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Abstract—An approximate computing approach has recently
been introduced for high level circuit synthesis (HLS) in order
to make good use of approximate circuits at system and block
level. It is assumed in HLS algorithms that a component library
containing various implementations of elementary circuit com-
ponents is available. An open problem is how to construct such
a component library in the context of approximate computing,
where the component’s error is a new design variable and hence
many compromise implementations exist for a given component.
In this paper, we first introduce a multi-objective Cartesian ge-
netic programming method to create a comprehensive component
library containing hundreds of Pareto optimal implementations
of approximate 8-bit adders and multipliers, where the error, area
and delay are simultaneously optimized. Another multi-objective
evolutionary algorithm is employed to solve the so called binding
problem of HLS, in which suitable approximate components are
assigned to nodes of the data flow graph describing a complex
digital circuit. Two approaches are then proposed and compared
in order to reduce the size of the library of approximate
components. It is shown that a random sub-sampling of the
component library provides satisfactory results in the context
of our study. The proposed methods are evaluated using two
benchmark circuits – the reduce (sum) and DCT circuits.

I. INTRODUCTION

In modern circuit design tools, the circuit complexity is
handled by combining many approaches including, among oth-
ers, decomposition and abstraction. Circuits are represented in
different ways at different levels of abstraction. For example,
the requested functionality is specified in a common program-
ming language such as C. By means of high-level synthesis
(HLS), a register transfer (RT) level representation is created
from the C code. Resulting circuit is then implemented using
components available in the component library or synthesized
by general-purpose logic synthesis methods. The component
library contains frequently-used components (such as adders,
multipliers, multiplexers, etc.) that are carefully optimized for
a given fabrication technology. Each component is typically
available in several instances showing different parameters,
for example, fast but area-demanding vs. slow but area-saving
multipliers. The problem is formalized in such a way that a
circuit meeting a given latency constraint is sought while its
implementation cost (the area on a chip) has to be minimized.

Recent years have witnessed a rapid development in ap-
proximate computing [1]. As many applications are inher-
ently error-resilient, it is highly requested to exchange this
resilience for improvements in circuit parameters, primarily, in
power consumption reduction. In order to approximate digital

circuits, manual as well as automated circuit approximation
methods have been developed. These methods typically pro-
vide compromise circuit implementations along a Pareto front
showing different trade-offs between key circuit parameters
(delay, area, power consumption) and error. However, the
circuit approximation methods exhibit a kind of scalability
problem as only relatively simple circuits have been approxi-
mated so far. One of the reasons is that calculating the exact
error (i.e. evaluating a complex candidate approximate circuit
for the whole input range) is difficult and so time consuming
under common error metrics such as the average error.

In order to approximate complex circuits, the high level
synthesis methodology known for common circuits has been
adopted for approximate circuits [2]. In this approach, the
component library contains approximate implementations of
components which differ not only in standard circuit parame-
ters, but also in the accuracy. The overall objective is usually
to minimize total leakage energy consumption while latency
and accuracy constraints have to be satisfied.

In our previous work, we developed several evolutionary
algorithm (EA)-based circuit approximation methods [3], [4],
[5]. Regarding the complexity of evolved approximate circuits,
they could be considered as typical approximate components
of the library used in HLS (e.g., 8-bit adders, 8-bit multipliers).
As the proposed circuit approximation methods are fully
automated and accelerated, arbitrary combinational circuits (up
to a certain complexity) can be approximated meeting a given
error constraint. Moreover, different types of error metrics
can be employed. A very rich component library containing
hundreds of approximate versions of a given circuit can thus
be generated.

It is an open problem how to compose a library containing
approximate components for a particular HLS task. The aim
of this paper is to investigate the impact of the component
library size and construction on the quality of approximate
circuits produced by HLS. As this is the first study in this
direction, we consider only one step of HLS – the binding
which assigns operations of the algorithm to specific instances
of components from the library.

Cartesian genetic programming (CGP) is connected with the
NSGA-II algorithm [6] to form a multi-objective evolutionary
approximate circuit design tool. This tool is utilized to gen-
erate a component library, i.e. many instances of approximate
adders and multipliers showing different parameters in terms



of area, delay and error. In total, the resulting component
library contains 473 approximate 8-bit adders and 500 approx-
imate 8-bit multipliers, i.e. significantly more components than
usually used in HLS.

