
Automatic Design of Arbitrary-Size Approximate
Sorting Networks with Error Guarantee

Vojtech Mrazek
Brno University of Technology

Faculty of Information Technology
Centre of Excellence IT4Innovations

Email: imrazek@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology

Faculty of Information Technology
Centre of Excellence IT4Innovations

Email: vasicek@fit.vutbr.cz

Abstract—Despite the fact that hardware sorters offer great
performance, they become expensive as the number of inputs
increases. In order to address the problem of high-performance
and power-efficient computing, we propose a scalable method
for construction of power-efficient sorting networks suitable for
hardware implementation. The proposed approach exploits the
error resilience which is present in many real-world applications
such as digital signal processing, biological computing and large-
scale scientific computing. The method is based on recursive
construction of large sorting networks using smaller instances
of approximate sorting networks. The design process is tunable
and enables to achieve desired tradeoffs between the accuracy
and power consumption or implementation cost. A search-
based design method is used to obtain approximate sorting
networks. To measure and analyze the accuracy of approximate
networks, three data-independent quality metrics are proposed.
Namely, guarantee of error probability, worst-case error and
error distribution are discussed. A significant improvement in
the implementation cost and power consumption was obtained.
For example, 20% reduction in power consumption was achieved
by introducing a small error in 256-input sorter. The difference in
rank is proved to be not worse than 2 with probability at least
99%. In addition to that, it is guaranteed that the worst-case
difference is equal to 6.

I. INTRODUCTION

Sorting is one of the most fundamental operations that
is widely used in many applications in computer science
including digital signal processing, biological computing and
large-scale scientific computing [1].

The hardware sorters are typically employed to improve the
performance of applications operating over big data sequences.
The sorters can be used either to sort a given sequence [2], [3]
or to compute quantiles [4], [5]. These operations represent a
typical task performed in database systems, machine learning
or business intelligence to distill summary information from
huge data sets [4]. In these areas, FPGA-based systems have
become popular due to their inherent ability to achieve various
trade-offs between throughput and power consumption [1], [3].

On the other hand, the sorting is employed in solving
completely different problems. Switching networks, multi-
access memories and multiprocessors can be implemented us-
ing hardware sorters [6]. In addition to that, sigma-delta digital
modulators and various sorter-based arithmetic circuits such as
adders, exponential, hyperbolic and logarithmic functions have
been proposed recently [7].

The hardware sorters can be classified to two main cate-
gories – linear sorters and sorting networks [2]. While linear
sorters process one element at a time, sorting networks operate
in parallel over the input elements. As a consequence of
that, the hardware implementation of linear sorters is usually
compact but it fails to scale in performance. On the contrary,
sorting networks offer great performance but they become
expensive as the number of inputs increases.

Several techniques have been proposed to reduce the area
and power consumption of sorting networks. For example,
Zuluaga et. al. [2] proposed a domain-specific language and
compiler that automatically generates hardware implementa-
tions of sorting networks with reduced area optimized for
latency or throughput. The area reduction was achieved by
reusing the common parts of sorting networks. Chen et. al. [1]
introduced a concept of streaming permutation network that
was obtained by folding the Clos network. The permutation
network was used to construct a high-throughput and a low
cost architecture. Compared to [2], significantly better memory
as well as energy efficiency was achieved.

Although a lot of effort has been put into the improvement
of cost of sorters, it has been demonstrated that many appli-
cations from signal processing, computer vision and machine
learning exhibit an inherent tolerance to errors in computa-
tion [8]. As the power consumption become a critical factor for
digital designs, inexact or approximate computing seems to be
a viable approach to reduce consumption of many real-world
systems and improve the overall efficiency of computers.

Despite the fact that many papers have been published in
the field of approximate computing, there is no paper that
explicitly addressed the problem of trading the quality of
hardware sorters for power efficiency even if there is potential
for doing that. The only paper that addressed the problem of
approximate sorting was introduced by Leighton and Plaxton
in early nineties [9]. The authors theoretically proved existence
of an n-input sorting circuit of depth 7.44 log n that sorts
all but superpolynomially small fraction of the all possible
input permutations. Unfortunately, the hardware implementa-
tion remains impractical due to the fact that there is a trade-
off between the value of the multiplicative constant and the
success probability, and a significant increase in the constant
is required for practical instance sizes [9].

A. Our contributions elaborated in this paper

We introduce a scalable method for a construction of
arbitrary-size approximate sorting networks. In order to build
a large approximate sorting network, smaller instances of
approximate or accurate sorting networks are employed. The
principle of construction based on recursive bitonic algorithm
is inherently tunable to the level of accuracy required for a
target application because various approximate as well as ac-
curate sorting networks can be combined together. This gives
us the opportunity to obtain approximate sorting networks ex-
hibiting various trade-offs between quality and implementation
cost.

In order to design small approximate sorting networks hav-
ing up to 32 inputs, a systematic search-based design method
is proposed. The method works in such a way that it starts with
a known architecture of accurate sorting network (generated
using bitonic algorithm) that is subsequently optimized (i.e.
reduced) to meet the target constraints while introducing
a minimal error. The constraints specified by designer can
include target implementation cost or target power reduction.
The obtained approximate networks can either be applied to
construct a larger network or employed autonomously.

