
On the Application of Symbolic Regression and
Genetic Programming for Cryptanalysis of

Symmetric Encryption Algorithm
Tomas Smetka, Ivan Homoliak, Petr Hanacek

Faculty of Information Technology, BUT,
Bozetechova 1/2, 612 66 Brno, Czech Republic

Email: {ismetka, ihomoliak, hanacek}@fit.vutbr.cz

Abstract—The aim of the paper is to show different point of
view on the problem of cryptanalysis of symmetric encryption
algorithms. Our dissimilar approach, compared to the existing
methods, lies in the use of the power of evolutionary principles
which are in our cryptanalytic system applied with leveraging of
the genetic programming (GP) in order to perform known plain-
text attack (KPA). Our expected result is to find a program (i.e.
function) that models the behavior of a symmetric encryption
algorithm DES instantiated by specific key. If such a program
would exist, then it could be possible to decipher new messages
that have been encrypted by unknown secret key. The GP is
employed as the basis of this work. GP is an evolutionary
algorithm-based methodology inspired by biological evolution
which is capable of creating computer programs solving a
corresponding problem. The symbolic regression (SR) method is
employed as the application of GP in practical problem. The
SR method builds functions from predefined set of terminal
blocks in the process of the GP evolution; and these functions
approximate a list of input value pairs. The evolution of GP
is controlled by a fitness function which evaluates the goal of
a corresponding problem. The Hamming distance, a difference
between a current individual value and a reference one, is chosen
as the fitness function for our cryptanalysis problem. The results
of our experiments did not confirmed initial expectation. The
number of encryption rounds did not influence the quality of
the best individual, however, its quality was influenced by the
cardinality of a training set. The elimination of the initial and
final permutations had no influence on the quality of the results
in the process of evolution. These results showed that our KPA
GP solution is not capable of revealing internal structure of the
DES algorithm’s behavior.

Index Terms—Cryptanalysis, DES, genetic programming, sym-
bolic regression.

I. INTRODUCTION

Standard cryptanalytic methods for symmetric encryption
algorithms are based on the principle of finding the key that
was used for the confidentiality of the information. They utilize
brute force or look for the weaknesses of the encryption
algorithms as an attempt of reducing the time to find the key.
This work shows that there are other approaches and methods,
which can be applied for cryptanalysis. The work leverages
evolution which is the drive motor for development of all
living organisms on the Earth. The evolutionary mechanisms
are applied here using genetic programming, whose purpose
is to find a program that models the behavior of a symmetric

encryption algorithm. If such a model would be constructed,
then it could be able to decipher all new messages which have
been encrypted by modeled symmetric encryption algorithm.

The paper describes the basic principles of genetic program-
ming with symbolic regression, and subsequently presents the
cryptanalytic system which utilizes the mentioned principles.
The main part of the work is devoted to the cryptanalysis of the
DES algorithm by using of genetic programming. Later, the
paper summarizes the results and lists the possible extension
of the work.

II. ALGORITHM DES

Data Encryption Standard (DES) [1] is chosen as an ana-
lyzed symmetric encryption algorithm because of its standard-
ization and known weaknesses. The IBM company is standing
behaind the development of the DES [1]. DES encryption
algorithm is an enhanced version of the Lucifer [2] algorithm.
DES represents type of Feistel cipher, that is utilized as block
symmetric encryption algorithm.

At the time of introducing DES as a standard, there were
some concerns and doubts about its safety – particularly by
Hellman and Diffie [3], [4]. Later, Morris, Sloane and Wyner
published two possible weaknesses of DES [5], which are
based on: a) the key length of 56 bits and thus may not
provide adequate security, and b) the S-boxes, which may
contain hidden backdoor.

III. GENETIC PROGRAMMING

Genetic programming (GP) represents biologically inspired
methods which are able to create computer programs that solve
the high-level problems [6]. In GP, the problem of artificial
intelligence, machine learning, adaptive systems and automatic
learning is transformed into the searching for a computer
program. GP provides us with a way to find a computer
program that resolves the problem in the area of computer
programs [7].

