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ABSTRACT
Artificial neural networks (NN) have shown a significant
promise in difficult tasks like image classification or speech
recognition. Even well-optimized hardware implementations
of digital NNs show significant power consumption. It is
mainly due to non-uniform pipeline structures and inherent
redundancy of numerous arithmetic operations that have to
be performed to produce each single output vector. This pa-
per provides a methodology for the design of well-optimized
power-efficient NNs with a uniform structure suitable for
hardware implementation. An error resilience analysis was
performed in order to determine key constraints for the de-
sign of approximate multipliers that are employed in the
resulting structure of NN. By means of a search based ap-
proximation method, approximate multipliers showing de-
sired tradeoffs between the accuracy and implementation
cost were created. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classifica-
tion problem of Street-View House Numbers. Significant
improvement in power efficiency was obtained in both cases
with respect to regular NNs. In some cases, 91% power re-
duction of multiplication led to classification accuracy degra-
dation of less than 2.80%. Moreover, the paper showed
the capability of the back propagation learning algorithm
to adapt with NNs containing the approximate multipliers.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Automatic synthesis; I.2.6
[Computing Methodologies]: Artificial Intelligence
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1. INTRODUCTION
Recent advances in artificial intelligence methods and a

huge amount of computing resources available on a single
chip have led to a renewed interest in efficient implemen-
tations of complex neuromorphic systems based on artifi-
cial neural networks (NNs). Implementing complex NNs in
low power embedded systems requires careful optimization
strategies at various levels including neurons, interconnects,
learning algorithms, data storage and memory access. This
work is focused on reducing power consumption of computa-
tions performed in neurons, which is of the same importance
as optimizing the data storage and memory access [7].

Inexact or approximate computing has been adopted in
recent years as a viable approach to reduce power consump-
tion and improve the overall efficiency of computers. In
approximate computing, circuits are not implemented ex-
actly according to the specification, but they are simplified
in order to reduce power consumption or increase operation
frequency. It is assumed that the errors occurring in simpli-
fied circuits are acceptable, which is typical for error resilient
application domains such as multimedia, classification and
data mining. Applications based on NNs have proven to be
highly error resilient [2].

This paper provides a methodology for the design of well-
optimized power-efficient NNs that have a uniform structure
(i.e. all nodes are identical in all layers) which is thus suit-
able for hardware implementation. An error resilience anal-
ysis is performed in order to determine key constraints for
the design of approximate multipliers that are employed in
the resulting structure of NN. In order to avoid a manual
approximation of accurate multipliers, systematic methods
capable of performing approximations have been introduced
recently [21, 20, 14]. These methods typically start with
a gate-level description of the accurate circuit and an er-
ror constraint that specifies the type of error that can be
accepted. The approximation algorithm is typically con-
structed as a design space exploration algorithm directly
approximating some parts of the circuit [11] or the whole
circuit [18]. The search is guided by an error metric such as
the average error magnitude or maximum arithmetic error.

In addition to developing highly-optimized power efficient



NNs, an automated design space exploration method is pro-
posed. The method is capable to design approximate multi-
pliers in such a way that the resulting multipliers satisfy not
only a given error, but also a set of other application-specific
constraints.

2. ARTIFICIAL NEURAL NETWORKS
In machine learning, artificial neural networks are a family

of models inspired by biological neural networks. A typical
artificial neural network consists of an input layer of neu-
rons, several hidden layers of neurons and an output layer
of neurons.

2.1 Artificial Neuron
A typical structure of neuron is as follows [4, 22]. The

output hi of neuron i is defined as hi = σ(
∑N

j=1 wijxj − θ),
where σ(·) is an activation function, N is the number of in-
puts of the neuron, wij is weight of the link, xj is the j-th
input and θ is a threshold or bias. The purpose of the ac-
tivation function is (in addition to introducing non-linearity
into NN) to map the resulting values into the interval (−1, 1)
or (0, 1). The activation can be a threshold function, semi-
linear or non-linear function. A common example of the
non-linear function, which is used in this work, is sigmoid

function σ(x) = (1 + e−x)
−1

.