Traditionally, a randomly generated set of test vectors is
applied to assess the quality of an approximate circuit. This
approach, unfortunately, provides no guarantee on the error
and make it difficult to predict the behavior of an approximate
circuit under different conditions (e.g. when different data-
width is used or data with different input distribution are
processed). In order to address this problem, we have intro-
duced a method that is able to formally prove and guarantee
worst-case error. In addition to that, error distribution can be
calculated. Both metrics are based on an extension of zero-one
and permutation principle.

II. SORTING NETWORKS

The concept of sorting networks was originally studied
in 1950s by Armstrong, Nelson and O’Connor and deeply
elaborated in 1960s by Knuth [10]. Sorting network is de-
fined as a network consisting of a sequence of elementary
operations denoted as compare-and-swap (CS) operations that
sorts all input sequences. A compare-and-swap operation of
two elements, a and b, compares a and b and exchanges (if it
is necessary) the elements in order to obtain sorted sequence
(a′, b′), i.e. a′ = min(a, b), b′ = max(a, b). In hardware, CS
is implemented using two multiplexers that are controlled by
means of a comparator that determines the maximum of the
two (see Figure. 1a).

The sequence of compare-swap operations executed by a
sorting network depends only on the number of elements to
be sorted, not on the values of the elements. It means that
the sequence of comparisons is fixed. This fact represents the
main advantage of sorting networks because such a structure
can be efficiently implemented using a parallel pipelined
hardware architecture. Compared to the linear sorters, the
sorting networks do not require to implement a control logic.

A. Representation of sorting networks

The sorting networks are composed solely of wires and
comparators. In fact, each comparator implements a two-input
sorter. In order to represent sorting networks efficiently, Knuth
introduced a notation consisting of vertical segments and
horizontal wires [10]. Each vertical segment connecting the
two elements being compared represents a single CS operation
with arrow determining the larger value (see Figure 1b). A
horizontal wire represents an element of input sequence and
transmits values from place to place. The unsorted elements
(inputs) appear on the left and the sorted sequence is obtained
on the right, with the smaller input element appearing on
the top output and the larger input element appearing on
the bottom output. All comparisons that can be performed in
parallel represents a single stage.

B. Construction of sorting networks

Sorting networks can be generated from basic sorting al-
gorithms such as bubble or insertion sort. Both algorithms
provide structurally equivalent architectures [3]. Unfortunately,
networks generated by these approaches are inefficient like
their algorithmic counterparts and consist of many comparator
elements.

In order to improve the efficacy, various algorithms have
been proposed in literature [10]. The Batcher odd-even merge-
sort and bitonic sort represent two simple, yet most efficient
algorithms. These algorithms produce sorting networks of the
same asymptotic complexity O(n log2 n) and the same depth
O(log2 n) which makes them efficient for parallel implemen-
tation. Although the bitonic sorters contain a little bit more
comparators, they hardware implementation is the preferred
one because all signal paths are of the same length. In addition
to that, the same number of comparisons is used in each stage.

Bitonic sorting algorithm is based on repeatedly merging
two bitonic sequences to form a larger bitonic sequence.
A sequence is bitonic if it can be split to two parts such
that the first part is monotically increasing and the second
part monotically decreasing, or it can be circularly shifted to
become so. The merging operation representing a key step of
algorithm is called bitonic merge. The input to this operation
is a pair of sequences that are sorted in opposite directions,
one in ascending order and the other in descending order,
so that together they form a bitonic sequence. Bitonic merge
takes this bitonic sequence and from it forms a single sorted

Fig. 1. Compare-and-swap operation: (a) hardware implementation, (b) two
equivalent schematic representations using Knuth’s notation.

sequence. A complete sorter can be constructed from small
bitonic sorters by successively bitonic sorting and merging
smaller sequences into larger sequences until we have a bitonic
sequence of size n.

In order to reduce high implementation cost, various modifi-
cations of bitonic sorting algorithm have been proposed. Stone
[11] suggested to employ the perfect shuffle enabling the reuse
of n/2 processing elements. This approach substantially im-
proved the implementation cost but log2 n cycles are required
to obtain the sorted sequence. In [12], Lee et al. have improved
the time complexity of Stone’s algorithm to 1

2 log n(log n+1)
introducing an additional logic. The latest modification has
been proposed by Chen et.al. [1]. The authors employed a
streaming permutation network based on Clos network which
is programmable and performs all the data permutations in the
bitonic sorting network.

C. Optimal sorting networks

Although a complete and deep theory has been developed
around sorting networks, nobody has discovered a sorting
algorithm producing the optimal (i.e. minimal) sequence of
comparison operators. Even if the best known sorting algo-
rithms such as Bitonic sorting exhibit an optimal asymptotic
complexity, there is a large constant factor hidden in the
asymptotic bound. The optimal sequence of comparison oper-
ators is known only for some instances. The construction of
optimal sorting networks is extremely difficult problem even
for small number of inputs. For long time, nobody was able
to prove the optimality of sorting networks introduced more
than 40 years ago by Knuth in [10]. Recently, Bundala and
Zavodny proposed a method that is able to construct optimal-
depth networks for n ≤ 16 in reasonable time [13]. Then,
Ehlers et al. proved existence of optimal-depth sorting network
for n = 17 and discovered faster networks for 17, 19 and
20 inputs than the previously known best ones [14]. In [15],
Codish et al. proved the optimality of 9-input and 10-input
sorting network consisting of 25 and 29 comparators found
by Floyd and Waksman in the seventies.