The essential difference between the evolution in sciences
and genetic programming is that evolution is in progress in
the sciences by permanently changing the environment and
without the objective (no final state), while the objective of

978-1-5090-1072-1/16$31.00 c© 2016 IEEE

the evolution in genetic programming is defined by fitness
functions [8], [9].

Genetic programming does not have limited structure (fixed
length of the chromosome) when searching for a suitable
solution of the given problem [10]. Individuals (programs) of
GP can potentially take unlimited complexity [11].

A. Language of the Representation

The code of each individual is formed by using a set of
functions and a set of terminals in GP [12], [13]. Programs
in GP work with so-called executable structures. The most
commonly used structures are syntactic trees, because they
are suitable for machine processing and can be used in almost
any programming language [7].

B. Set of Terminals

Inputs of the programs, that are evolved using GP, are
represented by set of terminals. This set contains constants,
nullary functions (a function without arguments) and variables.

C. Set of Functions

Set of utilized functions is dependent on the area of the
problem which is being solved by GP. The next parts of the
set can be arithmetic and logical operations, classic constructs
of the common programming languages such as conditions,
cycles, and subroutines. It is not desirable to use very large
set of functions, because it increases the search space, and the
solution may not be found then [9].

D. Fitness Function

In order to determine which programs or parts of the search-
ing space are feasible (the ones which address or approximate
the solution of our problem) is used the fitness function.
Fitness function expresses the quality of the individual and
is a key mechanism of the navigation in that searching space,
and thus of the convergence to an acceptable outcome [8].

The fitness function is determined by the programmer in
advance and it is not the subject to the process of the evolution.
The quality measurement of an individual can be done in many
ways, while the particular form of fitness function depends
on specification of the problem. The basic approaches to the
measurement of the quality of the individuals are semantic
analysis and consensus on the training set [10]. The terms for
the fitness values such as gross fitness, standardized fitness or
normalized fitness can be found in the literature [7].

E. Generation of the Initial Population

The first step of the GP algorithm is to initialize the initial
population, which is generated randomly [8] The initialization
process of the population randomly selects the symbols from
a set of terminals and a set of functions, and then it creates
the programs represented by the tree structure according to
the specified rules. Generation of the initial population can be
accomplished using a variety of methods, such as Grow Full
and Ramped Half and Half.

F. Genetic Operators

In genetic programming are defined the following basic
operators: crossover, reproduction and mutation [12], [14].
New population is created from the selected individuals by ap-
plication of genetic operators in terms of evolutionary process
[14]. Therefore, the initial population is transformed using the
genetic operators to final one during the whole evolutionary
process.

1) Reproduction: Is the operator, which according to the
established selection mechanism chooses the appropriate indi-
viduals for reproduction into the new generation [14]. The
selective mechanism mimics natural selection according to
the Charles Darwin’s theory: better adapted individuals are
more likely to reproduce. This mechanism ensures that the
average quality of the population increases with the number
of generations.

The selection of individuals for reproduction into the next
generation has to sufficiently prioritize high-quality individuals
(having higher fitness), however it also has to create new
generation sufficiently varied. If the reproduction does not
meet any of the two mentioned requirements, then it may lead
to premature convergence while high quality individuals are
preferred, and thus local solution may be found. However, in
the second case, it may lead to the slow convergence of the
algorithm [9]. The preference level of quality individuals and
the suppression of the low-quality individuals is a property of a
selection mechanism, which is called selection pressure. There
exist plenty of selection operators for choosing appropriate
individuals into the next generation. The best known are pro-
portional selection (roulette wheel selection) and tournament
selection [15].

2) Crossover: The crossover operator is working with two
individuals (parents) and combines their genetic material by
selecting a part of one parent with a part from the second
parent. This creates two new individuals (offspring), who are
placed into the new generation of the evolution process [7].

The basic variant of crossover is called crossover of sub-
tree and is applied as follows. The selection method chooses
two individuals as parents. The point of crossover (node) is
determined in each parent. The sub-trees, which are located
under the crossover points are swapped between the two par-
ents. The result are two new individuals, who are propagated
into the new generation.

