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Abstract

This paper tackles the important unsolved problem of training deep models with small amounts of annotated data. We propose a
semi-supervised self-training bootstrap to deep learning which retrieves and utilizes additional images from internet image search.

We adapt the pseudolabel method proposed by Dong-Hyun Lee in 2013, previously used on the elementary MNIST handwritten
digit classification task. We show that by suitable modifications to its example weighting and selection mechanisms it can be adapted
to general image classification tasks supported by online image search.

The proposed approach does not require any human supervision, it is practical and efficient, and it actively avoids overtraining.
The usefulness of the proposed method is demonstrated on the SUN 397 dataset with only 50 training images per category. When
exploiting results of Google’s Image Search, we achieve a significant improvement, with a classification accuracy of 51%, as
opposed to 39% without our method.
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1. Introduction

Image classification is an important and challenging prob-
lem of Computer Vision. Traditionally, visual categories could
be learned by Support Vector Machines on histograms of local
features [35]. Current approaches have shifted towards Convo- ,
lutional Neural Networks [14, 28, 5], which require vast amounts
of data and computational power to learn millions of parame-
ters. Such approaches have achieved near-human performance +
Ln face recognltlon [33], in 1mage Sf.:grne.ntatlon [13], and have I o

eaten previous approaches in classification of both very broad 1 i —
and very specific categories [25]. The motivation for our ap- O00ZI€ | viaduct n
proach is to make it possible to use datasets with few examples,
but it may also potentially be used to fine-tune Convolutional
Neural Networks (CNNs) which already achieve high accuracy.
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Deep Learning relies on large labelled datasets, with sev- 1 1
eral hundred images for each category, but the creation of such H Go 8 € tenniscout @ “
datasets is demanding. Imperfect datasets can be created cheaply (W= au-b‘
in an automated fashion, but near-perfect labelling, required by F - HW E
current approaches, relies on manual selection.

Creating datasets autonomously from the web has been demon- .
strated to work well when the requested data is in the form of e
text labels [26, 27]. In this paper, we focus on the problem ¢
where a few images are already known, and a label can also be D
retrieved, so that we can also learn classifiers when the label is C N N Pse u d 0
ambiguous (such as “crane”) or machine-generated. \J Label

One way to do Deep Learning on small datasets is to ini-
tialize network parameters from an existing network. Networks
have been show to produce excellent embeddings, which gen-  Figure 1: Pseudolabel selects useful additional images from an

eralize well to new categories [23, 5]. However, this approach unreliable source, to help train a Deep Learning classifier
is limited, and a larger dataset will further improve results.

The contribution of this paper, shown in Figure 1, has the
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ability to learn visual categories from fewer images than previ-
ous approaches. We do this by modifying the pseudolabel [17]
method which augments labelled training images with unla-
belled images, to create a method capable of handling labelled
training images as well as queried images, which are likely to
belong to the desired class. This is achieved by modifying the
weighting and selection processes.

The presented method adapts the pseudolabel approach to
allow the use of web-scale datasets of millions of images. The
results are demonstrated on a toy problem devised from the
SUN 397 dataset, and on the full SUN 397 dataset expanded
with images gathered from Google’s image search without hu-
man intervention. The toy problem allows us to analyse the
properties of the data selection progress during training. A sig-
nificant improvement is achieved with our approach on the full
dataset, from 39% without pseudolabels to 51% with them with
the same CNN.

2. Previous Work

As discussed in Section 2.1, Convolutional Neural Networks
produce state-of-the-art results, but train poorly on small datasets.
Class complexity and variability are decisive for defining suf-
ficient dataset size, so we consider any dataset with an insuf-
ficient number of examples to be “small”. The pseudolabel
method in Section 2.2 uses an unlabelled dataset to mitigate
this. Any such approach needs to fully consider Dataset Bias
and Limitations, Section 2.3. Semi-Supervised Learning of-
fers a structured approach to utilize labelled data in conjunction
with a dataset which is unlabelled, or labelled with known un-
certainty, and this work is discussed in Section 2.4.

2.1. Convolutional Neural Networks

Convolutional Neural Networks [15] are the state-of-the-art
approach for image classification, achieving the best accuracy
for classification and detection [25]. These methods require
large datasets [34], and this is usually handled by dataset aug-
mentation with rotation, distortion, and other changes to the
used images [14].

