
Case Study on Multi-domain Decomposition of
k-Wave Simulation Framework

Filip Vaverka
1st year, full-time study

Supervisor: Jiri Jaros

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 66 Brno, Czech Republic

ivaverka@fit.vutbr.cz

Abstract—This article describes both the advantages and
challenges of using GPU equipped clusters to implement efficient
distributed algorithms. Our main focus is the decomposition
of numerical simulations based on (pseudo-)spectral methods.
We use a pseudo-spectral simulation of the ultrasound wave
propagation in homogenous medium (k-Wave) as a showcase of
the distributed algorithm. We show we are able to achieve a three
fold speedup of the simulation while lowering the cost at the same
time by employing a Local Fourier Basis decomposition.

Keywords—Pseudo-spectral Simulation, Local Fourier Basis,
GPGPU, CUDA, GPU Cluster

I. INTRODUCTION

This article describes our plan to approach the design
of distributed algorithms utilizing accelerator (such as GPU,
MIC, APU or even FPGA) equipped clusters. We can see that
one of main roadblocks in pursuit of higher performance of
our super-computer systems is the efficiency of compute nodes
and inter-node communication bandwidth. The first of those
problems is usually tackled in two ways: we employ more
efficient processing elements (to this date GPUs can achieve
up to 8x FLOPs/W more than general purpose CPUs) and we
design efficient algorithms on these processing elements.

The second problem (which is actually more painful) is
the inter-node communication, which is usually several times
slower than the intra-node communication. Even worse, the
inter-node communication is evolving rather slowly and the
discrepancy between the performance of the node and the
interconnect bandwidth is growing. On the top of that, there is
a plenty of tools for optimizing computation itself (compilers,
profilers, etc.), yet there is significantly fewer tools to optimize
communications and data locality. In distributed memory en-
vironments, we have to manually optimize the communication
or employ shared memory emulation [4], which is usually
unaware of the algorithm running on top of it.

The following sections briefly touch on current and near
future architectures of accelerator equipped clusters (mainly
GPU accelerated). After that, we show a case study of
the multi-domain decomposition of the k-Wave simulation
framework, and finally, roughly outline possible directions of
following research.

II. MODERN ACCELERATED CLUSTER ARCHITECTURES

The basic building block for the current cluster architectures
are multi-core CPU based nodes. Each of these nodes then has
a few hundreds GBs of a coherent memory (usually NUMA
architecture) and a fast network adapter. We can call such a
cluster “flat” as it has mostly (ignoring CPU caches) single,
flat and coherent memory space.

A simple way to build an accelerated cluster is to add
an accelerator (GPU, MIC, FPGA, ...) to each node (usually
connected through the PCI-E bus). As both PCI-E and the
main memory are rather slow, accelerators usually have their
own on-board, high bandwidth, memory with a limited size.
Figure 1 shows the architecture of such a cluster (using dual
socket Intel Xeon E7 CPU and R9 Fury X GPU). The on-
board memory is usually not coherent with the main memory,
therefore, the node memory space becomes hierarchical (with
manual management). This hierarchical structure brings new
challenges to the efficient use of such architectures.

GPU 1

PCI-E (16 GB/s)

GPU n

CPU

Network fabric (30 GB/s)

RAM (2x100 GB/s)

RAM (512 GB/s) RAM (512 GB/s)

GPU 1

PCI-E (16 GB/s)

GPU n

CPU

Network fabric (30 GB/s)

RAM (2x100 GB/s)

RAM (512 GB/s) RAM (512 GB/s)

Fig. 1: GPU Accelerated Cluster

In future, we expect an increase in the bandwidth of the
intra-node interconnect (NVlink and AMD GMI) and maybe
even fully coherent memory, yet these improvements will
probably lag behind the increase of the compute power of ac-
celerators. There are also efforts to achieve tighter integration
of accelerators with CPUs (NVlink + Power8 [9] and APUs
[8]). All this may result in effortless memory coherency of the
whole accelerated node, yet performance-wise we expect the
hierarchical structure to remain present (in similar way as in
current NUMA architectures).