3) Mutation: The mutation operator is working with one
individual, and as the only one is able to introduce the
information into the system. Usually, the mutation is random
and its probability is very low. Koza has demonstrated that the
mutation is not necessary (Pm = 0) [7] or is recommended to
be very small [12], e.g. Pm = 0.05. The most commonly used
type of mutation is called mutation of sub-tree. It is randomly
selected a node in the tree of an individual (mutation point)
and its sub-tree is replaced by the newly generated tree.

G. End of the Evolution

Evolution in the sciences is represented as a never ending
process. However, it is not desired property when solving

DES

Plaintext Cyphertext
64b

N

Key 64b

Behavioral model
DES + key

Genetic
programming
(population M)

The best individual

N

clear_block0

64b

N

enc_block0

clear_block1

clear_blockN-1

clear_blockN

enc_block1

enc_blockN-1

enc_blockN

clear_block0

clear_block1

clear_blockN-1

clear_blockN

enc_block0

enc_block1

enc_blockN-1

enc_blockN

Training
set

=

.

.

.

.

.

.

.

.

N .
.
.
.

result_block0

result_block1

result_blockN-1

result_blockN

.

.

.

.

result_block0

result_block1

result_blockN-1

result_blockN

.

.

.

.

result_block0

result_block1

result_blockN-1

result_blockN

Fitness function

0
M-1

M

Evaluation
0

M-1
M

EvaluationEvaluation

Fig. 1. Behavior of the DES algorithm using genetic programming

the real problem using the power of evolution. Therefore,
we use different criteria in order to stop the evolutionary
process of genetic programming. The most commonly used
criteria are the number of generations, the computing time,
achievement of the desired fitness value or the convergence of
the population [16].

IV. SYMBOLIC REGRESSION

Genetic programming can be in principle applied to many
areas. Nevertheless, the goal of many problems is to find a
function that has some required properties, e.g. the function
values correspond to the target values for specified input val-
ues. This procedure is generally known as symbolic regression
problem, which is one of the first applications of genetic
programming in practice [7].

Symbolic regression is based on finding such a function
of the program, which creates the required output values of
the specified input values without any assumptions about the
structure of this function [10], [7]. Genetic programming is
optimal for this type of discovery, as it does not consider such
assumptions.

V. CRYPTANALYSIS USING GENETIC PROGRAMMING

By combining the genetic programming and symbolic
regression, it was designed cryptanalytic system, which is
depicted in Fig. 1. The principle of proposed cryptanalytic
system is the following:

1) Generating of a training set – cryptanalytic system
works with the Known Plaintext Attack (KPA). There-
fore, it is necessary to know the pair of plain text and the
corresponding cypher text (64b blocks in the DES case).
Sufficient size of a training set could be N = 1000 of
such pairs. The upper part of Fig. 1 contains example
of generating of a training set.

2) Genetic programming – using evolutionary principles,
there are constructed programs based on data from the
training set. The aim of the program interpretation is to
get output data, which are the same as the reference data.
There is used the fitness function in order to compare
the similarity of both data values and thus determine the
quality of an individual.

3) Fitness function – its basis is the function hDist
which represents the distance of the two 64b strings:
A (reference block) and B (block obtained from the
interpretation of program), where the index of i (starting
from 1) represents the position of the bit in the string.
Therefore, it is the sum of the bit differences between
the two data blocks. The resulting fitness function is
the average of Hamming distance on the whole training
set. The following equations defines fitness function:

hDist =
1

64

64∑
i=1

Ai ⊕Bi (1)

fitness =
1

N

N∑
i=1

hDisti (2)

4) The best individual – models the behavior of the
selected encryption algorithm parametrized with the key,
which was utilized for generation of the training set.
Such an individual should be able to decipher other
encrypted blocks than the ones from the training set.

A. Functionality Validation of Genetic Programming

The implementation of the simulation tool is a part of this
work. This tool is working with genetic programming under
the proposed cryptanalysis system (see Fig. 1) and allows
application of a symbolic regression method on an input data
without focus on the DES algorithm. The functionality of
all parts of the genetic programming is checked on a set of
validation tests.