Once the library containing approximate components is
available, it is utilized in the binding task of HLS. The input is
a scheduled data flow graph (DFG) representing the operations
that have to be executed and the total latency. The binding
problem is solved using NSGA-II which assigns components
of the library to nodes of DFG. The resulting assignments are
presented in Pareto fronts to show various trade-offs among the
circuit delay, area and error. The binding optimization based
on NSGA-II is repeated with component libraries constructed
with different constrains and parameters in order to find out the
impact of the component library size (and other parameters) on
the resulting approximate circuits. For each candidate binding,
it is necessary to calculate the total error of the circuit. As
the circuits are complex and computing the exact error is
intractable, the total error is estimated using circuit simulation
and a method proposed in [2]. The impact of the component
library construction on the overall approximation process is
evaluated using two benchmarks (8-to-1 reduction and 8-input
fixed-point discrete cosine transform (DCT)).

The rest of the paper is organized as follows. Section II
briefly surveys relevant state of the art in the areas of HLS,
approximate computing and evolutionary circuit approxima-
tion. In Section III, a multi-objective CGP is introduced and
used to evolve approximate implementations of components of
the library. The evolved component library is then employed
in the binding task whose results are reported in Section IV.
Conclusions are given in Section V.

II. RELATED WORK

A. High Level Synthesis

HLS is an algorithmic approach introduced for an efficient
design and implementation of complex digital circuits. HLS
synthesis raises the design abstraction level and allows rapid
generation of optimized RT level hardware for performance,
area, and power requirements. HLS has significantly been
improved in recent years [7], mainly due improving the
algorithms behind its elementary steps.

Starting from the high-level description of an application,
an RT level component library and specific design constraints,
an HLS tool executes the following tasks [8]: compiles the
specification, allocates hardware resources (functional units,
storage components, buses, and so on), schedules the opera-
tions to clock cycles, binds the operations to functional units,
binds variables to storage elements, binds transfers to buses,
and generates the RT level architecture.

A key structure behind HLS is a data flow graph, in which
the nodes represent operations and the connections between
the nodes represent data dependencies and indicate the order
of operations. Allocation determines the type and the number
of resources needed to satisfy the design constraints. All
operations of DFG must be scheduled into cycles. Every
operation must be bound to one of the functional units

(components) capable of executing the operation. If there are
several units available, the binding algorithm must optimize
this selection. Similarly, variables and connections must be
bound to corresponding resources. Any component is available
in the component library in several instances that have different
area/delay/power trade-offs. A data path state machine is
created to control the scheduled design.

B. Approximate Computing

Approximate computing exploits the gap between the level
of accuracy required by the applications/users and that pro-
vided by the computing system for achieving diverse optimiza-
tions [1]. Two major approaches can be traced in the literature.

A bottom-up approach exploits the fact that the exact
computing utilizing nanometer transistors provided by recent
technology nodes is extremely expensive in terms of energy
requirements and reliable behavior. An open question is how
to effectively and reliably compute with a huge amount of un-
reliable components. A possible solution could allow perform-
ing of imprecise computations by the unreliable components
without introducing common fault tolerant mechanisms [9]. If
the resulting error were acceptable, the benefits would be in
obtaining very energy efficient operations.

A top-down approach is based on simplifying correctly
working hardware and software components that are em-
ployed in application domains such as multimedia, graphics,
data mining, and big data processing. These applications are
inherently error resilient. This resilience can be exchanged
for improvements in power consumption, throughput or im-
plementation cost. One of the approximation techniques is
functional approximation whose principle is to implement a
slightly different function to the original one provided that the
error is acceptable and key system parameters are improved.
Various tools now perform the functional approximation which
can further be combined with voltage over scaling to improve
energy efficiency of resulting circuits [10], [11], [12].

Following the top-down scenario, an approximate HLS has
recently been introduced for complex digital systems. Li et
al. introduced a library of approximate components that were
used in the scheduling and component allocation/binding for
data intensive error-resilient applications [2]. Moreover, a
variance-based error model was proposed to evaluate candidate
solutions (see Section IV-C).

C. CGP and Circuit Approximation

1) CGP: In CGP, candidate solutions are represented in
a two-dimensional array of programmable nodes [13]. An ni-
input and no-output combinational circuit is modeled using an
array of nc ·nr programmable nodes forming a Cartesian grid.
A set of available na-input node functions is denoted Γ. The
levels-back parameter l constraints which columns a node can
get its inputs from. No feedback is allowed in the basic version
of CGP. The primary inputs and programmable nodes are
uniquely numbered. For each node the chromosome contains
(na+1) values that represent (i) the node function and (ii) na
addresses specifying the input connections. The chromosome



also contains no values specifying the gates connected to the
primary outputs. The chromosome size is ncnr(na + 1) + no
integers. The search algorithm utilized by CGP is a simple
mutation-based (1 + λ) search strategy.