 37

PAD 2016, Kraví Hora, 14.9.-16.9.2016

III. PSEUDO-SPECTRAL SIMULATION APPROACH

To show challenges associated with using such clusters we
chose a GPU based pseudo-spectral ultrasound wave propa-
gation solver as a case study of an algorithm with non-trivial
decomposition.

Computationally, the most intensive part of the solver is
the evaluation of the spatial derivatives which is usually cal-
culated, by either the Finite Difference Methods (FDM [10])
or (in our case) pseudo-spectral methods [11]. The pseudo-
spectral solver was chosen (a) because it’s a widely spread
solution and (b) its decomposition is non-trivial (compared to
FDM). Big advantage of spectral methods is high accuracy
(due to their ability to achieve exponential convergence).

The most often used pseudo-spectral methods are based on
the Fourier transform and the derivative can be computed in
Fourier basis space (i.e. f ′(x) = F−1{ikF{f(x)}}), where k
is a matrix of wave numbers and i is the imaginary unit). The
primary advantage of this approach is that we know derivatives
of the basis functions exactly and therefore we are getting an
advantage in precision. According to [1], our simulation needs
up to an order of magnitude fewer grid points (in 1D case) to
achieve accuracy on par with FDM. The secondary advantage
is that the Fourier transform can be computed in O(nlog(n))
time by the Fast Fourier Transform.

A. Local Fourier Basis

One of a limited number of approaches to alleviate the all-
to-all communication burden caused by the k-dimensional FFT
computation is the use of the Local Fourier Basis (LFB) de-
composition of the simulation domain (so called Multi-domain
Decomposition). This method is based on subdivision of the
original domain into a number of independent sub-domains.
If neighboring sub-domains have a certain overlap and each
of them form an LFB (i.e. local functions are smooth and
periodic) then the derivatives computed locally approximate
the global ones. Figure 2 shows such a decomposition of the
simulation domain in 3D.

Fig. 2: Multi-domain decomposition

In order to form an LFB after splitting the original domain,
we adopted a method described in [2]. Smoothing is done by
multiplying a function with a so called bell function (Fig. 3)
defined by equations 1 and 2.

θ(x) =

√
π

2ε

[
1 + erf

(
x
√
ε√
2

)]
(1)

B(x) =

θ(x) if x ∈ 〈ai − ε, ai)
1 if x ∈ 〈ai, ai+1)
θ(ε− x) if x ∈ 〈ai+1, ai+1 + ε)
0 otherwise

(2)

Where ε is the depth of the overlap and 〈ai, ai+1) is the local
core interval of the function.

0

0.2

0.4

0.6

0.8

1

1.2
B(x)

Fig. 3: Bell function

The accuracy of the approximation is given by the number
of sub-domains (in a given direction of FFT) and the depth
of overlaps. This gives us the opportunity to trade between
the overhead (both computation and communication) and the
accuracy. The impact of the number of sub-domains and the
depth of overlaps on the accuracy shows Fig. 4. Its worth to
note that, we can afford error up to 10−3, because that’s the
accuracy level of the PML which is necessary to avoid periodic
behavior of the spectral method.

(a) Depth of Overlaps

(b) Number of sub-domains

Fig. 4: Decomposition error

 38

PAD 2016, Kraví Hora, 14.9.-16.9.2016

B. K-Wave Local Decomposition

The proposed k-Wave simulation decomposition was im-
plemented using OpenMPI for inter-process communication,
CUDA to access GPUs and parallel HDF5 for I/O. We used
cuFFT to compute local gradients on each GPU. The whole
implementation can be divided into three parts: Simulation
core, communication framework and I/O subsystem.

The simulation core is mostly identical with the global
single GPU implementation and consists of a few simple
CUDA kernels and cuFFT calls. We have extended the core
by CUDA kernels for domain overlap extraction/injection.