While much excellent work has been done to enhance the
abilities of CNNs on large datasets [39, 32, 28, 29, 31, 22], it has
generally been accepted that small datasets cannot be directly
trained upon with random weight initialization. In this work, we
focus on using the CNN structure to improve accuracy, rather
than explicitly attempting to improve features, because features
can be transferred from classifiers trained on other datasets [43].

Other approaches to train on small datasets without Neural
Networks have been published, with limited success, such as a
generative models [8] and a V1-like model [4].

2.2. Pseudolabel

Pseudolabel [17] introduced Semi-Supervised Learning to
Convolutional Neural Networks. As shown in Algorithm 1, the
CNN is trained in the usual way, but training images are sup-
plemented by an unlabelled dataset. Low-density separation

Data: labelled images, unlabelled images
Result: trained classifier
initial training of CNN with labelled images only;
while CNN not converged do
for each unlabelled image I do
| pick the class with max predicted probability
end
train CNN with labelled and weighted
pseudolabelled images
end
Algorithm 1: Original pseudolabel algorithm [17]

between classes justifies the use of entropy regularization on
additional data.

In each iteration, the unlabelled set is classified with the
current network, and these predictions are used as labels for
the next iteration. Random selection from the unlabelled set,
together with increasing weights for the selected subset, are
meant to help convergence to a classifier principally influenced
by the training set.

This approach is justified by the cluster assumption, which
states that the decision boundary should lie in low-density re-
gions to improve generalization performance [1]. Rather than
explicitly searching for low-density regions, the pseudolabel
approach implicitly finds these, because changes in classifica-
tion are more likely to occur in regions where the consensus
among examples can be perturbed by few label changes. These
properties are desirable when using additional data, and the
method proposed here maintains these advantages, but allows to
use more informative and readily-available data. The pseudola-
bel approach helps with the MNIST dataset, divided artificially
into a training set and a mixed set for which labels are unknown.
An accuracy comparable to the one achieved by using the en-
tire set was reached. However, this dataset is long considered
solved [37], and similar results have not been demonstrated on
a challenging problem.

2.3. Dataset Bias and Limitations

Datasets can have a variety of biases, which affect the trained
classifier [34]. Since object classification should perform well
across a broad spectrum of variances, such as lighting or defor-
mation, datasets should exhibit these as well. Most datasets [25,
20, 7] are created semi-automatically: images are queried from
a trusted automated source, and manually sifted through. De-
pending on the source, this leads to different forms of bias: Im-
ageNet is known to contain mainly centered images, and SUN
397 is mostly composed of canonical (‘archetypal’) scenes.

By augmenting a biased dataset with additional data, the
bias can be reduced and the resulting classifier may demon-
strate less unwanted specificity, and thus a better generalization.
This can be accomplished by extending the datasets manually,
and image classifiers have greatly benefited from new, larger
datasets (see Table 1). Similarly, human level performance on
the Labelled Faces in the Wild dataset! [12] was achieved by
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Dataset # categories | # images containing instance | Top published classification accuracy
MNIST [16] 10 5421 - 6745 (mean 6 000) 99.79 [37]
PASCAL VOC 2012 [6] 20 303 - 4087 (mean 834) 90.3 mAP [38]
MS COCO [20] 91 ~300 - ~600 000 (mean 7 849) 59.0 mAP [11]
Caltech 101 [8] 101 31 - 800 (mean 90) 93.42 £ 0.5[10]
Caltech 256 [9] 256 80 - 827 (mean 119) 82.2 [42]
SUN 397 [41] 397 100 - 2361 (mean 274) 54.32 £ 0.14 [44]
ImageNet [25] 1000 732 - 1300 (mean 1281) 68.4 (top-1), 92.3 (top-5) [40]

Table 1: Comparison of image classification datasets. Note that the top-1 metric is inherently inappropriate for ImageNet
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Figure 2: The portion of images returned by Google in 2007
rated good while constructing the Caltech 256 dataset [9].

pretraining on a private dataset of 800 to 1200 faces for 4 030
people [33].

Table 1 lists the most popular image classification datasets.
While a larger number of categories makes classification in-
creasingly difficult, the top published classification accuracy is
more correlated with the number of example images per cate-
gory.