2) Evolutionary Circuit Approximation: CGP can naturally
be extended for circuit approximation because the fitness
function always includes a component measuring the circuit
functionality. If the circuit under approximation is not com-
plex, it is possible to evaluate its responses for all possible
input combinations and compute its exact error according to
an arbitrary chosen error metric. In the case of more complex
circuits, candidate circuits are evaluated using a training set
(i.e. a subset of all possible vectors) and the resulting error
is thus only estimated (see approximate median filters in [3]).
If an exact error is requested, a formal relaxed equivalence
checking has to be employed as demonstrated for relatively
complex combinational circuits in [5], [14]. However, these
formal methods are currently available only for a very re-
stricted set of error metrics.

The CGP-based approximation methods can be classified
as:
• Error-oriented, in which CGP tries to evolve a circuit

showing a predefined error, and consequently, to optimize
circuit parameters without worsening this error [5].

• Resources-oriented, in which resources (e.g. the number
of gates) are constrained and CGP is used to minimize
the circuit error with available resources [3].

• Multi-objective, in which all criteria are optimized to-
gether using a multi-objective EA such as NSGA-II [4].

III. EVOLUTIONARY DESIGN OF APPROXIMATE
COMPONENTS

Recently, the evolutionary approach was applied in the
task of approximate circuits design with respect to multiple
objectives and conventional circuits were used as an initial
population [4]. The method is based on a multi-objective
CGP implementation inspired by the NSGA-II algorithm. For
a given set of conventional circuits, the method is able to
produce a (larger) set of Pareto optimal solutions in terms
of the error, power consumption and delay. One can constrain
individual objectives to prevent the search space from growing
excessively.

A. NSGA-II and CGP

The NSGA-II algorithm is based on the idea of Pareto
dominance. The solution p dominates the solution q if p is
no worse than q in all objectives and p is strictly better than q
in at least one objective. The Pareto optimal solutions are not
dominated by any other solutions and form the so called Pareto
front. The individuals in each generation are sorted according
to the dominance relation into multiple fronts. The first front
F0 contains all Pareto optimal solutions. Each subsequent front
Fi is constructed by removing all the preceding fronts from
the population and finding a new Pareto front. Each solution
is assigned a rank according to the front it belongs to; the
solutions from the front Fi have the rank equal to i. The

NSGA-II fast non-dominated sort is very efficient, the overall
complexity is O(MN2), where N is the population size and
M is the number of objectives.

The solutions within the individual fronts are sorted accord-
ing to the crowding distance metric, which helps to preserve
a reasonable diversity along the fronts [6]. The crowding
distance is the average distance of two solutions on either
side along each of the objectives. The boundary solutions
are assigned an infinite crowding distance, which ensures that
these solutions will dominate the inner solutions. Any solution
from the front Fi always dominate any solution from Fj , j > i.
Within the fronts, solutions with higher crowding distance are
preferred.

The original NSGA-II algorithm was based on a genetic al-
gorithm, but its extensions for CGP were also introduced [15],
[16], [17]. The proposed implementation employs the follow-
ing modifications. Firstly, due to the absence of the crossover
operator in CGP, the offspring population is constructed only
using mutation. Secondly, the crowding distance is often not
sufficient for CGP to maintain the diversity of the population.
As the neutrality present in CGP causes a premature conver-
gence, the Pareto fronts are flooded by individuals that are
genotypically distinct but phenotypically identical. Therefore,
we introduced a new equivalence rank, which enables to put
the equivalent solutions in an order and preserve the neutrality
character of the CGP [17]. When comparing two individuals,
the individual with a lower equivalence rank always dominates
the other one. Two individuals with the same equivalence rank
are compared using the standard constrained-domination rules.
As a consequence, none of the fronts contains individuals
with the same fitness and the dominance relation among the
individuals with the same fitness is random.

B. Function Set

We used a subset of functions from a generic 180 nm
technology process library as the function set in CGP. The
function cells have one, two or three inputs (e.g. full adder) and
one or two outputs. Complete list of the functions including
their area and leakage power can be found in [4]. Some of the
functions (e.g. BUF, INV) have multiple sizes which differ in
the maximum output load, area, power consumption and delay.
During the evaluation, proper size was selected depending on
the output load of the gate [4].

C. Output Error

The output error of a candidate circuit is often measured as
the number of correct output bits compared to a specified truth
table (i.e. the Hamming distance). In the case of approximate
circuits, Hamming distance is not often suitable. In this paper,
we used the mean relative error:

fmre :=

∑
∀i

∣∣∣O(i)
orig−O

(i)
approx

∣∣∣
max(1,O

(i)
orig)

2ni
, (1)

where O(i)
orig is the decimal representation of the i-th circuit

correct output value and O(i)
approx is the individual’s i-th output



value. In addition to that, we constrained the worst absolute
and relative errors.