Validation is performed on a set of mathematical functions
involving different degrees polynomials and trigonometric
functions. The nodes IF and FOR are validated on the training
set generated by a factorial function. Syntax tree of the best
found individual is shown in Fig. 3. Measured results of one
of the validation tests, in which training set is generated
by polynomial 2x6 − 13x5 + 26x4 − 7x3 − 28x2 + 20x,
are presented in Fig. 2. These results show corresponding
graph of convergence and approximation graph for the chosen
generations. The approximation graph shows reference values
from the training sets in the blue color and red color represents

Fig. 2. Fitness convergence and approximation graph for chosen generations

FOR(i), Y

X

*

i

>

Y

*

i

IF

Y

Y

i

Fig. 3. Syntactic tree of the evolved individual

the output of the function/program of the best individual in the
chosen generation.

VI. TESTING AND EVALUATION OF ACHIEVED RESULTS

Symbolic regression method works with a training set of
pairs of an opened text P and an encrypted text C that is
generated by DES algorithm. The pairs of a training set are
represented by uint_64 data type. Experiments are focused
on diversely large training sets generated by different number
of rounds of DES algorithm. The goal of the experiments is
to construct, using the evolution process such an individual,
that simulates the expected behavior of DES algorithm for a
corresponding training set.

A. Fitness Value Estimate

The quality of an individual is directly proportional to its
fitness value. Fitness function heuristics is determined by the
average Hamming’s distance, thus a bit difference average
between the output of the individual and the corresponding
reference value from a training set. What fitness values can
an individual get?

Theorem 1: Each bit of randomly generated data block can
have values 1 or 0 with probability of p = 0.5. Let’s take 2

Fig. 4. Visualization of training on DES

different randomly generated data blocks X and Y with the
same number of bits N . Their bit difference complies with the
following

count(X ⊕ Y) ≈ N ∗ (1− p), (3)

where count is a function counting number of occurrence of
bits with value 1.

Theorem 2: Taking into account an encryption algorithm
processing blocks of size N , there should be no relation
between the opened block P and the corresponding block C.
We can assume that data blocks are random in relation to
each other. Coming out from Theorem 1, Equation 3 must be
true, thus the bit difference of P and C corresponds to the
expression N ∗ (1− p), where p = 0.5.

Corollary 1: DES algorithm processes blocks of size N =
64 bits. Applying Equation 3 to the block size N , it should give
us that the average bit difference between blocks of opened
text P and encrypted text C is ≈ 32 bits.

B. Visualization of Training Set of DES Algorithm

Imagine DES algorithm in decryption mode as a function
which transforms the encrypted input block C into the opened
block P . Blocks of text are represented by data type uint_64
and each block is symbolized by the corresponding decimal
value. A course of the function of DES algorithm in decryption
mode is present in Fig. 4, which shows values for 200 pairs
of P and corresponding C from the training set generated by
8 DES rounds with a randomly selected secret key.

Although the figure does not constitute the optimal repre-
sentation for the selected heuristics of the fitness function,
emerging from the visual comparison with i.e. courses of
polynomial functions it can be assumed that finding a fine
individual is not a trivial task. It can be also visually verified
that there is no obvious relation between pairs of blocks P
and C from the training set. The course of the DES function
corresponds to the course of randomly generated data.

The data shown in Fig. 4 are given in a text format to the
genetic programming process which works with the symbolic
regression method. Using the data and evolutionary principles,
it tries to generate individuals whose program representation
transforms C into P , thereby simulates the process of decryp-
tion of DES algorithm.

C. Practical Confirmation of the Assumptions

Theorem 2 is practically confirmed by using a simple itera-
tive algorithm, whose pseudo code is described in Algorithm
1. The input of Algorithm 1 is a random secret key for
encryption by the DES algorithm and the number of iterations
for the calculation. With the increasing number of iterations,
statistical accuracy is increased too – in our case it was used
220 iterations. Considering Theorem 2, the expected result for
DES working with blocks of 64 bits in size is ≈ 32 bits, which
is confirmed by the algorithm.