A specific type of database bias can even be seen in raw
images from Google’s image search: low accuracy, construc-
tive error, and canonicity. For instance, a search for the SUN
397 category “marsh” will yield many images of people with
the surname “Marsh”, and a search for “mountain” will yield a
disproportional number of visually pleasing photographs, such
as images of the Matterhorn. Google’s image search accuracy
decreases as further images are queried; see Figure 2. However,
the incentive behind using such data is that the sheer number of
images guarantees that there will nevertheless be many repre-
sentative ones.

2.4. Semi-Supervised Learning

Weakly Supervised Multiple Instance Learning (WSMIL)
is a subproblem of Semi-Supervised Learning. By making the
assumption that at least one of the queried images for each class
is correctly labelled, training with online image search data be-
comes WSMIL [36]. This approach has been coupled with the

traditional image classification approach of a dividing hyper-
plane in a feature histogram hyperspace [19, 18].

In contrast to approaches which have additional labelled
data with a probability of being correct (such as in our method),
correctly labelled data can be supplemented by unlabelled data
belonging to the same classes (as is done in the original pseu-
dolabel paper [17]).

CNNs have also been coupled with WSMIL [22, 3], but
in the setting of searching through an image for the object in-
stance, rather than searching through weakly labelled images.
Semi-supervised learning approaches have also been proposed
to mitigate CNN sensitivity to noisy labels [24, 30].

3. Method

The proposed algorithm (Algorithm 2) is composed of an

initial pre-training step, a selection process, and a repeated weighted

training step.

Data: labelled images, queried images for each class
Result: trained classifier
initial training of CNN with labelled images only;
while CNN not converged do

for each queried image I do

| select whether to use I for training

end

train CNN with labelled and selected images
end

Algorithm 2: Proposed pseudolabel algorithm

In the original paper [17], pseudolabels are labels assigned
during each epoch to any unlabelled images based on classifier
responses. In our setting, pseudolabels are weighted labels of
the class used to query each image in online image search.

The following conventions are adopted: X is a set of im-
ages {X1, X2, X3,...}, y is a set of labels {y;,y2,ys,...} where
yn € {1,2,...C}. C denotes the number of categories. Images
and their labels form fixed pairs, but may be denoted separately.
Training examples have the form (X,y). Every i model update
iterations are constitute one epoch, and a set of images and la-
bels during the duration of epoch e is denoted (X,, y.).

Labelled images are divided into a training set and testing
set: (Xtrain, ytrain)’ (Xtest’ ylest).



In addition to the training and testing sets, query images
are retrieved from an online image search engine separately for
each category. The queried images are denoted (X", yd'e),

3.1. Training Convolutional Neural Networks

CNNs are trained by Stochastic Gradient Descent, where
training images are propagated forward through the network in
batches to produce outputs, for which error gradients are cal-
culated. To complete an iteration, these are backpropagated
to calculate loss gradients, which are used to update network
weights. This process is repeated until convergence.

3.2. Pseudolabels with Query Images

The method published here relies on a different pseudola-
bel selection mechanism and a different pseudolabel weighting
to the original approach [17]. When training with pseudolabel
data, the CNN is trained as described in Section 3.1. However,
XY images are evaluated with the current network at each
epoch, and some are selected with pseudolabels XP! for train-
ing.

At the beginning of training, Xgl is empty.

1
XM =0 (1

For the first i iterations (during epoch 0), the CNN is trained
only with (X" y"n)  Then, X3**¥ is propagated forward
through the CNN, to produce a set of vectors of beliefs for all
labels by for every query image. These beliefs correspond to
the normalized outputs of the last fully connected layer, before
applying the last softmax layer.

Then, a randomized selection process chooses which pre-
dicted labels y9*”Y will be trusted. Pseudolabel examples Xgl
from the previous epoch are excluded.

(X

e+1’

¥ ) = selected(X®Y \ Xy b,) ()

The selection method proposed in this paper is explained in
Section 3.3. The rest of X" \ XE' is unused in this epoch.
In each following epoch e, the CNN is trained with

{(XP!, Py, (Xrain, yurainy) 3)

Section 3.4 discusses how ySl can be weighted against y""
for better convergence stability.

3.3. Pseudolabel Selection

Each example image is chosen with probability:

(1 - /lL) * be

> “

Where the accuracy A, for each class ¢ on unlabelled data is
the ratio of images classified as class ¢ to the number of queried
images in class c. By making the weak assumption that queried
class accuracies across queried data are similar, class accuracies
A, for the classifier are an indicator of training data and class
complexity for each category.