D. Circuit Parameters

The area and delay of a candidate circuit were calculated
using the parameters defined in the liberty timing file available
for the utilized semiconductor technology [4]. The circuit area
is estimated as a sum of areas of involved gates. The delay
td of a cell ci is modeled as a function of its input transition
time ts and capacitive load Cl on the output of the cell, i.e.
td(ci) = f(tcis , C

ci
l ). The delay of the circuit C is determined

as the delay of the longest path:

Delay(C) = max
∀p∈path

∑
ci∈p

td(ci). (2)

A detailed description of the power consumption estimation
can be found in [4].

E. Initial Population

We used a set of conventional circuits as the initial popula-
tion. CGP chromosomes for 13 different adder and 6 different
multiplier architectures were generated. The adders include
Ripple-Carry Adder (RCA), Carry-Select Adder (CSA), Carry-
Lookahead Adder (CLA), multiple Tree Adder (TA) and
Higher Valency Tree Adder (HVTA) architectures. The multi-
pliers include Ripple-Carry Array, multiple Carry-Save Array
and Wallace Tree architectures. The power, area and delay
estimates of those circuits can be found in [4].

F. Evolving the Components

Components of two types were designed using the proposed
method – approximate 8-bit adders and multipliers. The CGP
parameters were set as follows: 500 individuals in the popu-
lation, 100,000 generations, 10 islands, mutation rate 5 %, the
number of rows nr = 1 (to maximize the number of possible
connections between blocks). The number of columns was
nc = 200 in the case of the adders and nc = 1000 in the
case of the multipliers.

The circuits were designed with respect to three objectives –
the mean relative error (MRE), power consumption and delay.
The MRE was constrained to be at most 10 %, the worst
case error was constrained to be at most 5 % of the output
range and the worst case relative error was limited to 1000 %,
i.e. all candidate solutions violating these requirements were
discarded.

Figure 1 shows 473 Pareto optimal 8-bit approximate
adders evolved from the initial population of 13 conventional
adders. Figure 2 shows 500 Pareto optimal 8-bit approximate
multipliers that were evolved from 6 conventional circuits.
All parameters are related to the Ripple-Carry Adder and
Ripple-Carry Array Multiplier architectures (considered as
100% in the figures), since they are the most power efficient
conventional architectures.
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Fig. 1: Pareto front of evolved approximate 8-bit adders.
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Fig. 2: Pareto front of evolved approximate 8-bit multipliers.

IV. APPROXIMATE HIGH LEVEL SYNTHESIS: BINDING

The library of evolved approximate components, DFG and
maximum latency are the inputs to the proposed method. The
objective of the binding process is to find the best assignment
of components (functional units) to nodes of the DFG. As our
assignment quality metrics consists of three objective functions
(area, delay and error), the problem does not necessary have
a single overall best solution. Instead the whole set of Pareto
optimal solutions have to be considered as the solution of the
problem. This way the user can decide which of the objectives
is the most important and choose a final solution appropriately.

The binding problem for approximate circuits in the context
of HLS is often handled as a knapsack-based optimization
problem, where the objective is to maximize energy savings
while maintaining a minimal given precision (this leads to the
well known 0-1 knapsack problem). In the case of circuits
with multiple outputs, this approach leads to Multiple-choice
Multiple-dimension Knapsack Problem (MMKP [18]). In this
paper, the problem is tackled as a multi-class multi-objective
assignment optimization problem, which can be formulated as:

min(farea(x), fdelay(x), ferror(x))

s.t. x = (ci1, ci2, . . . , cin), cij ∈ Ij ,
(3)

where f− are objective functions, x is a candidate vector



assigning components to DFG nodes and Ij is a set of possible
implementations of the component at j-th node.

This formulation of the problem allows us to employ a wide
range of optimization algorithms to find the best component
assignments. We decided to use the state of the art NSGA-II
algorithm which is able to directly optimize against multiple
objective functions. Experiments with other multi-objective
optimization algorithms are left for future research.

A. Problem Encoding and Genetic Operators

The component assignment problem is encoded with an
integer vector of length n, where n is the number of nodes
in the DFG. Each item ci of the vector x = (c1, c2, . . . , cn),
ci ∈ Ii assigns a single component to corresponding DFG
node. The implementations of components in the library are
sorted by their types (adders, multipliers, ...) into sets Ii. This
way only components of appropriate type can be assigned to
the node.

