
Scheduling and Synchronization on Multicores
Riša Michal

1st year of study, full-time study
Supervisor Josef Strnadel

Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence
Božetěchova 2, 612 66 Brno, Czech Republic

irisa@fit.vutbr.cz

Abstract—The article presents a motivation, basic terms, prin-
ciples and problems related to applications created on basis
of multicore platforms. Then, state of the art is outlined in
brief, followed by a summary of work being done in preceding
MSc thesis. Afterwards, ideas behind prepared Ph. D. thesis
are outlined such as research directions, goals and roadmap,
followed by details to research questions and hypothesis. At the
end, methods and instruments to reach the goals are summarized
and the paper is concluded.

Keywords—scheduling, synchronization, multicore

I. INTRODUCTION

For the past 50 years, Moore’s law accurately predicted that
the number of transistors on an integrated circuit would double
every two years. To translate these transistors into equivalent
levels of system performance, chip designers increased [1]:

• Clock frequencies (requiring deeper instruction
pipelines),

• instruction level parallelism (requiring concurrent threads
and branch prediction),

• memory performance (requiring larger caches),
• and power consumption (requiring active power manage-

ment).
Each of these four areas is hitting a wall that impedes further

growth [1]:
• Increased processing frequency is slowing due to dimin-

ishing improvements in clock rates and poor wire scaling
as semiconductor devices shrink,

• instruction-level parallelism is limited by the inherent
lack of parallelism in the applications,

• memory performance is limited by the increasing gap
between processor and memory speeds,

• power consumption scales with clock frequency; so, at
some point, extraordinary means are needed to cool the
device.

A. Motivation

Using multiple processor cores on a single chip allows
designers to meet performance goals without using the max-
imum operating frequency. They can select a frequency in
the sweet spot of a process technology that results in lower
power consumption. Overall performance is achieved with
cores having simplified pipeline architectures relative to an
equivalent single core solution. Multiple instances of the core

in the device result in dramatic increases in the MIPS-per-watt
performance [1].

The introduction of multicore processors provides a new
challenge for software developers, who must now master the
programming techniques necessary to fully exploit multicore
processing potential. On a single-core processor, separate
tasks1 share the same processor (i.e., its time). On a multicore
processor, multiple tasks can run in paralel (i.e. they can
be executed at the same time by the corresponding cores),
resulting in more efficient execution.

B. Basic Terms, Principles and Problems

One of the first steps in mapping an application to a
multicore processor is to identify the task parallelism and
select a processing model that fits best.

1) Parallel Processing Models: According to [1], two dom-
inant models exist:

• Master/Slave, i.e., centralized control with distributed
execution. A master core is responsible for scheduling
various executions that can be allocated to any available
(slave-)core for processing. It also must deliver any data
to a slave. Applications (e.g., multi-user data link layer
of a communication protocol stack) that fit this model i)
inherently consist of many small independent tasks that fit
easily within the processing resources of a single core and
ii) often run on a high-level OS like Linux (i.e., the master
in charge of the scheduling) and potentially already have
multiple execution to be done. Typically, task assignment
is achieved by message-passing between the (master and
slave) cores – the messages provide the control triggers
to begin a task execution and pointers to the task’s data.

Master task Master
core

Tasks F, G Slave
coresTasks C, D, ETask BTask A

• Data Flow, i.e., distributed control and execution. Each
core processes a block of data using various algorithms;
then, the data can be passed to another core for further
processing. The initial core is often connected to an
input interface supplying the initial data for processing.

1each representing a piece of a code to be executed on a given processor



Scheduling is triggered upon data availability. Applica-
tions (such as the physical layer of a communication
protocol stack) that fit the model often contain large and
computationally complex components that are dependent
on each other and may not fit on a single core. They likely
run on a real-time (RT) OS where minimizing latency is
critical. The challenge for applications using this model is
partitioning the complex components across cores and the
high data flow rate through the system. Components often
need to be split and mapped to multiple cores to keep
the processing pipeline flowing regularly. The high data
rate requires good memory bandwidth between cores. The
data movement between cores is regular and low latency
hand-offs are critical. Synchronization of execution is
achieved using message passing between cores. Data is
passed between cores using shared memory or DMA
transfers.