2.2 Architecture and learning
The NNs are classified into feed-forward neural networks

(FNNs), recurrent neural networks (RNN) and their combi-
nation. In RNNs, there is at least one feedback connection.
The earliest and the simplest architecture is the perception
model which utilizes just one layer of output neurons that
are connected with all the inputs. The extended version, the
multilayer perception model (MLP), uses one or more layers
(a.k.a. hidden layers) of neurons between the input and out-
put layers. In the hidden layer, each neuron is directly linked
to the outputs of the previous layer. An important contribu-
tion to the state of the art in NNs has been the development
of large-scale NNs such as the convolutional NNs introduced
by LeCun [9], where more types of layers (e.g. convolutional
layers) are employed. Another type of layers is the average
pooling layer which is used for weighted subsampling. Nowa-
days there are many different application-specific layers in-
tended for, e.g., image classification [8], segmentation [1],
speech processing [6] etc.

Learning is the most important capability of neural net-
works. It is performed by an algorithm that iteratively up-
dates the synapses (weights) and other parameters of neural
network. Determining the most suitable parameters and
weights of NN can be viewed as a complex nonlinear op-
timization problem. Learning methods are usually divided
into supervised, unsupervised, reinforcement, and evolution-
ary methods [4]. The most popular algorithms for super-
vised learning, which we will employ, are the least mean
squares method and back propagation algorithm [4].

2.3 Approximations in NNs
As neural networks are inherently error-resilient, various

approaches have been proposed to approximate them [13].
Venkataramani et al. [19] proposed a methodology of iden-

tifying error-resilient neurons based on the backpropagation

gradients. For the error-resilient neurons, an approxima-
tion using precision modification and piecewise-linear ap-
proximation of activation function was applied to create an
approximate neural network. Since training is by itself an
error-healing process, after creating the approximate ver-
sion, the NN is retrained. They also proposed a neuro-
morphic processing engine platform to determine the best
tradeoff between the precision and energy.

Zhang et al. [24] used a different approach for critical neu-
ron identification. A neuron is considered as critical, if small
jitters on the neuron’s computation introduce large output
quality degradation; otherwise, the neuron is resilient. They
presented a theoretical approach for finding the critical neu-
rons. The least critical neurons are candidates for approxi-
mation. Due to the tight interconnection between the neu-
rons, the ranking of candidate neurons is updated after ap-
proximation of each neuron. Hence, an iterative algorithm
for the criticality ranking and approximation was developed.
Three approximation strategies were used – precision scal-
ing, memory access skipping and approximating the multi-
plier circuits.

Du et al. [5] proposed an inexact Neural Network accel-
erator showing that it is possible to use inexact multipliers
in NNs. The multipliers were designed using an inexact
logic minimization algorithm [11]. For small fully connected
neural networks, their strategies were able to find good con-
figurations. They exploited the fact that the output layer
has a small number of neurons and since there is no synap-
tic weight after these neurons, lowering the errors through
retraining is difficult [13].

Judd et al. [7] showed that computations and memory ac-
cesses significantly contribute to power consumption. Hence
they used bit-precise weights reduction in standard multipli-
cation and reduced memory accesses of standard memories
in their implementation for GPUs and ASIC.

Power consumption of the synaptic weight memory was
optimized by Srinivasan et al. [17] who applied a conven-
tional 6T SRAM that is known to be susceptible to bit-cell
failures due to voltage over-scaling. A significance driven hy-
brid 8T-6T SRAM was proposed wherein the sensitive MSBs
are stored in robust 8T bit-cells. The memory access power
reduction was exchanged for a small loss in the classification
accuracy.

Sarwar et al. [16] introduced approximate multipliers
based on alphabet-set multiplication. The weights were di-
vided into parts having 4 bits. Multiplication by each 4-
bit part of the weight was implemented by shifting a pre-
computed input value and followed by summation. Authors
showed that reducing the set of precomputed values has a
significant impact on power consumption and a small impact
on the total accuracy of neural network. This architecture
is suitable for an efficient hardware implementation because
the resulting NN shows a uniform structure and each neuron
has the same architecture.