Algorithm 1: Pseudo code of the bit difference between
P and C

Function convergence_assumption(attempts, key) :double
int diff = 0;
for (i = 0; i < attempts; i++) do

plain = generate_random_plain();
cypher = des_encrypt(plain, key);
diff += count(plain ⊕ cypher);

return diff/attempts;

Corollary 2: The output of each individual within the
evolutionary process is a data block with the size of the 64
bits. If we leverage Corollary 1 related to the lowest accuracy
of the GP – GP does not find a connection on the training
set and the outputs of the individuals are random) – then the
maximal difference between an individual’s output and the
reference block is ≈ 32 bits. Also, this value represents the
worst theoretical evaluation of the fitness of the individual.
Therefore, we assume for the experiments that if the evolution
converges, then the fitness value is improving from the worst
possible values of 32 bits.

D. Finding of the Best Parameters

We need to specify the parameters of GP before the
experiments themselves. Finding the optimal parameters of
GP requires a good understanding of the solved problem.
In the current work, we focus on the DES algorithm, which
is implemented using cycles, rotations and the bitwise XOR
operations. Therefore, these operations are included into the
set GP functions. Subsequently, we experiment with various
training sets, different sets of functions, terminals and various
settings of the genetic programming. The main indicator
during the search for optimal parameters is the slope of
convergence evolution chart. The result of the experiment is to
find the best parameters of GP, which are described in Table I.

E. Initial and Final Permutation

By the following experiments, we check whether the initial
and final permutation has any influence on the results of the
fitness values. Each block C of the training set is the result
of the encryption process of DES algorithm with input block
P . In the first step, the input block P is transformed by the
initial permutation IP . Then, a defined number of encryption

TABLE I
THE OPTIMUM PARAMETERS OF THE DES CRYPTANALYSIS USING GP

Parameter Attribute

Terminal set T = {x, random constants {0, 1, ..., 64}}
Function set F = {+, −, SL, SR, RL, RR, AND OR, XOR, FOR

max. 64 of cycles}
Population size 4000 individuals, unlimited size of tree

Population initialization Ramped Half-and-Half (depth 2-3, 50% of termi-
nals are constants)

Selection method Tournament selection (selection pressure = 5)
Fitness heuristics Average Hamming distance
Genetic operators 80% crossover, 10% reproduction, 10% mutation

Crossover parameters 50% crossover of the highest sub-tree, 50%
crossover of the random sub-tree

Mutation parameters 45% mutation of terminals, 45% mutation of func-
tions, 10% mutations of sub-tree, generation of
sub-tree by Ramped Half-and-Half method (depth
2-3, 50% of terminals are constants)

TABLE II
DEPENDENCY OF THE PERMUTATION ON THE FITNESS VALUE

DES Rounds Permutation

Included Removed

2 28.47 28.40
4 28.51 28.54
8 28.54 28.52
16 28.43 28.38

rounds is executed, and finally the output is transformed by
permutation IP−1. By the operation of removing the initial
and the final permutation, we understand the operation that
transforms the input training set according to Equation 4.

input = rev_IP−1(cyphertext)

output = IP (plaintext). (4)

Theorem 3: Initial and final permutations are computational
operations that burden the evolutionary process of GP by the
need of revealing the more dependences of the DES algorithm.
If these redundant computational operations are removed from
the training set, then we expect to achieve better results
by newly constructed individuals compared to the original
training set.

Methodology of the Measurement: The measurement
takes place on the training sets of size N = 100. The
training set of size N will be separately generated by the
DES algorithm with the number of rounds R ∈ {2, 4, 8, 16}.
50 measurements are done for each such training set and it
records the value of the fitness F at 50th generation (g = 50).
Table II contains the arithmetic mean of the F values. Also,
the experiment is performed again, while this time we remove
the initial and final permutation, which is depicted by column
called Removed. Theorem 3 is not confirmed by the results
of the fitness values measured in the training sets that did
not contain initial and final permutations versus the original
training sets.

Although the transformation of the training set by removing
the initial and final permutations has not produced better
results, we decided to include this operation into the set of
the best parameters of GP. Therefore, all the next experiments
assume the use of the optimal parameters from Table I as well
as removing of IP and IP−1 from the training sets.

