
the leading bits and sometimes leading and trailing bits.

PDU
Protocol Data Unit. The string of octets exchanged among the Protocol Machines
(PM). PDUs contain two parts: the PCI, which is understood and interpreted by the
DIF, and User-Data, that is incomprehensible to this PM and is passed to its user.

RA
Resource Allocator. A component of the DIF that manages resource allocation and
monitors the resources in the DIF by sharing information with other DIF IPC
Processes and the performance of supporting DIFs.

RIB
Resource Information Base. For the DAF, the RIB is the logical representation of
the local repository of the objects. Each member of the DAF maintains a RIB. A
Distributed Application may define a RIB to be its local representation of its view of
the distributed application. From the point of view of the OS model, this is storage.

RMT
Relaying and Multiplexing Task. This task is an element of the data transfer function
of a DIF. Logically, it sits between the EFCP and SDU Protection. RMT performs the
real time scheduling of sending PDUs on the appropriate (N-1)-ports of the (N-1)-
DIFs available to the RMT.

SDU
Service Data Unit. The unit of data passed across the (N)-DIF interface to be
transferred to the destination application process. The integrity of an SDU is
maintained by the (N)-DIF. An SDU may be fragmented or combined with other
SDUs for sending as one or more PDUs.

2. List of acronyms

ABI
Application Binary Interface.

ACL
Access Control List.

Deliverable-2.4

112

AE
Application Entity.

AP
Application Process.

API
Application Programming Interface.

ASN.1
Abstract Syntax Notation One.

Auth
Authentication module.

CACE
Common Application Connection Establishment module.

CACEP
Common Application Connection Establishment Phase.

CDAP
Common Distributed Application Protocol. CDAppP> RINASim Common
Distributed Application Protocol compound module.

CMIP
Common Management Information Protocol.

CRC
Cyclic Redundancy Code.

DA
DIF Allocator.

DAF
Distributed Application Facility.

DAP
Distributed Application Process.

DNS
Domain Name Server.

DHCP
Dynamic Host Configuration Protocol.

DHT
Distributed Hash Table.

Deliverable-2.4

113

DFT
Directory Forwarding Table.

DIF
Distributed IPC Facility.

DRF
Data Run Flag.

DTAE
Data Transfer Application Entity.

DTCP
Data Transfer Control Protocol.

DTP
Data Transfer Protocol.

DTSV
Data Transfer State Vector.

EFCP
Error and Flow Control Protocol.

FA
Flow Allocator.

FAI
Flow Allocator Instance.

GPB
Google Protocol Buffers.

HTTP
Hyper Text Transfer Protocol.

IDD
Inter-DIF Directory.

IPC
Inter Process Communication.

IRM
IPC Resource Manager.

JSON
Java Script Object Notation.

KRPI
Kernel space RINA Plugins Infrastructure.

Deliverable-2.4

114

MA
Management Agent.

MPL
Maximum Packet(PDU) Lifetime.

MPLS
Multi-Protocol Label Switching.

MTBR
Mean Time Between Failures.

MTTR
Mean Time To Recover.

NM-DMS
Network Management Distributed Management System.

NSM
Name Space Manager.

OO
Object Oriented

OOP
Object Oriented Programming

OOD
Object Oriented Development

PCI
Protocol Control Information.

PDU
Protocol Data Unit.

PDUFwdGen
PDU Forwarding Table generator.

PM
Protocol Machine.

OS
Operating System.

QoS
Quality of Service.

RA
Resource Allocator.

Deliverable-2.4

115

RIB
Resource Information Base.

RINA
Recursive InterNetwork Architecture.

RPI
RINA Plugins Infrastructure.

RMT
Relaying and Multiplexing Task.

RTT
Round Trip Time.

SDU
Service Data Unit.

SDK
Software Development Kit.

TCP
Transmission Control Protocol.

TTL
Time to Live.

URPI
User space RINA Plugins Infrastructure

UDP
User Datagram Protocol.

VLAN
Virtual Local Area Network.

WFQ
Weighted Fair Queuing.

XML
eXtensible Markup Language.