Task A
core1

Task B (C)
core2

Task C (B)
core1

Task D, E, F
core2

Task G
core1

2) Software Decomposition for Multicores: To design a
software to be executed on a multicore platform, the following
problems must be solved (typically, the solution must be
searched in several cycles to find a (sub)optimal result):

• Partitioning, i.e., to identify a large number of small tasks
(that are paralelizable, i.e. with low coupling and high
cohesion) in order to yield a fine-grained decomposition;
in the ideal situation, the tasks belonging to different
partitions are intended to execute concurrently,

• Dependency, i.e., to identify (partitioned) tasks that are
not independent; those must be mutually synchronized
(serialized) to guarantee the dependencies, so their con-
curency is limited. Metrics are typically utilized to eval-
uate the level of cohesion in order to assist the grouping
of tasks for minimizing dependency effects,

• Combination, i.e., to reflect information about parti-
tions/dependencies for deciding about grouping of tasks
so that they can be efficiently executed on a multicore,

• Mapping, i.e., to assign (potentially grouped) tasks to
particular cores on basis of the selected parallel pro-
cessing model (see I-B1 on p. 1). After all the tasks
are mapped, the overall loading of each core can be
evaluated to indicate areas for additional refactoring to
balance the processing load across cores. Alike, further
parameters such as message passing latency or worst-case
blocking time due to the most pessimistic intra&inter-
core synchronization/communication scenario(s) can be
evaluated as well.

II. STATE-OF-THE-ART

A. Representatives of Existing Works

On basis of problems being solved, existing works can
be divided into several groups. Basic analysis/summary of

effects w.r.t. synchronization/communication on multicores
(such as performance, speedup and scaling from Amdahl’s law
perspective) can be found in [2].

On top of that, particular works can be found, each dealing
with a special area of interest w.r.t. multicores such as [3],
dealing with the load balancing, or [4], trying to contribute
to the synchronization problem by proposing a hardware lock
implementation (so-called the lock arbiter herein) designed to
reduce the lock latency while minimizing hardware overheads
and maintaining high levels of fairness. In software, mecha-
nisms such as resource access protocols [5], [6] are designed to
prevent undesired effects such as priority/deadlock inversion,
chained blocking and/or deadlock. Traditionally, the problem
of clock synchronization must be solved too [7].

Many works deal with power management and issues [8]
and solutions to the scheduling problem for multicores, being
utilized to construct applications being critical somehow such
as time-critical (or, real-time) applications. It should be noted
there that the problem of scheduling (real-time tasks on a
multicore processor) is the same as that of scheduling on a
multi- processor system, i.e. an NP-hard problem – its solution
can be approximated by heuristics. Basically, they can be
divided into two categories, so-called partitioning schemas
(policies) too [5]:

• partitioned being constructed to assign tasks to cores so
that a task is going to be executed just by the core being
assigned to the task,

• global allowing a task to be executed by different cores,
depending on actual parameters of a system such as the
computational load.

After the partitioning of all tasks is completed, tasks in
each core can be scheduled using well-known mechanisms
[6] or their multicore variants [5]. Due to their simplicity
and efficiency, partitioned scheduling algorithms are generally
preferred over global scheduling algorithms.

B. Work Done in MSc Thesis

The MSc Thesis [9] is focused on asymmetric multipro-
cessing (AMP) on the ARM Cortex–A9 MPcore platform.
The AMP is an approach to computer system load distribution
among heterogeneous software or hardware environments. In
the thesis, there are heterogeneous software environments (see
the figure below). Two equal processor cores run Linux, but
when needed, the second processor core (slave) is run–time
given to a bare–metal application by the first processor core
(master).

The AMP was required to run on an Altera Cyclone V
platform. It was discovered that an OpenAMP framework
[10] that provides required functionality exists for Xilinx



Zynq platform that also contains the ARM Cortex–A9 MPcore
processor. Thus the porting process from Xilinx Zynq to Altera
Cyclone V had begun:

• The OpenAMP was running on PetaLinux on the Zynq
and was ported to xilinx–2014.4 Linux.

• Later, the OpenAMP was ported to Altera Cyclone V
hardware platform. Changes were made to OpenAMP’s
bare–metal libraries, system memory map was reorga-
nized and missing loadable kernel modules for Altera’s
linux–socfpga were derived from Xilinx’s xilinx–2014.4
Linux.

OpenAMP is now functional on the Altera Cyclone V platform
although some work needs to be done in stabilizing the port.

III. PHD THESIS DETAILS

Although many works have already dealt with the topics
mentioned in II-A on p. 2, there are still many problems to
solve e.g. in the area of studying inter-relationships among
various parts of a multicore system. Particularly, it is neces-
sary to study impacts of undesired events (such as a fault,
error or failure, performance variations, overheating etc. of a
component in the system) to parameters and behavior of the
system.