F. Evolution of the Best Individual

Theorem 4: The encryption strength of the DES algorithm
grows with the number of rounds that are applied during
encryption. It should be computationally easier for GP to
reveal the context of DES algorithm on the training set
generated with a lower number of encryption rounds. Thus,
the quality of an achieved fitness value should be directly
proportional to the number of encryption rounds.

Theorem 5: If the GP could be able to reveal the context
of the DES algorithm, then the size of the training set should
not affect the results of fitness values. Therefore, the fitness
value of the found solution should be similar for different-
sized training sets that have been generated by DES with the
same number of encryption rounds.

Methodology for Measurement: The measurement is per-
formed on training sets of size N ∈ {10, 100, 1000}. Each
training set is independently generated by the DES algorithm
considering the number of laps R ∈ {2, 4, 8, 16}. And each
such training set is made of 50 measurements. During each
measurement, we let the evolution converge into a state where
the fitness reaches the steady value. The fitness value is
regarded as a steady, if the following relationship is true:∣∣∣∣(1

10

10∑
i=1

fitness(g−i)

)
− fitnessg

∣∣∣∣ < 0.02, (5)

where fitness represents the value of the best solution in the
generation g.

Considering the number of measurements, we calculate the
arithmetic means from the obtained results – see Table III.
The values in the table represent the average of the best
achieved fitness values. For example, consider N = 10 and
R = 8, which have associated value of 19.5. It means that for
given training set, GP can transform any C to P , that differs
from the reference plain-text in 19.5 bits (of 64 possible).
Therefore, an individual is successful at ≈ 70% in decryption
of chosen training sets. The examples of the convergence of the
best fitness values from the set N , considering R encryption
rounds, are shown in Fig. 5.

None of the assumption denoted by Theorem 4 and Theo-
rem 5 has been confirmed by the results of the experiments.
The accuracy rate of the fitness value convergence does not
depend on the number of DES encryption rounds, which is
utilized in generation of the training set.

It can be observed that with the growing number of
training pairs N , the best fitness value is exacerbated. The
measurement results indicate that genetic programming works
successfully only within the input training sets and is not able
to detect the dependencies in the DES algorithm.

TABLE III
AVERAGE FITNESS VALUES OF THE BEST EVOLVED INDIVIDUALS

DES rounds Number of pairs in a training set

10 100 1000

2 19.34 27.85 30.81
4 19.41 28.01 30.72
8 19.50 27.79 30.77

16 19.33 27.83 30.73

Fig. 5. Convergence of fitness value for R ∈ {4, 16}, N ∈ {10, 100, 1000}

G. Generalization of the Model

The following experiments describe how the best individuals
model expected solution and how can generalize.

Theorem 6: Every individual is adapting the training set of
pairs Pref and Cref during the evolution process, and on the
basis of its quality is computed adequate fitness according
to the relation

count(individual(Cref)⊕ Pref) = fitness, (6)

where individual represents the current individual and count
represents the function, that counts the number of bits set to 1.

Theorem 7: Now suppose the same individual individual
from the provided 6, but with the difference that P is a ran-
domly generated open block, C is the corresponding encrypted
block using the same secret key and the number of rounds, as
in the training containing pairs Pref and Cref . We use the

same relation for the computation of the fitness value

count(individual(C)⊕ P) = fitnessg. (7)

If 32 � fitnessg ≥ fitness, then the individual can
generalize the final solution. If fitnessg = fitness, then
the individual represents the optimal solution in the scope of
achieved fitness.

Theorem 8: If fitnessg ≈ 32 is true, then we can assume
that constructed individual does not generalize the final solu-
tion.
Iterative algorithm was designed in order to verify gener-
alization, which is the part of the simulator of the genetic
programming. The activity of the algorithm is described by
pseudo code in Algorithm 2.

The input of the algorithm is the secret key, the number
of rounds of the DES algorithm and the number of iteration
of the algorithm. Note that statistical precision of the result
increases with the increasing number of the iterations. Value
of 220 iterations is estimated as sufficient for the experiment.