The communication framework is responsible for domain
decomposition and overlap exchange between neighboring
sub-domains. The decomposition is planed ahead and each
process loads its part of the domain independently using
distributed I/O (results are collected back in the similar way).
Overlap exchanges are realized using asynchronous OpenMPI
communications and are partially overlapped. Communication
overlapping is realized in a way where we extract halos of
multiple matrices and start all communications. Here, we only
need to wait for all halo zones of the first matrix before
computing its gradient.

C. Performance and Scaling

The implementation of the local decomposition was tested
on the Emerald cluster which consists of nodes equipped with
three or eight NVIDIA C2070 (GF100 - Fermi). Nodes are
interconnected by a QDR Infiniband in the half-duplex mode.
Both GPUs themselves and the interconnection are therefore
rather outdated and we should be (and in fact we are) able to
achieve much better results on clusters like Anselm (with very
limited number of GPUs). Our experiments were conducted
running 100 steps of the simulation (which should be enough
to hide any warm-up latencies) with overlaps of 16 grid points.
Figure 5 shows the scaling and overhead of our solution on
a range of configurations with one to 128 GPUs and domains
sizes of 256× 256× 256 to 1024× 1024× 2048 (224 to 231

points) using decomposition in all three dimensions.

4

8

16

32

64

128

256

512

1024

1 2 4 8 16 32 64 128

Ti
m

e
pe

r
10

0
st

ep
s

[s
]

of GPUs

28x28x28

28x28x29

28x29x29

29x29x29

29x29x210

29x210x210

210x210x210

210x210x211

Fig. 5: Scaling on Emerald Cluster

We are able to achieve reasonable strong scaling. The
overall efficiency of proposed code increases with the size
of the simulation domain. This behavior is expected and can
be explained as a result of the decrease in both computational
and communication overhead (which grows only with surface
area of the sub-domains).

0

5

10

15

20

25

30

35

40

45

50

4 8 16 32 64 128

Ti
m

e
pe

r
10

0
st

ep
s

[s
]

of GPUs

Compute
PCI-E

MPI

Fig. 6: Overhead on Emerald Cluster

Figure 6 shows the breakdown of the simulation run time
for domain size of 512×512×512 using a 3D decomposition
and 16 grid points of overlap. It can be seen that the MPI
communication overhead increases until the 3D decomposition
is reached (2 × 2 × 4 GPUs). We can see that the pure
computation time doesn’t decrease exactly linearly, due to
the local domain extensions overhead. The extension overhead
reaches exactly 50% at 128 GPUs, which is one of the limits of
algorithms strong scaling. Other more prominent limit of the
strong scaling is the communication overhead which reaches
over 50% of total simulation time at about 16-32 GPUs.
Overall the overhead is still significantly lower that that of
the global decomposition of FFT [5].

IV. FUTURE RESEARCH

The proposed simulation algorithm is apparently a member
of the large class of algorithms whose performance tend to be
memory and inter-connect bandwidth (and/or latency) bound.
Such behavior may not be intrinsic to the algorithm itself, but
rather result of its design and implementation. It may be the
case that the algorithm behaves like memory/communication
bound one due to its inefficient use of the clusters memory
hierarchy or poor mapping to the distributed architecture.

In the future we therefore want to focus our effort on the
design of efficient decomposition methods (such as proposed
local decomposition), communication, memory access patterns
and data locality optimizations. We plan to tackle these areas
in multiple phases, first we are going to analyze some other
simulation algorithms and try to find their common patterns.
Secondly we will try to find common solutions of these prob-
lems and finally propose ways to automatize these solutions.

 39

PAD 2016, Kraví Hora, 14.9.-16.9.2016

At this point we are leaning towards functional representa-
tion of the algorithms, which should give us some advantages
for their automatic analysis. There is being done some progress
at mapping functional paradigm onto massively parallel hard-
ware [6] and we would like to extend such (or similar)
approach to distributed architectures with multiple memory
address spaces.