III. QUALITY OF APPROXIMATE SORTERS

One of the main issues in the approximate computing is the
assessment of quality of approximations. The most popular
measure for quality is the mean squared difference between
the specification and the output of the approximate circuit that
is estimated using a set of test vectors.

The problem of the general quality measures is that they
do not assess the quality of sorting process. What’s worse,
the obtained result depends on a particular set of test vectors.
In addition to that, there is no guarantee on the error (e.g.
the worst-case error) because only a fraction of all possible
input vector was used. In order to address these problems,
three data-independent quality measures are introduced in this
section.

Let us recall the basic properties of the accurate as well
as approximate sorting networks, i.e. comparison networks in
general. Let C(x1, . . . , xn) be a comparison network with

n inputs, xi ∈ A and A be a totally ordered set of ele-
ments. It is guaranteed by construction that each comparison
network produces a permutation of the input sequence. It
means that there exists one to one mapping between the
values obtained at the output of comparison network and
the values at the input, so no new value can arise during
the exchanging performed by compare-and-swap elements.
Formally, C : π(x1, . . . , xn) → π(x1, . . . , xn). Hence, every
approximate sorting network must produce a partially ordered
output for at least one input sequence. In such a case, there
must exist at least two outputs that are returning an invalid
value.

In general, 2wn input combinations exist to evaluate an
n-input sorting network operating with elements encoded
using w-bit integers. Clearly, it is intractable to evaluate all
possible input combinations, however, the number of input
combinations can substantially be reduced by applying the
zero-one principle [10] and permutation principle [16].

A. Error probability

According to zero-one principle, 2n binary sequences are
sufficient to determine the error rate. Let C(x)[i] denote value
of i-ith output (1 ≤ i ≤ n) of an n-input n-output comparison
network C. Let Ei ⊆ {0, 1}n be the set of all possible input
assignments x ∈ {0, 1}n for whose an invalid output value is
produced, where

Ei = {x : C(x)[i] = 0 ∧ (x1 + . . .+ xn) > (n− i)} ∪
{x : C(x)[i] = 1 ∧ (x1 + . . .+ xn) ≤ (n− i)}

(1)
Then, ei = 2−n · |Ei| is the probability that an invalid value
is obtained at the i-th output of C. The overall accuracy, i.e.
the relative number of correct responses, is equal to

accuracy = 1− 1

n

n∑
i=1

ei (2)

Although it is impractical to determine the size of Ei explic-
itly by enumerating the assignments satisfying the condition
given in Equation 1 (the number of input assignments grows
exponentially with the increasing number of inputs n), the
number of such assignments, i.e. |Ei|, can be calculated easily
using a Constaint satisfaction problem (CSP) solver or Binary-
Decision Diagrams (BDDs) even for large instances.

Note that the error probability has to be evaluated carefully
in practice because there can exist a network with high error
rate, but still providing good performance because nearly
sorted sequences are produced in most cases.

B. Approximation guarantees

A sorting network can be understood as a structure that
computes n quantiles in parallel. The first quantile represents
the minimum and the last quantile represents the maximum.
Then, we can investigate the difference in rank between the
true quantile produced by the accurate sorting network and
that of the output produced by the approximate network.

Let us give a simple example. Let x = (1, 4, 3, 0, 2) be an
input sequence, S be sorting network and C be an approximate
sorting network producing output C(x) = (0, 2, 1, 3, 4). It is
clear that C returned a partially sorted sequence because the
second and third items are invalid, i.e. C(x)[2] 6= S(x)[2]
and C(x)[3] 6= S(x)[3]. The second output returned the third
lowest item of x (i.e. C(x)[2] = S(x)[3]) and the third output
returned the second lowest item (i.e. C(x)[3] = S(x)[2]). In
both cases, the difference in rank is equal to one.

Zero-one principle and CSP solver can be employed to
perform formal worst-case error analysis efficiently. Since
asymmetric difference in rank may occur at some outputs, it
seems to be reasonable to investigate the left (δL) and right
(δR) worst-case distances separately. Firstly, let us define two
predicates

PL(x, i, d) : C(x)[i] = 0 ∧ (x1 + · · ·+ xn) = n− i+ d
PR(x, i, d) : C(x)[i] = 1 ∧ (x1 + · · ·+ xn) = n− i− d+ 1

(3)
The problem of the worst-case error analysis can be formu-

lated using Pseudo-Boolean CSP as follows. For each output
i ∈ {1, . . . , n} find maximal δ ∈ {0, . . . , n − i − 1} such
that ∃x ∈ {0, 1}n : PL(x, i, δ). Then, δL[i] = δ is the left
worst-case distance for i-th output. Similarly, the right bound
δR[i] can be determined using PR(x, i, δ) instead. Note that
it is beneficial to use binary search algorithm to maximize δ
because it significantly reduces the number of CSP queries.

Knowledge of the worst-case error alone will not suffice
since its probability of occurrence could be negligible. To
address this problem, we propose a technique to obtain an error
distribution that would provide information about probability
of occurrence of errors of different distances. Although it is
possible to determine the true error distribution (by counting
the number of input assignments that satisfy PL and PR,
similarly as it was discussed in the previous section), it is
practically sufficient and computationally significantly faster
to estimate the error distribution. In order to do that, we can
adopt permutation principle introduced in [16] and employed
to determine the distance between an arbitrary comparator
network (i.e. approximate sorting network) and a sorting
network. The permutation principle states that it is sufficient
to prove response to the permutations of a set consisting of n
distinct elements to precisely determine quality of an arbitrary
comparison network.