Algorithm 2: Pseudo code of algorithm validating gener-
alization
Function generalization(attempts, individual, key,
rounds) :double

solution = 0;
for (i = 0; i < attempts; i++) do

plain = generate_plain();
cypher = des_encrypt(plain, key, rounds);
plain = IP(plain);
cypher = rev_IP−1(cypher);
out = individual→evaluate(cypher);
solution += count(out ⊕ plain);

return solution/attempts;

Methodology of the Measurement: The measurement
takes place on the training sets of size N ∈ {10, 100, 1000},
where the results for each N represents Table IV, Table V
and Table VI. Each training set of size N is independently
generated by the DES algorithm having the number of laps
R ∈ {2, 4, 8, 16}. For each training set is performed 50
measurements, and during the evolution, generalization value
G is calculated in the generations g ∈ {0, 25, 50,max} as
well as achieved fitness value F is recorded. Generation max
represents the generation in which it is reached a steady
fitness value. Mentioned tables contain arithmetic average of
the values F and G, computed from the all experiments.

The results of the measurement show that regardless of the
size of the training set, the number of encryption rounds and
the generation in which the fitness value has reached interest-
ing level of generalization, the generalization corresponds to
the difference of ≈ 32 bits.

H. Overview of Measured Results
Results of generalization values confirm Theorem 8, thus the

best individuals do not generalize the searched solution. The

TABLE IV
GENERALIZATION RESULTS FOR N = 10

DES
Rounds

Generation

0 25 50 Max

F G F G F G F G
2 28.03 32.004 23.86 32.001 21.42 32.002 19.34 31.998
4 28.20 32.000 23.74 32.002 21.47 31.996 19.41 32.001
8 28.13 32.001 24.02 31.999 21.46 31.999 19.50 32.003
16 27.96 31.999 24.05 31.996 21.56 31.998 19.33 32.000

TABLE V
GENERALIZATION RESULTS FOR N = 100

DES
Rounds

Generation

0 25 50 Max

F G F G F G F G
2 30.67 31.999 29.50 32.000 28.46 32.000 27.85 32.002
4 30.78 32.002 29.48 32.001 28.50 32.000 28.01 31.997
8 30.62 31.998 29.42 31.996 28.58 31.999 27.79 32.001

16 30.71 32.003 29.37 32.000 28.42 32.002 27.83 31.999

method of symbolic regression has shown itself as successful
in terms of convergence of the searched solution on the
provided training set. However, the best individuals do not
represent DES algorithm in decryption mode in any aspect.
The behavior of the best found individual is similar to,
based on Theorem 1, a program behavior which generates
random data blocks in comparison with the expected outputs.
The measured results of unsuccessful generalization might be
caused by several factors.

• Parameters of genetic programming don’t have to
represent optimal parameters. On that account we are
unable to decide whether a solution is sufficiently good
or whether the best solution is found.

• Scalability problem is one of the common problems of
GP and it states that current simple programs created by
evolution process contain hundreds of nodes. Despite the
syntax trees of experimental individuals contained up to
6000 nodes, they reached a maximum depth of 70 and
thus this program representation might not have been
sufficient to cover the required program capabilities of
the searched solution.

TABLE VI
GENERALIZATION RESULTS FOR N = 1000

DES
Rounds

Generation

0 25 50 Max

F G F G F G F G
2 31.63 31.998 31.20 31.999 31.03 32.000 30.81 31.999
4 31.62 32.001 31.17 32.002 30.98 31.999 30.72 31.997
8 31.58 31.999 31.15 31.998 30.95 32.001 30.77 32.000

16 31.64 32.000 31.14 32.000 30.97 32.001 30.73 31.999

• Complexity of DES algorithm is enormous in compar-
ison with tasks currently solved by GP. The computation
of DES algorithm is parameterized with a 256 bit key
and they both imply a large program scope in which it
is highly unlikely to find a correspodning model taking
into account current technical options.