In summary, the first four approaches presented in this
section have shown that it is possible to approximate some
neurons. The resulting NNs can be characterized as non-
uniform NNs. However, for an efficient VLSI implementa-
tion and for implementing a general-purpose NN (not an
application specific one), all (or almost all) neurons have to
be uniform. Moreover, the selected components were ap-
proximated manually and independently of a target NN. It
was also shown that not only multiplication but also the



memory access has a significant impact on the total power
consumption.

2.4 Approximate multipliers in NNs
Since NN contains hundreds of thousands multiplications,

it seems to be useful to introduce approximate multipliers
to reduce power consumption. In order to determine the
impact of inexact multiplication on NNs’ accuracy, the fol-
lowing sensitivity analysis has been carried out.

A non-trivial MLP network (1 hidden layer, 100 hidden
neurons) trained for recognizing handwritten numbers of
MNIST dataset (described in Section 4.2.1) was chosen as
our benchmark problem and evaluated using DeepLearn-
Toolbox.1. Its accurate implementation shows the classifi-
cation accuracy 94.16% when precise 8-bit multipliers are
used.

To emulate imprecise multiplication, a jitter function ∆ :
N × N → N is introduced. Let the output of inexact multi-
plier m be defined as m(a, b) = a ·b+∆(a, b). To ensure that
the relative worst-case error of 8-bit multiplier m is 5.2%,
the range of the jitter function ∆ is bounded by ±852, calcu-
lated as 5.2% · 22·7. Note that this worst-case error was cho-
sen according to approximate multipliers proposed in [18].

When function m is used instead of accurate multiplica-
tion and no retraining is applied, the classification accuracy
of the network decreased to 10.77%. A detailed analysis re-
vealed that there are more than 80% cases where one of the
input operands of multiplication is zero. The random jitter
then provides a non-zero output value and this error is ac-
cumulated. Hence we hypothesized that the multiplication
must be accurate if at least one of the operands is zero.

To investigate this hypothesis, we re-defined the approxi-
mate multiplier m to m′, where:

m′(a, b) =

{
m(a, b) if a · b 6= 0

0 otherwise
(1)

Now the original NN which employs approximate multipliers
m′ exhibits the classification accuracy of 94.20%. Although
the impact of approximate multipliers on the accuracy is
application-specific, this benchmark showed that it is nec-
essary to have the accurate multiplication by 0. Figure 1
shows the absolute difference between outputs of the same
neurons in the case that approximate multipliers provide (a)
inexact and (b) exact multiplication by 0.

3. PROPOSED DESIGN METHOD
The proposed method is based on uniform NNs that utilize

approximate multipliers. In this section, we will define fea-
sible approximate multipliers, describe a design space explo-
ration search method for obtaining the feasible multipliers,
and introduce the overall methodology for NN approxima-
tion.

3.1 Constraints and cost function
A digital combinational circuit with n inputs and m out-

puts computes a completely-specified Boolean function F :
Bn → Bm, B = {0, 1}, that maps n-input Boolean vec-
tor x = 〈x1, x2, . . . xn〉 to an m-output Boolean vector y =
〈y1, y2, . . . ym〉 with associated hardware cost. Let n-bit ac-
curate multiplier be represented by a function M : Bn ×
1https://github.com/rasmusbergpalm/DeepLearnToolbox
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Figure 1: The error of the output neurons in the approxi-
mate NN in comparison with the original NN. The approx-
imate NN utilizes approximate multipliers showing a 5.2%
error and (a) inaccurate and (b) accurate multiplication by
zero

Bn → Bn+n and let δ : Bm → N assign a natural number
to an m-bit Boolean vector.

The error metric is defined as maximal relative error ε, i.e.
it is requested that the maximal arithmetic error of multi-
plication for each combination of operands is lower than ε
on the whole output range (which is 0 . . . (22n − 1)). This
error ε will be one of the input parameters of the algorithm
designing approximate multiplies.