Deliverable-2.4

116

Bibliography
• [omnetpp-dwnld] OpenSim Ltd., OMNeT++ Releases, available online3

• [ops-rinasimtickets] OpenSource Projects, RINASim Tickets, available online4

• [github-kvetak] GitHub, RINA Simulator repository, available online5

• [omnetpp-main] OpenSim Ltd., OMNeT++ Discrete Event Simulator, available
online6

• [omnetpp-inet] OpenSim Ltd., INET Framework, available online7

• [omnetpp-ansa] OpenSim Ltd., ANSA Project, available online8

• [omnetpp-mixim] OpenSim Ltd., MIXIM Framework, available online9

• [omnetpp-oversim] OpenSim Ltd., Oversim Framework, available online10

• [omnetpp-veins] OpenSim Ltd., Veins Framework, available online11

• [omnetpp-castalia] OpenSim Ltd., Castalia Framework, available online12

• [omnetpp-manual] OpenSim Ltd., Manual, available online13

• [omnetpp-ide] OpenSim Ltd., IDE in Nutshell, available online14

• [omnetpp-eclipse] OpenSim Ltd., Eclipse, available online15

3 http://www.omnetpp.org/omnetpp/category/30-omnet-releases
4 https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
5 https://github.com/kvetak/RINA
6 http://www.omnetpp.org
7 http://inet.omnetpp.org/
8 http://nes.fit.vutbr.cz/ansa
9 http://mixim.sourceforge.net/
10 http://www.oversim.org/
11 http://veins.car2x.org/
12 http://castalia.research.nicta.com.au/index.php/en/
13 http://www.omnetpp.org/doc/omnetpp/manual/usman.html
14 http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
15 http://www.omnest.com/webdemo/ide/demo.html

http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://github.com/kvetak/RINA
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html
http://www.omnetpp.org/omnetpp/category/30-omnet-releases
https://opensourceprojects.eu/p/pristine/rinasimulator/tickets/
https://github.com/kvetak/RINA
http://www.omnetpp.org
http://inet.omnetpp.org/
http://nes.fit.vutbr.cz/ansa
http://mixim.sourceforge.net/
http://www.oversim.org/
http://veins.car2x.org/
http://castalia.research.nicta.com.au/index.php/en/
http://www.omnetpp.org/doc/omnetpp/manual/usman.html
http://www.omnetpp.org/pmwiki/index.php?n=Main.OmnetppInNutshell
http://www.omnest.com/webdemo/ide/demo.html

	Deliverable-2.4
	Table of Contents
	1. Introduction
	2. Installation and configuration
	2.1. OMNeT Installation
	2.1.1. Windows installation
	2.1.2. Linux installation

	2.2. RINASim Installation
	2.3. OMNeT Handbook
	2.3.1. Basics
	Simple modules
	Compound modules
	Network modules

	2.3.2. Simulator and IDE

	3. High Level Design
	3.1. Nodes
	3.1.1. Hosts
	3.1.2. Interior Routers
	3.1.3. Border Routers

	3.2. DAF Design
	3.3. DIF Design
	3.4. Policies
	3.4.1. Description
	3.4.2. Using the policy framework
	3.4.3. Example usage

	4. Components
	4.1. Application Entity
	4.1.1. Image
	4.1.2. Narrative description
	4.1.3. Submodules
	4.1.4. Source codes
	4.1.5. NED design
	4.1.6. C++ Implementation
	4.1.7. Future work

	4.2. Common Distributed Application Protocol
	4.2.1. Image
	4.2.2. Narrative description
	4.2.3. Submodules
	4.2.4. Source codes
	4.2.5. NED design
	4.2.6. C++ implementation
	4.2.7. Side notes
	Limitations
	Future work

	4.3. DIF Allocator
	4.3.1. Image
	4.3.2. Narrative description
	4.3.3. Submodules
	4.3.4. Source codes
	4.3.5. NED design
	4.3.6. C++ implementation
	4.3.7. Side notes
	Limitations
	Future work