VII. CONCLUSION

In our work we designed and implemented the utilization
of genetic programming and symbolic regression in a field
of cryptanalysis of symmetric encryption algorithms. The
attack is performed on well known representative of symmetric
encryption algorithms, – DES. Our expected result was to
find a program (i.e. function) that models the behavior of a
symmetric encryption algorithm DES instantiated by specific
key. If such a program would exist, then it could be possible to
decipher new messages that have been encrypted by unknown
secret key. In the result, we did not confirm the expectation.

Possible further development of our study may be focused
on experimentation with syntactic tree structure. Functional
and terminal sets may be extended by other types of nodes.
Syntactic trees of an individuals can work with automatically
defined functions. Other types of fitness functions like N-gram
or sub-sequence kernel can be used in further experiments.

From the results of the measurements related to the com-
plexity of the DES algorithm and the problem of scalability, we
do not assume that, considering current technical capabilities,
it might be constructed solution that would be applicable for
successful decryption in practice. If we consider the operation
of Moore’s rule, then GP will be able to search for the larger
program space with the increasing computing performance.
But on the other hand, the increased computing performance
will reflects the increased security of new encryption algo-
rithms, which will imply searching in more extensive program
space needed to perform cryptanalysis by GP.

ACKNOWLEDGEMENT

This article was created within the project Reliability and
Security in IT (FIT-S-14-2486) and supported by The Ministry
of Education, Youth and Sports from the National Programme
of Sustainability (NPU II); project IT4Innovations excellence
in science – LQ1602.

REFERENCES

[1] Data Encryption Standard, ser. FIPS pub. 46, National Bureau of
Standards. U.S. Department of Commerce, Jan. 1977.

[2] H. Feistel, “Cryptography and computer privacy,” Scientific american,
vol. 228, pp. 15–23, 1973.

[3] M. Hellman, R. Merkle, R. Schroeppel, L. Washington, W. Diffie, and
S. Pohlig, Results of an Initial Attempt to Cryptanalyze the NBS Data
Encryption Standard. Information Systems Lab., Dept. of Electrical
Eng., Stanford Univ., 1976.

[4] W. Diffie and M. E. Hellman, “Special feature exhaustive cryptanalysis
of the nbs data encryption standard,” Computer, vol. 10, no. 6, pp. 74–
84, Jun. 1977.

[5] R. Morris, N. J. A. Sloane, and A. D. Wyner, “Assessment of the nbs
proposed federal data encryption standard,” Cryptologia, vol. 1, no. 3,
pp. 281–291, 1977.

[6] M. Affenzeller, S. M. Winkler, S. W. 0002, and A. Beham, Genetic
Algorithms and Genetic Programming - Modern Concepts and Practical
Applications. CRC Press, 2009.

[7] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press,
1992.

[8] R. Poli, W. B. Langdon, and N. F. McPhee, A Field Guide to Genetic
Programming. Lulu Enterprises, UK Ltd, 2008.

[9] J. Schwarz and L. Sekanina, Applicable genetic algorithms, 1st ed.,
Faculty of Information Technology, Brno University of Technology,
2006, [in czech language].

[10] M. Dostal, Evolutionary computing techniques, Department of
Computer Science, Palacky University Olomouc, Olomouc, 2007,
[in czech language]. [Online]. Available: http://phoenix.inf.upol.cz/esf/
ucebni/evt.pdf

[11] T. Weise, Global Optimization Algorithms - Theory and Application,
2nd ed. Self-Published, 2009. [Online]. Available: http://www.it-weise.
de/

[12] W. Banzhaf, F. D. Francone, R. E. Keller, and P. Nordin, Genetic
Programming: An Introduction: on the Automatic Evolution of Computer
Programs and Its Applications. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998.

[13] J. Hynek, “Genetic algorithms in a nutshell,” In Economics and Man-
agement, vol. 5, pp. 48–54, 2002.

[14] ——, Genetic algoritms and genetic programming. Praha: Grada
Publishing a.s., 2008, [in czech language].

[15] D. E. Goldberg, Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, Reading, MA, 1989, no. 2.

[16] M. Safe, J. Carballido, I. Ponzoni, and N. Brignole, “On stopping criteria
for genetic algorithms,” Advances in Artificial Intelligence–SBIA 2004,
pp. 405–413, 2004.