For that purpose, appropriate instruments and techniques
must be utilized (for more information, see III-D on p. 4,
please). Those must be capable to i) describe behavior as well
as attributes of a system and its components, their dynamics
and ii) analyze properties of the system. Although it is planned
to focus mainly to digital (discrete) systems, it would be
advantageous if analog systems would be covered by the
instruments too; this gives one an opportunity to model and
analyze e.g. mixed/hybrid (i.e., digital/analog) systems – such
as cyber-physical or mixed-signal systems – being widely
utilized in practice.

A. Research Directions

1) Directions: There are many directions for the research
w.r.t. multicores; we have limited their list to – modeling,
analysis and/or design of – the following ones we plan to
focus on:

• Cores, interconnections and topology,
• clock, memory and I/O subsystems,
• power and dependability issues,
• synchronization/communication primitives and mecha-

nisms,
• policies for partitioning tasks, scheduling tasks and com-

munications.

B. Research Questions and Hypothesis

On basis of our previous activity, many problems have been
identified w.r.t. the multicore area. Since we intend to address
some of the problems in our research, we have prepared a
(preliminary, work in progress) list of research questions we
would like to answer:

• Is it possible to build a credible and valid model of a
generalized multicore platform ?

• Can the (above-mentioned) model be utilized to facilitate
analysis, design and/or portability of platform-dependent
routines for construction of a preemptive OS ?

• Can the (above-mentioned) model be utilized to facilitate
analysis, design and/or portability of (power-, time-,
safety- etc.) constrained, OS-controlled applications ?

On basis of the questions, our research hypothesis can be
formulated as follows:

It is possible to build a credible and valid model of a
generalized multicore platform on the basis of which
analysis, design and/or portability of a software for
multicores can be facilitated.

C. Research Goals and Roadmap

1) Goals: Their list includes, but is not limited to

• scalable multicore solutions of problems related to
task/ISR-level context switching, mutually exclusive ac-
cess and task/kernel-level synchronization, task schedul-
ing with potential core affinity/migration (i.e., with par-
titioned/global policy support),

• techniques to achieve robustness of an operating system
and consistency of its data structures such as a task
control block (TCB) and its adaptation to changes in a
multicore platform,

• scheduling policies able to meet multiple task con-
straints (posed on time, power, safety etc.) under various
fault/load scenarios,

• selection of comparison basis (such as benchmarks) and
of proper methods and instruments to verify crucial
properties (such as thread-safe or deadlock-free operation,
worst-case latencies of system calls etc.) of the proposed
concepts under AMP and/or SMP scenarios as well as
to show their practical applicability using several case-
studies of recent platforms and operating systems.

2) Roadmap: Basic blocks of the expected roadmap is
depicted below. Estimation of the overall time (in months)
reserved for a particular block is indicated in the circle by
the block. Let it be noted there that activities w.r.t. particular
blocks can overlap and be performed in parallel. The green
blocks are almost completed, red ones not started yet and white
ones have just started. Recent activity is highlighted using bold
borders/arrows.

State of
the art

(60 %)

recherche

Research
(75 %)

goals
&

hypothesis

Model
creation

(5 %)

cores, pwr, OS

Platform
setup

(1 %)

HW, IDE

Testing
(5 %)

simulation
model checking

benchmarks
measurements

P
u
b
l
i
s
h
i
n
g

(0 %)

Ph. D.
thesis

(0 %)

writing

6

3

18

24

6

36

18



D. Methods and Instruments to Reach the Goals

To reach the goals outlined in III-C1, it is necessary to
choose appropriate methods and instruments.

1) Modeling and Analysis Phase: Actually, we focus to
the model creation and analysis phase, for which we have
decided to apply the stochastic timed automata approach
combined with statistical model checking (SMC) technique.
Those instruments, available e.g. in the UPPAAL SMC tool
[11] are able to facilitate the process of creation and anal-
ysis of models of dynamic systems e.g. by description and
analysis of timing attributes and probabilistic behavior or
their digital/analog/hybrid components and their parameters
such as dependability or power consumption [12] [8]. The
expected output of that phase is a generalized, parameterizable
behavioral model of a multicore platform, consisting of key
sub-models for the parts such as cores (i.e., computational
elements able to execute a task), interconnections as well as
interrupt, communication and memory subsystems including
their parameters such as estimates of reliability, load, latencies
and power consumption.

Multicore platform
model

Core
model

Executive
model

Interrupt
subsystem

model

Memory
subsystem

model

Power consumption
& its control

model

On top of the above-mentioned, it is necessary to create
models of software layers such as an operating system or
an application in order to study how much they are able to
affect properties of a multicore system. This includes modeling
and analysis of concepts such as tasks, partitioning/scheduling
policies, their parameters and behavior within the context of
timing, power, reliability, safety etc.