There is also a new development in the area of memory
access pattern analysis (for non-uniform memory architec-
tures), which significantly reduces the effort necessary to use
multiple GPUs or port GPU kernels to new architectures. In
the recent work [7] these qualities are achieved by introducing
new representation of the GPU kernels. It should be possible
to take similar approach and create such representation of the
algorithm from its original functional form.

V. CONCLUSION

This article outlines some of the current problems in the
high performance computing on accelerated clusters with
non-uniform memory and multiple memory address spaces.
We discussed our work in this area on the pseudo-spectral
simulation where we achieved significant improvements in
the performance. We also briefly outlined possible directions
of our future research in the design of efficient distributed
algorithms.

ACKNOWLEDGMENT

This work was supported by the FIT-14-2297 Architectures
of Parallel and Embedded Computer Systems project.

REFERENCES

[1] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for the
simulation and reconstruction of photoacoustic wave fields,” Journal of
biomedical optics, vol. 15, no. 2, pp. 021 314–021 314, 2010.

[2] M. Israeli, L. Vozovoi, and A. Averbuch, “Spectral multidomain tech-
nique with local Fourier basis,” Journal of Scientific Computing, vol. 8,
no. 2, pp. 135–149, 1993.

[3] J. Jaros, A. P. Rendell, and B. E. Treeby, “Full-wave nonlinear ultrasound
simulation on distributed clusters with applications in high-intensity
focused ultrasound,” International Journal of High Performance Com-
puting Applications, p. 1094342015581024, 2015.

[4] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A
nonuniform memory access programming model for high-performance
computers,” The Journal of Supercomputing, vol. 10, no. 2, pp.
169–189, 1996. [Online]. Available: http://link.springer.com/article/10.
1007/BF00130708;http://www.emsl.pnl.gov/docs/global/papers/tjs.pdf

[5] A. Gholami, J. Hill, D. Malhotra, and G. Biros, “AccFFT: A library
for distributed-memory FFT on CPU and GPU architectures.” CoRR,
vol. abs/1506.07933, 2015. [Online]. Available: http://dblp.uni-trier.de/
db/journals/corr/corr1506.html#GholamiHMB15

[6] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover,
“Accelerating Haskell array codes with multicore GPUs,” in Proceedings
of the sixth workshop on Declarative aspects of multicore programming.
ACM, 2011, pp. 3–14. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1926358;http://129.94.242.51/∼keller/Papers/acc-cuda.pdf

[7] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin, “Memory access
patterns: the missing piece of the multi-GPU puzzle.” in SC, J. Kern
and J. S. Vetter, Eds. ACM, 2015, pp. 19:1–19:12. [Online]. Available:
http://dblp.uni-trier.de/db/conf/sc/sc2015.html#Ben-NunLBR15

[8] “The AMD Fast Forward Project,” Feb. 2014. [Online]. Available:
https://asc.llnl.gov/fastforward/AMD-FF.pdf

[9] “Summit and Sierra Supercomputers: An Inside Look at the
U.S. Department of Energy’s New Pre-Exascale Systems,” Nov.
2014. [Online]. Available: http://www.teratec.eu/actu/calcul/Nvidia
Coral White Paper Final 3 1.pdf

[10] K. Okita, K. Ono, S. Takagi, and Y. Matsumoto, “Development of
high intensity focused ultrasound simulator for large-scale computing,”
International Journal for Numerical Methods in Fluids, vol. 65, no. 1-3,
pp. 43–66, 2011. [Online]. Available: http://dx.doi.org/10.1002/fld.2470

[11] Jan S. Hesthaven, Sigal Gottlieb, David Gottlieb, Spectral methods for
time-dependent problems. Cambridge : Cambridge University Press,
2007.

 40

PAD 2016, Kraví Hora, 14.9.-16.9.2016