The classifier belief b, is the activation of the image for
the queried class, as predicted by the network. By using the
normalized belief in the y3"“? class, the selection favours im-
ages the classifier is more confident about, thus removing in-
correct query images. This belief is normalized across network
responses.

Classes with higher accuracy on the query dataset are given
lower pseudolabel priority. This is accomplished with the (1 —
A.) factor.

A number of factors affect the quantitative benefit of us-
ing pseudolabelled images: dataset belief, accuracy of the se-
lection method, difference between datasets, selection variabil-
ity over epochs, and randomization. Our selection method bal-
ances these by selecting images in a randomized order, which
depends on class accuracies and classifier belief for the correct
class.

The last step is randomization. A portion of query images
is randomly removed during selection. In our experiments, we
chose to remove 50%, and found this beneficial. This is justified
by a need to regularize across data when the CNN is trained.

3.4. Pseudolabel Weighting

Pseudolabels are likely to affect the classifier adversely when
it hasn’t yet reached a sufficient accuracy, just as the classifier
would fail to train on raw query data. Self-training is prone to
quickly converge to suboptimal solutions, because the classi-
fier assigns high confidence to wrong examples. How this is
mitigated in our approach is explained below.

In the original pseudolabel paper [17], images from the train-
ing set have constant weights and the pseudolabel losses are
weighted by @, where « increases with time according to two
hyperparameters.

Our experiments showed that this method is not more effec-
tive than setting @ = 0 until the network converges on training
examples, and then setting @ = 1. This method crucially re-
lies on the network’s ability to create a weak classifier from the
training data alone, and we found that this is the case with the
previously published « tuning method as well. All shown re-
sults are achieved with this step function, thus demonstrating
its usefulness.

This weighting method, albeit crude, simplifies hyperpa-
rameter tuning, and at the cost of a few epochs, achieves the
same accuracy.

3.5. Dataset Belief

For an automatically retrieved set of images, a crucial in-
formation for deciding whether to train using pseudolabels is
the accuracy of the queried data. The unknown proportion of
images which belong to the queried category is B, or query ac-
curacy.

Query images can be wrong, misleading, and/or contain
correctly and incorrectly labelled images from the training dataset,
see Figure 3.

The proposed approach assures that an imperfect selection
varies over epochs, in order to mitigate convergence to a non-
median representation of the class.
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Figure 4: Train and test accuracies with varying correct query images, and varying train set sizes for each class
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3.6. Difference Between Datasets

If the training dataset and the images queried from online
image search are the same, the method will not be of bene-
fit. It is important that they are complementary, albeit with an
overlap, and that they disagree to a degree. The disagreement
creates jitter in the hyperspace between images where the clas-
sifier should not be divisive, and it supports convergence to a
decision boundary elsewhere.

We found that selecting (X7“¢"?, y7“"Y) which fully agrees
with the current classifier does not boost classifier accuracy
over not using pseudolabels at all. This is because despite bring-
ing new information, the data doesn’t create disagreement, and
therefore no novelty. In our experiments, we found that a cer-
tain degree of wrong and randomly labelled images helped the
classifier to converge to higher accuracy over the test set. Adding
this form of noise achieves regularisation.

3.7. Implementation

All images X", X'est, XUy were resized so that the smaller
dimension is 227 pixels, and a central crop of 227227 pixels is

extracted. This has been shown to work better than other crop-
ping methods [2], and the value 227 was chosen because this
is the input size of the AlexNet network [14]. Preprocessing
details are discussed and evaluated in [2].

The AlexNet [14] architecture was used, and initialized with
weights trained on the ImageNet dataset. The network was re-
trained by keeping all but the last fully connected layer locked,
and by updating weights on the last layer.

The network was trained over 100 epochs of 500 iterations

each with each combination of parameters. In our GPU-accelerated

environment, such a network on the full SUN dataset with all
query images converged in 2 to 5 hours.

The ratio of testing data accuracy to queried data accuracy
is an indicator of queried dataset accuracy or similarity to the
testing dataset. Assuming no constructive errors, such as those
CNNs have been demonstrated to fall to when synthesizing ex-
amples [21], the number of correctly classified images is a lower
bound on how many really belong into the category. A large
difference between this number and the actual number (B), di-
rectly indicates how much further benefit the new data can have
for training.