Let us give an example for n = 3. Let S be sorting
network and C be approximate sorting network consisting
of two compare-and-swap operation. Let the first comparator
be connected to the first and second horizontal wire, the
second comparator be connected to the second and third
horizontal wire. In our case, A = {1, 2, 3} which gives us
six possible permutations that have to be be considered, i.e.
|π(A)| = 6. We can easily determine that C(x) = S(x) iff
x ∈ π(A) \ {(2, 3, 1), (3, 2, 1)}, i.e. for 4 out of 6 cases. In
the remaining two cases, the output of C equals to (2, 1, 3).
It means that the first as well as the second output produce
erroneous value whose difference in rank is equal to one in

both directions (left and right). The results can be summarized
using a matrix H which captures the number of input assign-
ments that cause error at output i whose difference in rank is
equal to j. Note that j = 0 means that correct response was
obtained. The number of correct responses for each output is
given in the main diagonal. For example, h3,3 = 1 because
the third output produces always correct result; h1,1 = 4/6
because there are two cases for that an incorrect response is
returned by the first output. The complete H(C) is as follows:

H(C) =
1

6

4 2 0
2 4 0
0 0 6

 (4)

Interestingly, a relative small subset of all possible permu-
tations is required in practice to obtain a reasonable estimate
of error distribution. For example, only 10000 out of more
than 1077 vectors are required in average to obtain an estimate
exhibiting 0.3% relative error (in worst-case) compared to the
true error distribution H computed using BDDs for n = 256.

IV. CONSTRUCTION OF APPROXIMATE SORTERS

In order to construct approximate sorting networks, we
propose to modify the Bitonic sorting algorithm as follows.

Algorithm 1: Approximate bitonic sorting
Input: unsorted sequence X , direction dir ∈ {↑, ↓}
Output: sorted sequence X

1 Function sort(dir, X)
2 if |X| = 1 then
3 return X;
4 else if |X| = 2B then
5 return b-sort(dir, X);
6 else
7 h← |X| ÷ 2;
8 a← sort(↑, (x0, . . . , xh−1));
9 b← sort(↓, (xh, . . . , x2h−1));

10 return merge(dir, (a0, . . . , ah−1, b0, . . . , bh−1));

11 Function merge(dir, X)
12 if |X| = 1 then
13 return X;
14 else if |X| = 2M then
15 return b-merge(dir, X);
16 else
17 h← |X| ÷ 2;
18 for i = 0 to h− 1 do
19 if xi > x(h+i) ⇔ dir =↑ then
20 swap xi, x(h+i)

21 a← merge(dir, (x0, . . . , xh−1));
22 b← merge(dir, (xh, . . . , x2h−1));
23 return (a0, . . . , ah−1, b0, . . . , bh−1);

The algorithm consists of two parts – sorting and merging.
The input sequence is successively divided into two halves

B
=

3
,M

=
0

B
=

4
,M

=
0

B
=

5
,M

=
0

B
=

0
,M

=
3

B
=

3
,M

=
3

B
=

4
,M

=
3

B
=

5
,M

=
3

B
=

0
,M

=
4

B
=

3
,M

=
4

B
=

4
,M

=
4

B
=

5
,M

=
4

B
=

0
,M

=
5

B
=

3
,M

=
5

B
=

4
,M

=
5

B
=

5
,M

=
5

B
=

3
,M

=
0

B
=

4
,M

=
0

B
=

5
,M

=
0

B
=

0
,M

=
3

B
=

3
,M

=
3

B
=

4
,M

=
3

B
=

5
,M

=
3

B
=

0
,M

=
4

B
=

3
,M

=
4

B
=

4
,M

=
4

B
=

5
,M

=
4

B
=

0
,M

=
5

B
=

3
,M

=
5

B
=

4
,M

=
5

B
=

5
,M

=
5

B
=

3
,M

=
0

B
=

4
,M

=
0

B
=

5
,M

=
0

B
=

0
,M

=
3

B
=

3
,M

=
3

B
=

4
,M

=
3

B
=

5
,M

=
3

B
=

0
,M

=
4

B
=

3
,M

=
4

B
=

4
,M

=
4

B
=

5
,M

=
4

B
=

0
,M

=
5

B
=

3
,M

=
5

B
=

4
,M

=
5

B
=

5
,M

=
5

B
=

3
,M

=
0

B
=

4
,M

=
0

B
=

5
,M

=
0

B
=

0
,M

=
3

B
=

3
,M

=
3

B
=

4
,M

=
3

B
=

5
,M

=
3

B
=

0
,M

=
4

B
=

3
,M

=
4

B
=

4
,M

=
4

B
=

5
,M

=
4

B
=

0
,M

=
5

B
=

3
,M

=
5

B
=

4
,M

=
5

B
=

5
,M

=
5

B
=

3
,M

=
0

B
=

4
,M

=
0

B
=

5
,M

=
0

B
=

0
,M

=
3

B
=

3
,M

=
3

B
=

4
,M

=
3

B
=

5
,M

=
3

B
=

0
,M

=
4

B
=

3
,M

=
4

B
=

4
,M

=
4

B
=

5
,M

=
4

B
=

0
,M

=
5

B
=

3
,M

=
5

B
=

4
,M

=
5

B
=

5
,M

=
5

0. 0%

20. 0%

40. 0%

60. 0%

80. 0%

100. 0%
n= 128 n= 256 n= 512 n= 1024 n= 2048

Fig. 2. The relative number of compare-and-swap elements occupied by 2M -input b-mergers (see) and 2B-input b-sorters (see) compared to
the total number of compare-and-swap elements for various number of inputs n, and selected values of B and M .