	4.4. IPC Resource Manager
	4.4.1. Image
	4.4.2. Narrative description
	4.4.3. Submodules
	4.4.4. Source codes
	4.4.5. NED design
	4.4.6. C++ Implementation
	4.4.7. Side notes
	Future work

	4.5. Flow Allocator
	4.5.1. Image
	4.5.2. Narrative description
	4.5.3. Submodules
	4.5.4. Source codes
	4.5.5. NED design
	4.5.6. C++ Implementation
	4.5.7. Side notes
	Future work

	4.6. Resource Allocator
	4.6.1. Image
	4.6.2. Narrative description
	4.6.3. Submodules
	4.6.4. Source codes
	4.6.5. NED design
	4.6.6. Policies
	4.6.7. C++ Implementation
	4.6.8. Side notes
	Future work

	4.6.9. PDU Forwarding Table Generator
	Image
	Narrative description of functionality
	Policy framework
	Sub modules list
	Network state list
	Neighbors state list
	PDUFTG policy

	Relevant source code files
	NED design structure
	Signals
	Parameters
	Policies

	C++ implementation notes
	Current limitation and future development plans
	Limitations
	Future development

	4.7. RIB Daemon
	4.7.1. Image
	4.7.2. Narrative description
	4.7.3. Submodules
	4.7.4. Source codes
	4.7.5. NED design
	4.7.6. C++ Implementation
	4.7.7. Side notes
	Future work

	4.8. Delimiting
	4.8.1. Image
	4.8.2. Narrative description
	4.8.3. Submodules
	4.8.4. Source codes
	4.8.5. NED design
	4.8.6. C++ Implementation
	4.8.7. Side notes
	Limitations
	Future work

	4.9. Error and Flow Control Protocol
	4.9.1. Image
	4.9.2. Narrative description
	4.9.3. Submodules
	4.9.4. Source codes
	4.9.5. NED design
	4.9.6. C++ Implementation
	4.9.7. Side notes
	Future work

	4.9.8. EFCP
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes
	Limitations
	Future work

	4.9.9. EFCPTable
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes

	4.9.10. EFCP Instance
	Image
	Narrative description
	Submodules
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.9.11. DTP
	Image
	Narrative description
	Policies
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.9.12. DTCP
	Image
	Narrative description
	Policies
	Source codes
	NED design
	C++ Implementation
	Side notes
	Limitations
	Future work

	4.9.13. DTCP State
	Image
	Narrative description
	Source codes
	NED design
	C++ Implementation
	Side notes
	Future work

	4.10. Relaying and Multiplexing Task
	4.10.1. Image
	4.10.2. Narrative description
	4.10.3. Submodules
	4.10.4. Source codes
	4.10.5. NED design
	4.10.6. Policies
	4.10.7. C++ Implementation
	4.10.8. Side notes
	Future work

	5. Demonstration Scenarios
	5.1. Two Hosts Example
	5.1.1. Motivation
	5.1.2. Scenario
	5.1.3. High-level components
	5.1.4. Simulation settings in omnetpp.ini
	5.1.5. Static configuration in config.xml
	5.1.6. Scenario description

	5.2. Simple Relay Example
	5.2.1. Motivation
	5.2.2. Scenario
	5.2.3. High-level components
	5.2.4. Simulation settings in omnetpp.ini
	5.2.5. Static configuration in config.xml
	5.2.6. Scenario description

	5.3. Small Network Example
	5.3.1. Motivation
	5.3.2. Scenario
	5.3.3. High-level components
	5.3.4. Simulation settings in omnetpp.ini
	5.3.5. Static configuration in config.xml

	5.4. All Nodes Example
	5.4.1. Scenario
	5.4.2. High-level components
	5.4.3. Simulation settings in omnetpp.ini
	5.4.4. Static configuration in config.xml

	5.5. Fat Tree Example
	5.5.1. Motivation
	5.5.2. Scenario
	5.5.3. High-level components
	5.5.4. Simulation settings in omnetpp.ini
	5.5.5. Static configuration in config.xml
	5.5.6. Scenario description

	6. Conclusions
	Glossary
	1. List of definitions
	2. List of acronyms

	Bibliography