A candidate approximate multiplierM′ is a feasible solu-
tion is two conditions hold. (i) The error is acceptable:

∀(a,b)∈Bn×Bn : |δ(M(a, b))−δ(M′(a, b))|≤ ε ·(22n−1). (2)

and (ii) multiplication by 0 is accurate:

∀a∈Bn : M(a, {0}n) =M′(a, {0}n) ∧
M({0}n, a) =M′({0}n, a). (3)

In the approximation process, the implementation cost
of multiplier SM′ will be estimated as the number of used
gates. The number of two-input gates is a sufficient metric
because the circuits are relatively simple (as it will be seen
in Section 5). The number of used gates SM′ is determined
recursively as follows: (1) the gate is used if its output is
connected to output of the circuit; (2) the gate is connected
if its output is connected to an input of any used gate.

The cost function for the approximation process is defined
as

CM′ =

{
SM′ if constraints (2) and (3) are met

∞ otherwise
. (4)

3.2 Approximate multiplier design
In order to approximate an accurate multiplier, various

approaches have been proposed. In this work, we employ
Cartesian Genetic Programming (CGP) [12] because it can
easily handle constraints given on candidate circuits, the
method is naturally multi-objective and high-quality ap-
proximate circuits have already been obtained with it [18].

The standard CGP is a branch of genetic programming
which represents candidate designs using directed acyclic
graphs [12]. A candidate circuit is modeled using a 2D array
of programmable nodes with nc columns and nr rows. In our
case, the nodes will be 2-input Boolean functions, where Γ is
the set of available functions. The circuit utilizes ni primary



inputs and no primary outputs. Feedback connections are
not enabled.

The primary inputs and the outputs of the nodes are la-
beled 0, 1 . . . nc ·nr+ni−1 and considered as addresses which
the node inputs can be connected to. A candidate solution
is represented in the so-called chromosome (which is, in fact,
a netlist) by nr · nc triplets (x1, x2, ψ) determining for each
node its function ψ (ψ ∈ Γ) and input connections. The last
part of the chromosome contains no integers specifying the
nodes where the primary outputs are connected to. While
the chromosome size s is constant s = ncnr(na + 1) + no,
the circuit size is variable and measured as the number of
active (i.e. used) nodes. See an example in Fig. 2. The set
of valid chromosomes (netlists) represents the whole search
space.
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Figure 2: Example of a circuit in CGP with parameters:
ni = 3, no = 2, nc = 4, nr = 1, Γ = {0and, 1or, 2xor}.
Chromosome: 0, 1, 1; 3, 2, 2; 1, 2, 0; 2, 3, 1; 4, 5. Gate 6 is
not used. Logic behavior of the circuit is:

y0 = ((x0 or x1) xor x2); y1 = x1 and x2.

CGP employs a simple search method . In our case, the
initial population P of CGP contains one of various imple-
mentations of accurate multipliers and a few circuits gen-
erated using mutation of the accurate multiplier. Creating
the accurate multiplier in the initial population is trivial as
there is a one-to-one mapping between multiplier netlists
and CGP chromosomes. The next step consists in the eval-
uation of candidate circuits using the fitness function. Each
member of P then receives the so-called fitness score and
the highest-scored individual becomes a new parent of the
next population. From this parent, λ candidate solutions
are generated using mutation. The termination criterion is
given by the number of iterations.

Despite many attempts to propose a suitable crossover
operator to CGP, the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h
randomly chosen genes (integers) of the chromosome. Their
new values are generated randomly, but it is checked whether
the new values are valid. One mutation can affect either
the gate function, gate input connection, or primary output
connection.

In order to approximate multipliers, the fitness is defined
as fitness(M′) = −CM′ and Γ = {NAND, NOR, XNOR,
AND,OR, XOR, NOT, identity}.