until two elements remain. Then, these halves are succes-
sively merged until a single sorted sequence is obtained.
Two subcircuits can be identified in the resulting sorter –
let us call them b-sorters and b-mergers. Our goal is to
replace the 2B-input b-sorters and 2M -input b-mergers with
their approximate versions (see Figure 3). Such a substitution
reduces not only the total number of comparisons but may
also decrease quality of the sorter. Hence a reasonable trade-
off needs to be identified. The designer has the possibility
to tune both parameters because various values of B and M
can be chosen. In addition to that, approximate networks (i.e.
b-sorters and b-mergers) of different quality can be employed.

Fig. 3. Sub-circuits (b-sorters and b-mergers) in the 16-input sorter generated
using Bitonic algorithm for B = 2 and M = 3. In addition to that, eight
compare-and-swap operations are required. Each b-sorter can be replaced with
various 4-input comparison networks, sorter (a) or some approximation (b,c).

As it is non-trivial to predict what values yields the best
trade-offs, Figure 2 shows the distribution of compare-and-
swap operations for sorting networks having from n = 128 to
n = 2048 inputs. The total number of CSs consists of three
groups – the CSs that are required to implement 2B-input
b-sorters, the CSs that are required to implement 2M -input
b-mergers and the remaining ones. The distribution shows
the possible area reduction that can be achieved by choosing
various values of B and M The upper-bound is limited by
the number of comparators that can’t be approximated. For
n = 128, B = 5 and M = 0, for example, 27% reduction in
the total number of CSs can be achieved when the 32-input b-
sorters are replaced with their approximate versions occupying
half of the resources. Such a reduction is possible because the
b-sorters comprise 54% of the total number of CSs.

A. Design of approximate b-sorters and b-mergers

As evident, there is a great potential for improvement in the
implementation costs as well as power consumption of sorters
especially when larger values of B and M are employed. The
only problem is how to obtain high-quality approximations of
b-mergers and b-sorters blocks.

The problem of finding an approximate network can be
formulated as a constrained optimization problem where the
goal is to find a comparison network C exhibiting maximum
quality for a target number of compare-swap operations. In
order to solve this problem efficiently, we propose to employ
Cartesian genetic programming (CGP) [17]. CGP is easy to
implement, it can easily handle constraints, it is naturally
multi-objective and high-quality approximate circuits have
already been obtained in literature [18].

We propose to apply a two-stage procedure. At the begin-
ning, the designer specifies the target reduction that should
be achieved. The first stage starts with an exact and accurate
solution (i.e. b-sorter or b-merger). The goal is to gradually
modify the initial solution and obtain a reduced network of the
target cost. In the second stage, which begins as soon as the
target reduction was achieved, the search method reflects not
only the implementation cost, but also the quality. The second
stage aims to improve the quality as much as possible.

CGP employs a simple population-oriented search method.
The λ candidate solutions that forms the population are
generated from the parental solution (i.e. the best individual
discovered so far) using a mutation operator slightly modifying
the candidate solutions (up to h randomly chosen genes are
modified). Then, the candidate solutions are evaluated and
each member receives the so-called fitness score. The highest-
scored individual becomes a new parent of the next population.
The fitness function F (C) summarize the quality of candidate
solutions into a single value and is defined as follows:

F (C) = −

{
∞ if constraint is violated∑n

i,j=1hi,j(i− j)2 otherwise,
(5)

where hi,j is an element of the error matrix H(C) calculated
for a candidate comparison network C. The constraint is rep-
resented by the target number of compare-swap operation. The
fitness function is designed in such a way that the individuals
of higher quality receive higher score. In addition to that,

TABLE I
PARAMETERS OF ACCURATE AND FIVE APPROXIMATE 16-INPUT SORTERS

Impl. CSs Depth Quality indicators FPGA Synthesis results ASIC Synthesis results
N D accuracy ∆avg ∆95 ∆99 ∆L ∆R #LUTs #REGs Power (W) Area (µm2) Power (mW)

C1 60 (100%) 10 100% 0.00 0 0 0 0 769 (100%) 1120 (100%) 0.24 (100%) 68945 (100%) 1.22 (100%)

C2 49 (81%) 10 49% 0.63 2 3 6 6 621 (81%) 1112 (99%) 0.23 (97%) 58863 (85%) 1.09 (89%)

C3 39 (65%) 10 30% 1.13 3 4 8 8 525 (68%) 1104 (99%) 0.22 (92%) 49698 (72%) 0.96 (79%)

C4 29 (48%) 8 20% 1.70 4 6 9 9 445 (58%) 784 (70%) 0.20 (86%) 37851 (55%) 0.75 (62%)

C5 24 (40%) 5 17% 2.05 5 7 10 10 289 (38%) 640 (57%) 0.20 (82%) 29247 (42%) 0.54 (45%)

C6 19 (31%) 5 16% 2.31 6 8 11 11 253 (33%) 592 (53%) 0.19 (80%) 24664 (36%) 0.48 (40%)

it promotes solutions having narrower error distribution. The
fitness score of an accurate b-sorter (b-merger) is equal to zero.