Executive
model

Application
model

Load-aware
model

Power-aware
model

Reliability-
aware

model

Task
model

Scheduling
model

Partitioning
model

Task execution
model

2) Model Validation Phase: To guarantee credibility and
validity of models created within III-D1, the models must be
made according to practical observations such as experiments
over real multicore platforms. However, models for many
components such as CPUs or memories and their parameters
such as power consumption, load monitoring etc. which be

created yet before those experiments are prepared and per-
formed. Actually, the phase is under the preparation; later,
it will overlap with III-D1. It is planned that properties of
our models (such as deadlock-free operation, liveness, safety,
timeliness and reliability) are going to be intensively analyzed
by a technique such as SMC [11].

3) Evaluation Phase: In this phase, we plan to be inspired
by existing works such as [2] [4] [13] in order to create
and/or choose an appropriate comparison basis for evaluation
of our approach. In this phase, we plan to focus on proving
or disproving our hypothesis stated in III-B, p. 3 and start to
summarize the achieved results into the Ph. D. thesis.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education,
Youth and Sports from the National Programme of Sustain-
ability (NPU II) project ”IT4Innovations excellence in science
– LQ1602” and the inner university project No. FIT-S-14-2297
(Architecture of parallel and embedded computer systems).

The authors would like to thank Mr. Pavol Korček and
Mr. Jan Viktorin for information and experience they have
provided me w.r.t. my MSc. thesis [9]; it will be very helpful
during my Ph. D. study.

REFERENCES

[1] TI, “Multicore Programming Guide,” Texas Instruments, Tech. Rep.,
2012, http://www.ti.com/lit/an/sprab27b/sprab27b.pdf.

[2] L. Yavits, A. Morad, and R. Ginosar, “The Effect of Communication
and Synchronization on Amdahl’s law in Multicore Systems,” Parallel
Computing, vol. 40, no. 1, pp. 1 – 16, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819113001324

[3] K.-M. Cho, C.-W. Tsai, Y.-S. Chiu, and C.-S. Yang,
“A High Performance Load Balance Strategy for Real-Time
Multicore Systems,” TheScientificWorldJournal, vol. 2014, p.
101529, 2014, DOI: 10.1155/2014/101529. [Online]. Available:
http://europepmc.org/articles/PMC4009124

[4] R. Harding, “Synchronization on multicore architectures,” Master’s
thesis, Carnegie Mellon University, 2010.

[5] S. Baruah, M. Bertogna, and G. Buttazzo, Multiprocessor Scheduling
for Real-Time Systems, ser. Embedded Systems. Springer International
Publishing, 2015. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-08696-5

[6] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in Real-
Time Systems. Hoboken NJ, United States: John Wiley & Sons, 2002.

[7] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Commun. ACM, vol. 21, no. 7, pp. 558–565, Jul. 1978.
[Online]. Available: http://doi.acm.org/10.1145/359545.359563

[8] S. Pagani, J. J. Chen, and M. Li, “Energy Efficiency on Multi-Core
Architectures with Multiple Voltage Islands,” IEEE Transactions on
Parallel and Distributed Systems, vol. 26, no. 6, pp. 1608–1621, 2015,
DOI: 10.1109/TPDS.2014.2323260.

[9] M. Riša, “Asymmetric Multiprocessing on the ARM Cortex-A9,” Mas-
ter’s thesis, Brno University of Technology, 2015.

[10] Home page of the Open Asymmetric Multi Process-
ing (OpenAMP) framework project. [Online]. Available:
https://github.com/OpenAMP/open-amp

[11] A. David, K. Larsen, A. Legay, M. Mikučionis, and D. Poulsen,
“Uppaal smc tutorial,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 4, pp. 397–415, 2015. [Online].
Available: http://dx.doi.org/10.1007/s10009-014-0361-y

[12] W. Dargie, “A Stochastic Model for Estimating the Power Consumption
of a Processor,” IEEE Transactions on Computers, vol. 64, no. 5, pp.
1311–1322, 2015, DOI: 10.1109/TC.2014.2315629.

[13] J. Mistry, M. Naylor, and J. Woodcock, “Adapting freertos
for multicores: An experience report,” Softw. Pract. Exper.,
vol. 44, no. 9, pp. 1129–1154, Sep. 2014. [Online]. Available:
http://dx.doi.org/10.1002/spe.2188