3.3 Evaluation platform
This section describes the evaluation platform used for

simulations of the proposed approximate NNs. The software
framework is based on C++ project tiny-cnn2. We have im-
plemented two new types of layers to NNs: the approximate
fully connected layer and approximate convolution layer. In
the software simulation, the approximate multiplication was
realized using a lookup table. The framework uses weights
and inputs with double floating point precision. We rounded
them to the fixed point representation in the range 〈−1, 1〉.
All numbers are unsigned, the sign is determined after the
computation.
2https://github.com/nyanp/tiny-cnn

We have also synthetised multipliers for neural network.
The multipliers were implemented at the Register-Transfer
Level (RTL) in Verilog and mapped to the IBM 45nm tech-
nology using Synopsys Design Compiler Ultra. The hard-
ware multiplication unit utilizes a combinational approxi-
mate unsigned multiplier circuit and logic for the sign ex-
tension. We have utilized the one’s complement method
which is easy to calculate (4n XOR gates), but provides
lower accuracy w.r.t. the two’s complement method (extra
three one-subtractors) used in standard applications. The
framework can estimate energy consumption and area under
iso-speed conditions. The clock frequency for 8 bit neurons
is 3 GHz and 2.5 GHz for 12 bit neurons.

There are equal count of multiplications and additions and
one activation function in the neuron computational model.
Since the count of operations is big (tens or hundreds) and
the multiplication consumes significantly more energy than
addition, the multiplication is the most consuming part and
power reduction of this part significantly contributes to the
overall power consumption reduction.

3.4 Overall design methodology
Finally, the overall methodology for design of approxi-

mate multipliers that will be used in approximate NNs is
presented in Figure 3. The inputs to the methodology are
the accurate neural network (with accuracy J), training and
testing data, quality constraint Q, accurate multiplier and
initial error ε. The whole procedure is as follows. The CGP
algorithm is utilized for creating a set of approximate mul-
tipliers from the accurate one. The approximate multipliers
are used in the pretrained network. In order to achieve the
best quality results, the network is retrained. The NN im-
plementation showing the best accuracy K is selected. The
accuracy K is checked if it meets the quality constraint Q
w.r.t. accurate neural network with accuracy J . If the con-
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Figure 3: Overview of approximate multiplier design for ap-
proximate NNs

straint is not met, the relative maximal approximation error
ε is decreased and next iteration is performed. Due to non-
deterministic generation of approximate multipliers by CGP,
it is necessary to generate several approximate multipliers
and then re-evaluate the accuracy of NN.

4. EXPERIMENTAL SETUP
The goal of the experiments is to investigate the impact of

proposed approximation methods on the accuracy and power



consumption of NNs. This section provides the experimental
setup and benchmark problems description.

4.1 CGP configuration
CGP will be used to design 7 bit and 11 bit unsigned

multipliers. The sign extension, i.e. 8 bit and 12 bit-width
multipliers, will be designed manually using the one’s com-
plement method. The maximum target arithmetic error ε
of approximate multipliers is taken from the set {0.5%, 1%,
2%, 5%, 10%, 15%, 20%}. We did not employ arithmetic
error beyond 20% for approximate multipliers since the clas-
sification accuracy drops significantly. The approximation
process starts with accurate multipliers (Ripple Carry Ar-
ray, Carry Save Array with RCA and CSA adders, Wallace
Tree with RCA, CSA and CLA adders [23]) which constitute
the so-called initial population. Considering two bit widths,
7 target errors and 6 types of initial multiplier architectures,
there are 84 initial configurations in total.

4.2 NN Accuracy analysis
The accurate multipliers are replaced with candidate ap-

proximate multipliers in the NN which is then retrained in
the supervised learning scenario. Two types of NN and two
classification datasets are utilized for the accuracy analysis.

4.2.1 Handwritten numbers
The first dataset is MNIST (Mixed National Institute of

Standards and Technology) database of handwritten num-
bers [10] which consists of two sets of data. The first one
is the training data set containing 60,000 28 × 28 images
and their labels. The second one contains 10,000 test pairs.
The digits are normalized and centered in fixed-sized images.
The dataset is very popular for quantifying the accuracy of
classification methods. It was shown that neural networks
are able to provide the error rate as low as 0.27% using con-
volutional networks [3]. In this case, we used a MLP network
with 28× 28 input neurons, 300 neurons in the hidden layer
and 10 output neurons whose outputs are interpreted as the
probability of each of 10 target classes (0 – 9).