The candidate solutions consists of 2-input elements that
can act as compare-and-swap operation or simple buffer. The
following encoding of candidate solutions is proposed. Each
element is encoded using a triplet consisting of three integers
(s, l, f). The first integer s ∈ {1, . . . , n} defines the index of
a horizontal wire where the first input is connected to. The
second integer l ∈ {1, . . . , n−s} determines the length of the
corresponding vertical segment. The value, in fact, indirectly
encodes the index of horizontal wire where the second input
is connected to. Finally, the last integer f ∈ {0noop, 1↑, 2↓}
determines the operation of the encoded element. In case
that f=0, the element is treated as empty operation and is
ignored. Otherwise, a compare-and-swap operation with a
given direction is utilized. ASAP scheduling is employed
to obtain corresponding comparison network. The proposed
encoding guarantee that a valid comparison network is always
captured. The number of triplets is defined by the initial
solution and remains fixed during the whole search process.
The mutation operator modifies values of up to h randomly
chosen integers.

The sorting network shown in Figure 3a can be encoded,
for example, using 8 triplets as (0,1,1↓) (2,1,2↑) (1,3,0noop)
(1,2,2↑) (0,2,2↑) (1,3,1↓) (2,3,0noop) (2,1,2↑). Note that there
are two inactive elements (encoded by 3rd and 7th triplet) that
do not have any impact on the structure of resulting network.

V. EXPERIMENTAL RESULTS

Firstly, we approximated small sorting networks. In par-
ticular, 8, 16 and 32 inputs were considered. The number
of inputs was chosen in accordance with the analysis shown
in Figure 2 and corresponds with B = 3, 4, 5. The search
algorithm uses population consisting of λ = 20 individuals.
Up to h = 5 integers are modified by mutation operator. The
fitness function is calculated using 64 × 104, 256 × 104 and
1024×104 randomly generated permutations for n = 8, 16, 32,
respectively. The optimization process is terminated either
when no improvement in fitness score is achieved within the
last 15 minutes or the maximum amount of time (2 hours) is
exhausted. In case of 8-input (16-input) sorters, the optimiza-
tion was initialized with the optimal known sorter consisting
of 19 (60) compare-and-swap operations. The reference 32-
input sorter was obtained using Bitonic sorting algorithm.
Ten design points (i.e. design constraint) are considered for

each problem instance. The goal is to find approximate sorters
consisting of about 95%, 90%, 80%, 70%, 60%, 50%, 40%,
30% and 20% compare-and-swap operations compared to the
number of operations of the initial solutions. In addition to
that, it is requested that the depth of the approximate sorters
is not worse than the depth of the initial accurate sorter.

In total, 30 independent experimental runs were performed
and more than 3 · 9 · 30 = 810 unique approximate solutions
were discovered. The Pareto-optimal solutions were identified
and implemented as fully streaming pipeline architectures
in Virtex-7 FPGA XC7VX330T using Xilinx Vivado and
as 45nm VLSI circuits using Cadence Encounter. Then, we
conducted the post-place-and-route power analysis performed
at 250 MHz (900 MHz for ASIC). Switching activity analysis
was employed to improve the accuracy of power estimation.

Due to the limited space, let us discuss the results obtained
for 16-input instance. Table I summarizes the parameters of
the accurate (C1) and five chosen Pareto-optimal approximate
(C2-C6) sorters. Namely, it contains the number of compare-
and-swap operations (N), depth (D), quality indicators and
sythesis results for FPGA and VLSI. The quality indicators
include the accuracy and five differences in rank – mean
(∆avg), 0.95-quantile (∆95), 0.99-quantile (∆99) and both
worst-cases (∆L and ∆R); all determined over all outputs.
The percentages in parentheses indicate the ratio of the value
in that column compared to the accurate sorter. As evident, the
accuracy gradually decreases with the increasing amount of
removed compare-and-swap operations. The same observation
is also valid for the implementation cost in ASIC as well
as FPGA (see the number of LUT tables and the number
of registers). As expected, the implementation cost correlates
with N in both cases. A slightly different situation is in the
case of power consumption. Because the 16-input sorters are
relative small circuits, static part of power consumption dom-
inates in FPGA the dynamic one. As a consequence of that,
only 20% improvement in power consumption was achieved
for implementation C6 despite more than 50% reduction in
implementation cost. No such discrepancy is observable for
sorters implemented as ASIC.

Figure 4 depicts the quality matrices of the discovered
implementations. Contrasted to the quality indicators, the
quality matrices helps to better understand the quality of
approximations. The interpretation of H is as follows. All
possible input sequences are correctly sorted in the case of
exact sorter (implementation C1). In all cases, the i-th output

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

O
u
tp

u
t

in
d
e
x

implementation C1

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C2

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C3

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C4

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C5

>0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %

Fig. 4. Quality matrices H of accurate (C1) and four approximate (C2–C5) 16-input sorting networks

returned the i-th smallest element. It means that only main
diagonal contains non-zero values.

Let us discuss the implementation C2 consisting of 49
compare-and-swap operations, i.e. about 18% less compared to
the exact sorter. According to the eight column of H, the eight
smallest element (i.e. the element with rank 8) is returned by
the eight output with probability 33%. This element, however,
can be for some input sequence returned also by the output
seven (or nine) in 29.3% (17.9%) cases. It means that the
difference in one rank occurs in 47.2% in practice. Difference
in two ranks (elements is returned by 6th or 10th output)
occurs in 19.8% cases. According to the first row of H, it
can be determined that the minimum is correctly identified in
more than 87.4% cases. In the rest of the cases, the second
or third smallest element is returned with prob. 11.8% and
0.8%, respectively. We can conclude that this approximation
is of a high quality despite the fact that the worst-case error
is equal to 6. According to the quality matrix and ∆99, the
difference in rank is not worse than 3 for more than 99% input
sequences.