4. Results

We performed experiments in two setups: the 6 most nu-
merous SUN 397 classes, artificially divided into “labelled”
and “query” subsets, and the full SUN 397 dataset with images
queried from Google’s Image Search?. For each set of train,
test, and pseudolabel accuracies in figures 4 and 5, the network
was trained independently.

In order to compare our approach to the original pseudola-
bel method, all query labels would have to be ignored. There-
fore, tests comparing the two approaches on any dataset would
be biased, and aren’t included here.

4.1. Artificial Dataset

By varying the percentage of correct images in the “query”
subset, it was possible to analyze the tolerances of the algo-
rithm. The 6 classes with most images in the SUN 397 dataset
contain between 1126 and 2439 images, and these were divided

2this data cannot be made public due to licensing issues



into training, testing, and query subsets. The query subset was
then diluted with images from all other SUN 397 classes to
varying degrees. Experimental results are shown in Figure 4.

Training accuracy, which increases beyond testing accuracy
when overtraining, goes down with more training images, as
well as with a higher proportion of correct query images. This
demonstrates that by applying our method, overtraining is being
mitigated. Test accuracy benefits most from pseudolabels with
60 to 160 training images per class, and only when there are at
least 20% correct images in the query dataset.

Interestingly, with only 10 training images per class and
highly accurate query data, classifier accuracy fluctuates, and
sometimes reaches better results than by using the same amount
of correct images by training without pseudolabels. This may
be because the classifier is able to ignore outliers among train-
ing images, which correspond to unhelpful examples.

4.2. Full SUN 397 dataset

The SUN 397 dataset is randomly divided into a train set
and test set, by using n images for training, and the rest for
testing. We performed experiments with n = [5, 20, 50]

The query set was retrieved from Google’s image search
separately for each category, by searching the full name of the
SUN 397 category (ex.: “swimming pool indoor”), and retriev-
ing all full scale original images. Only images which produced
an erroneous http query were ignored, and the number of im-
ages found was between 230 and 1359, with mean 796 for a
total of 316024 images. See Figure 6 for the distribution of
counts. An automated image similarity search was applied to
remove duplicate images, in order to avoid overcounting prob-
lems. Other online image search tools could have been used,
but Google was selected because it returns hundreds of images,
and its accuracy has been analyzed in previous work [9].

ﬁ train accuracy ﬁ test accuracy ﬁ pseudolabel accuracy
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Figure 5: train, test, and pseudolabel accuracy sets with SUN
397 supplemented by online query images, for various numbers
of training images and top google image search queries. Top
rows are without pseudolabels.

Figure 5 shows the accuracy distribution across classes with
and without pseudolabels. Pseudolabel accuracy is the ratio of
images whose query label agrees with the predicted label. Note
that the quality of queried images decreases with additional im-
ages, offsetting the benefit from pseudolabels on larger queries.
We can see that the pseudolabel approach reaches higher accu-
racy than classifiers trained without it, but that too many ad-
ditional Google images are detrimental. This may be because
they vastly outnumber training images, and training labels are
drowned out by the noise.
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Figure 6: Image counts for categories queried through Google

5. Conclusion and Future Work

The goal of this paper was to demonstrate that CNN train-
ing in the semi-supervised setting can be beneficial with small
datasets supplemented by images queried from online image
search. Experimental results demonstrate that this method is of
significant benefit especially if the number of training samples
is small (60 - 160), or the images in the training sample are not
as representative as the query data.

By adapting pseudolabels to real-world datasets, novel re-
sults have been accomplished, facilitating progress in deep learn-
ing where image data is sparse. The method was justified, ex-
perimentally analysed, and validated. Finally, it was shown that
by using our pseudolabel approach, accuracy on the SUN 397
dataset was substantially improved from 39% to 51% with 50
training images in each category.

Future work includes searching for a way to work with on-
line image search data only, without the need for a labelled
dataset, or with a labelled dataset of a few images only. The
existing method does not work with useful data from other cat-
egories, and may benefit from a model of interclass relation-
ships. In addition, querying images from a given category is a
non-trivial problem, and the method may be expanded to handle
further information on where query images came from, and map
intra-class disparities. It will also be beneficial to experiment
on classifiers created with subsets of the ImageNet dataset, so
that accuracy can be compared for various class sizes even for
hierarchical classes of varying complexity.
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