4.2.2 House numbers
The second dataset is SVHN (Street View House Num-

bers) which is obtained from house numbers in Google Street
View images [15]. The images come from a significantly
harder, unsolved, real-world environment. The dataset con-
tains 73,257 digits for training and 26,032 digits for testing.
Each digit is represented as a pair of 32 × 32 RGB image
and label. While MLP does not provide good accuracy in
this case, LeNet-6 (a 6 layer NN in Figure 4 [9]) is able to
classify the images with a very small error. The network con-
sumes a 32× 32 grayscale image as an input. In order to re-
duce the complexity, we transformed original RGB images to
grayscale using an equation Y = 0.299R+ 0.587G+ 0.114B.

Input image
32x32

6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 mult.

L2 – Subsampling
4,704 mult.

L3 – Convolutional
150,000 mult.

L4 – Subsampling
1,600 mult.

L5 – Convolutional
3,000 mult.

L6 – Fully connected
1,200 mult.

Figure 4: LeNet structure, where L1, L3, L5 and L6 contain
approximate multipliers, i.e. 98 % of multiplications are
approximated.

Layers L1, L3 and L5 perform the convolution. The L3 em-
ploys a special table that indicates which feature map from
6 previous maps is used for generating each of 16 output fea-
ture maps. Last layer (L6) connects all 120 values with each
neuron of the output layer. Convolutional and fully con-
nected layers represent 98 % of all multiplications performed
in the network. Hence, the approximation was applied only
for this layers. Layers L2 and L4 perform a subsampling
by weighted average, but this process was not approximated
because it has a small impact on power consumption.

5. RESULTS
The first part of this section is devoted to the results of

the proposed CGP-based approximation of multipliers. The
second part deals with approximate NNs. We also report
detailed parameters of approximate multipliers.

5.1 Multiplier approximation with CGP
CGP is used with settings given in Section 3.2. Five cir-

cuits (λ = 5) are evaluated in each iteration and new cir-
cuits are created by modifying just 1 integer in the chro-
mosome (h = 1) of the parent circuit. CGP operates with
nc×nr = 900 and nc×nr = 300 (respectively) nodes for 11-
bit and 7-bit multiplier (respectively). The evaluation of a
candidate 11 bit approximate multiplier requires evaluation
of 256x more test vectors than for the 7 bit multiplier ( 222

vs. 214). Hence, the maximal time for CGP was set to 120
minutes for 11 bit multipliers and 30 minutes for 7 bit mul-
tipliers. CGP performed 1,343 (and 122,773) iterations on
average for 11 (and 7) bit multiplier. The setting of CGP
corresponds with typical values used in the literature [12,
18].
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Figure 5: The number of gates in approximate multipliers

Figure 5 gives the number of gates in approximate multi-
pliers as boxplots showing the results from 60 independent
runs for a given error ε. If the error is zero only 6 values
are presented which corresponds with gate counts in our ac-
curate multipliers. In addition to obtaining many different
tradeoffs between the error and the number of gates, the pro-
posed method guarantees the exact multiplication by zero
in all approximate multipliers. The spread in obtained gate
counts is high especially for the 11-bit multipliers. Please



note that the approximate multipliers do not prolong delay
of the original accurate multipliers.

5.2 Approximate NNs
For constructing the approximate NNs, each of designed

approximate multipliers was utilized. In total, we thus ob-
tained 2×852 NNs (LeNet6 and MLP with (28×28)-100-10
layers) using 852 approximate multipliers which were sub-
sequently extended to signed versions using the one’s com-
plement. The accuracy of approximate NNs is presented in
Figure 6 for a pretrained network (column initial) and then
for 5 and 10 retrains, respectively, using the backpropaga-
tion algorithm. Each boxplot represents 60 multipliers, e.g.
in MNIST w = 8, ε = 15%, there is one multiplier lead-
ing to the accuracy 20% and another to 97% in the initial
placement in pretrained neural network.