The same principle was applied to approximate 8-input, 16-
input and 32-input b-mergers. The initial accurate b-mergers
were extracted from the sorters generated using Bitonic sorting
algorithm. The experimental setup was kept the same as in the
case of sorters. Only the test vectors utilized in the fitness
functions are generated in different way. Since two sorted
sequences are expected at the input of each merger, it is not
necessary to test all the input permutations. Only

(
n
n
2

)
input

sequences are required to exhaustively evaluate the quality.

A. Construction of large approximate sorters

The approximate sorters and mergers discovered in the
previous experiments were used to construct large approxi-
mate sorters for n = 256, 512, 1024 and 2048 inputs. The
sorters were constructed according to the Algorithm 1. The
following parameters were considered: B = {0, 3, 4, 5} and
M = {0, 3, 4, 5}. To simplify the problem, ten Pareto-optimal
implementations of various sorter (merger) instances were
chosen to act as b-sorter (b-merger). In total, 121 architectures
were generated and analyzed for each n.

The results for n = 256 are summarized in Table II. In
addition to the parameters discussed earlier, the value of B and
M parameter and the number of compare-and-swap operations
required by b-sorters and b-mergers are included. While the
whole range of B was utilized, smaller values of M are
preferred. It seems that the inaccuracy introduced into the
larger mergers has a negative impact on the overall quality.
Hence, the majority of architectures employ a variant of 8-
input merger (i.e. M=3). The b-sorters represent 10% to 31%
the total number of CSs. Compared to the b-sorters, b-mergers
occupy significantly larger portion of the CSs especially when
the accuracy is higher than 50%. The implementation cost
as well as power consumption decreases with decreasing N
linearly.

Interestingly, it seems to be nontrivial to predict the quality
of the constructed approximate network according to the qual-

TABLE II
PARAMETERS OF ACCURATE AND ELEVEN APPROXIMATE 256-INPUT SORTERS

Impl. Width Compare-swap operations Depth Quality indicators FPGA Synthesis results
B M sorters mergers N D accuracy ∆avg ∆95 ∆99 ∆L ∆R #LUTs #REGs Power (W)

S1 — — 0% 0% 4608 (100%) 36 100% 0.00 0 0 0 0 55297 (100%) 73728 (100%) 5.997 (100%)

S2 C2 4 4 19% 50% 4112 (89%) 36 92% 0.08 1 1 3 3 49857 (90%) 72320 (98%) 5.433 (91%)

S3 5 4 31% 40% 3880 (84%) 36 85% 0.16 1 1 6 6 47713 (86%) 70784 (96%) 5.154 (86%)

S4 3 3 11% 36% 3584 (78%) 35 60% 0.44 1 2 6 4 44033 (80%) 69376 (94%) 4.826 (80%)

S5 5 3 24% 29% 3288 (71%) 35 47% 0.93 3 6 9 10 41985 (76%) 67328 (91%) 4.505 (75%)

S6 5 3 25% 27% 3192 (69%) 38 32% 1.24 4 6 10 11 41449 (75%) 67272 (91%) 4.424 (74%)

S7 C6 4 3 10% 33% 3120 (68%) 33 28% 1.42 4 6 15 13 38977 (70%) 64256 (87%) 4.238 (71%)

S8 5 3 22% 26% 2936 (64%) 35 20% 1.78 5 7 14 17 38497 (70%) 62400 (85%) 4.012 (67%)

S9 C5 4 3 14% 19% 2688 (58%) 27 18% 2.05 6 8 20 16 32491 (59%) 50924 (69%) 3.601 (60%)

S10 C5 4 3 15% 15% 2560 (56%) 27 12% 2.42 6 9 20 18 30991 (56%) 46610 (63%) 3.553 (59%)

S11 5 3 14% 17% 2232 (48%) 23 9% 3.70 9 13 32 28 27133 (49%) 43358 (59%) 3.024 (50%)

S12 5 3 15% 13% 2136 (46%) 23 7% 4.27 10 13 32 29 26717 (48%) 40509 (55%) 2.897 (48%)

1
1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
6

Output rank

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241
256

O
u
tp

u
t

in
d
e
x

implementation S2_C2

1
1
7

3
3

4
9

6
5

8
1

9
7

1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
6

Output rank

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241
256

implementation S12

>0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Fig. 5. Quality matrices of two approximate 256-input sorters

ity of the small b-sorters. For example, b-sorters in S2 C2 are
implemented using approximate sorters C2. While C2 exhibits
only 49% accuracy, S2 C2 provides the correct response for
92% of all possible input sequences. Not only the accuracy
was improved, but also the worst-case error is significantly
lower (see ∆L and ∆R). The same effect is observable also
for S7 C6. On the contrary, similar quality is achieved for
S9 C5 and S10 C5. These findings suggest that if a b-merger
of higher quality is applied, the quality of b-sorter could be
improved significantly.

The quality matrices for two chosen implementations are
shown in Figure 5. It can be concluded, that the large approx-
imate networks are of high quality even when the number
of CSs was reduced significantly. In particular, architecture
S2 C2 achieves 10% reduction in power consumption with
hardly visible error. In at least 99.9%, the difference in rank is
not worse than 1. Implementation S4 exhibiting 20% reduction
in power consumption guarantees that the difference is not
worse than 2 (5) with probability at least 99% (99.9%), see
∆99. Finally, even implementation S12 could be safely used
in many non-critical applications (see Figure 5).

VI. CONCLUSION AND REMARKS

We addressed the problem of design of approximate sort-
ing networks suitable for hardware implementation exhibit-
ing trade-off between the quality and power consumption.
Intuitively, it seems to be sufficient to successively remove
the first stages of sorting networks. Unfortunately, our initial
experiments revealed that this approach yields non-optimal
solutions. Hence, we proposed a scalable method for con-
struction of approximate sorting networks exhibiting trade-
off between the quality and power consumption. The method
is based on recursive construction of large sorting networks
using smaller instances of approximate sorting networks that
are designed using a search-based design method.

Many approximate circuits have been proposed in recent
years. The correctness, however, is typically guaranteed for
precise data and only some estimation is promised for the
approximate data [8]. The designers are then reluctant to use
such circuits. The strength of our method is that the quality of
the approximate networks is guaranteed and formally proved
for arbitrary data widths.

Although the power consumption was optimized indirectly
by reducing the number of compare-and-swap operations, we

have experimentally confirmed that a significant improvement
in power consumption can be achieved for sorters implemented
not only in FPGAs but also as VLSI circuits. Naturally, the
discovered sorters can be employed to improve the computa-
tion efficiency of algorithms running on CPUs and GPUs.

Probably due to the lack of a formal apparatus for analysis
of approximation guarantees, no survey devoted to the approx-
imate sorters and their applications has been published up to
now. Let us mention two applications offering a great space for
lowering the computational effort (e.g., energy consumption).
Firstly, the small approximate sorters can directly be employed
to improve the power consumption of many sorter-based
arithmetic circuits or network arbiters [7]. On the other hand,
our method can be adopted to produce large networks for
power-efficient approximate processing of massive quantile
queries, a problem with many real-world applications [5]. In
order to do that, the fitness function should reflect the quality
of some outputs only.

ACKNOWLEDGMENT

This research was supported by the Czech science founda-
tion project GA16-17538S and Brno University of Technology
project FIT-S-14-2297.

REFERENCES

[1] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient mapping of
bitonic sorting on FPGA,” in Proceedings of the 2015 ACM/SIGDA Int. Symp.
on Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY, USA:
ACM, 2015, pp. 240–249.

[2] M. Zuluaga, P. A. Milder, and M. Püschel, “Computer generation of streaming
sorting networks,” in Design Automation Conference, 2012, pp. 1245–1253.

[3] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,” The
VLDB Journal, vol. 21, no. 1, pp. 1–23, 2012.

[4] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Approximate medians and
other quantiles in one pass and with limited memory,” in Proc. ACM SIGMOD
Int. Conf. on Management of Data. New York, USA: ACM, 1998, pp. 426–435.

[5] X. Lin, J. Xu et al., “Approximate processing of massive continuous quantile
queries over high-speed data streams,” IEEE Trans. Knowl. Data Eng., vol. 18,
no. 5, pp. 683–698, 2006.

[6] K. E. Batcher, “Sorting networks and their applications,” in Proc. of the spring
Joint Comp. Conf., ser. AFIPS ’68. New York, USA: ACM, 1968, pp. 307–314.

[7] H. Fujisaka, T. Kamio, C. J. Ahn et al., “Sorter-based arithmetic circuits for
sigma-delta domain signal processing – part I: Addition, approximate tran-
scendental functions, and log-domain operations,” IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 59, no. 9, pp. 1952–1965, Sept 2012.

[8] S. Mittal, “A survey of techniques for approximate computing,” ACM Comput.
Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[9] T. Leighton and C. G. Plaxton, “A (fairly) simple circuit that (usually) sorts,” in
Proc. 31st Annu. Symp. Foundations of Computer Science, 1990, pp. 264–274.

[10] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Redwood City, CA, USA: Addison Wesley Longman Publish-
ing Co., Inc., 1998.

[11] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput.,
vol. 20, no. 2, pp. 153–161, Feb. 1971.

[12] J.-D. Lee and K. E. Batcher, “Minimizing communication in the bitonic sort,”
IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 5, pp. 459–474, May 2000.

[13] D. Bundala and J. Závodný, “Optimal sorting networks,” in Proc. of the Lan-
guage and Automata Theory and Applications: 8th International Conference.
Cham: Springer International Publishing, 2014, pp. 236–247.

[14] T. Ehlers and M. Müller, “New bounds on optimal sorting networks,” in Proc.
Evolving Computability: 11th Conference on Computability in Europe, CiE
2015. Cham: Springer Int. Publishing, 2015, pp. 167–176.

[15] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp, “Twenty-five
comparators is optimal when sorting nine inputs (and twenty-nine for ten),” in
26th IEEE Int. Conf. Tools with Artificial Intelligence, ICTAI 2014, pp. 186–193.

[16] Z. Vasicek and V. Mrazek, “Trading between quality and non-functional
properties of median filter in embedded systems,” Genetic Programming and
Evolvable Machines, 2016 (to be published).

[17] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[18] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital

circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp. 432–444, June
2015.