Because it is infeasible to estimate power consumption of
each of 852 circuits, we did a precise power analysis in the
following way. We have selected circuits for each error ε and
bit-width w that have one of top three best accuracies for
SVHN. Then we selected a circuits from the top three sets
that provide the best tradeoff between MNIST accuracy and
the number of used gates. The accuracy of NNs utilizing the
selected approximate multipliers is shown in Figure 7. The
accuracy is normalized w.r.t. a circuit with the same bit-
width and ε = 0%. We have followed the alphabet-reduced
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Figure 6: Accuracy of NNs for several configurations during
the retraining process. The data shows statistical informa-
tion for all designed multipliers with selected w and ε.
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Figure 7: Normalized accuracy of NNs utilizing the best
approximate multipliers developed by the proposed method
for a given ε and its comparison with [16]. For each con-
figuration, the accuracy is normalized w.r.t. NN employing
accurate multipliers (ε = 0).

approach proposed in [16] and perform the simulation. The
reduced alphabet {1} enables to employ just 40 out of 256
weights for w = 8 and 200 out of 4, 096 weights for w = 12.
It can be seen that results from [16] are very similar for the
proposed approach when ε = 5%.

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 250.0 440.0 87.00 97.67
0.5 % 201.0 367.7 87.15 97.66
1 % 175.0 316.6 87.08 97.68
2 % 107.0 218.3 87.07 97.65
5 % 58.6 129.9 86.54 97.58
10 % 45.2 109.5 85.11 97.31
15 % 22.3 63.2 84.20 97.42
20 % 22.9 65.8 82.52 97.22

(a)

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 831.0 1175.0 87.04 97.70
0.5 % 417.0 664.9 87.15 97.69
1 % 475.0 720.8 87.22 97.71
2 % 284.0 523.8 87.06 97.71
5 % 247.0 483.0 86.68 97.61
10 % 125.0 285.0 85.81 97.48
15 % 115.0 262.4 84.95 97.38
20 % 111.0 252.5 83.06 96.18

(b)

Table 1: Power consumption and area of (a) 8-bit and (b) 12-
bit sign-extended approximate multipliers and the absolute
accuracy of NNs utilizing these multipliers.

Table 1 gives power consumption of selected approximate
multipliers (in IBM 45nm process) and the accuracy of NNs
that are utilizing these multipliers in two classification tasks.
In comparison with the original NNs (which utilize the accu-
rate multiplication), one can observe that approximate NN
(w = 8, ε = 10%) provides 81.9% power reduction of multi-
plication process while its accuracy decreases by 1.89% for
SVHN and 0.36% for MNIST. If the error of multiplication
remains below 20% the accuracy is only slightly decreased
(in some cases it is even improved, but the improvement
is negligible) for the MNIST problem. The NN trained for
the SVHN dataset is more sensitive to approximations. The
reason is that SVHN is a significantly harder classification
problem than MNIST, because SVHN contains natural scene
images with a high variability. However, the accuracy degra-
dation of NN is around 1% if ε ≤ 5%. And finally, for ex-
ample, 91% multiplier power reduction (w = 8, ε = 15%)
corresponds with the accuracy degradation of NN less than
2.80%.



To summarise the results, it was shown in Section 3.3 that
the multiplication has a significant impact on total power
consumption of calculation. When the calculation of LeNet
consumes approximately 44% [7], 91% reduction of multipli-
cation power leads to a significant total power consumption
reduction of the NN.

6. CONCLUSION
This paper provided a methodology for the design of power-

efficient NNs with approximate multipliers. An analysis
of error resiliency of neural networks showed the feasibil-
ity of using the proposed multipliers to achieve trade-off
between classification accuracy versus energy consumption.
By means of CGP, approximate multipliers were designed to
achieve the desired tradeoffs between the accuracy and im-
plementation cost. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classification
problem of Street-View House Numbers (SVHN). A signif-
icant improvement in power efficiency was obtained com-
pared to the exact (or original) NNs. In some cases, 91%
power reduction of multiplication was obtained with clas-
sification accuracy degradation less than 2.80% for SVHN
dataset.
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