Our implementation of NSGA-II uses two genetic operators:
mutation and crossover. The mutation operator is implemented
as a simple random change of the assignment with very
low probability per each node i, where another component
is selected from corresponding set Ii at random (with the
uniform distribution). A simple single point crossover op-
erator is employed. Let xA = (cA1 , c

A
2 , . . . , a

A
n ) and xB =

(cB1 , c
B
2 , . . . , a

B
n ) be parent assignments, then offspring xO =

(cA1 , . . . , c
A
p , c

B
p+1, . . . , c

B
n ) is basically combination of xA,

xB . The crossover point p is randomly selected – again with
the uniform distribution.

B. Fitness Function

There are three fitness functions (see def. 3), where the most
complicated one is the error metrics ferror(x) which will be
described separately in Section IV-C.

The total delay of the circuit is computed by adding delays
of each step (recall that the input is scheduled DFG), i.e. delays
of the slowest components. The overall delay is then defined
as

fdelay(x) =
∑
s∈S

max
ω∈Ns

Delay(x(ω)), (4)

where s goes through all scheduled steps, ω goes through all
nodes in step s and Delay(x(ω)) is a delay of the component
assigned to node ω.

The total area of the circuit is the sum of all assigned
components (note that component sharing is not taken into
account):

farea(x) =
∑
ω∈N

Area(x(ω)), (5)

where N is a set of all nodes in DFG and Area(x(ω)) is an
area of the component assigned to node ω.

C. Error Metrics

As the input space of complex circuits with multiple inputs
is typically vast, the error evaluation is the hardest part of
computing the individual’s fitness. A typical circuit considered
in this study has 8 inputs (usually 8 bits per input, i.e. 28

2

input states in total) which makes the classic error evaluation
intractable. This problem is typically tackled by sampling or
modeling. Sampling of the input state space is often used in
evolutionary design of domain specific circuits, such as image
filters, where we can take advantage of knowledge of the input
data properties.

Both modeling and sampling are used in this work. The
proposed sampling method randomly takes k vectors from the
input state space and performs simulation of the exact and
approximate circuits, followed by comparing their outputs. The
input vectors are selected randomly with uniform distribution
because no knowledge of the input state space is assumed
and incorporated. Figure 3 shows the mean relative standard
deviation of the error for a given number of test vectors in the
case of DCT-8 benchmark. In the following experiments, we
utilized 4,096 test vectors as they provide a good compromise
between the error and computational cost.
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Fig. 3: The mean relative standard deviation of the error for a
given number of test vectors

The proposed modeling approach is based on a variance
error model introduced in [2]. It is able to capture the error
propagation in the DFG including structural correlations. The
method is based on representation of variables in the compu-
tation as random variables (i.e. x becomes x+ εx, where εx is
error). The arithmetic operations are modeled in a similar way
so that the error is propagated through the DFG (equations 6
and 7). Authors of [2] assume that only variance of an error is
significant (as its constant part can be canceled out with bias)
and the output error of the system is then linear combination
of random variables. The results of the considered arithmetic
operations (+,×) are expressed as:

+ : y + εy = (a+ εa) + (b+ εb) + ε+ (6)

× : y + εy = ab+ aεb + bεa + ε× +���XXXεa · εb (7)

An error sensitivity model which can capture first order
structure correlations is used according to [2]. The error
variance of an output is defined as:

ν(εo) =
∑
∀ω∈V

ES2
ω,o · ν(εω), (8)



where εo is the error at output o and V is a set of all
DFG nodes with path to output o. The error sensitivity (ES)
is defined for each node as ESω,o = εω,o/εω and can be
precomputed in the pre-processing phase. The error sensitivity
is computed by a depth first search over DFG going through
all paths from output o to node ω. Our error objective function
is then defined as the maximal value of ν(.) across a set of
all outputs O of the circuit:

ferror(x) = max
o∈O

ν(εo). (9)

D. Experimental Setup

The proposed NSGA-II-based binding algorithm is evalu-
ated using two benchmark problems: a simple 8-to-1 reduction
(summing 8 values) and a fixed-point 8-input DCT [19].
Since both circuits operate over 8-bit inputs, they can be built
using our library of evolved 8-bit components. Components
other than adders and multipliers (such as negations and bit
manipulations) are accurate and do not contribute to the error.
However, these components represent only a fraction of all
components needed to implement DCT.

The experiments begin with the complete library of evolved
components containing 473 approximate adders and 500 ap-
proximate multipliers (which are all Pareto-optimal). In order
to reduce the library size, two methods are proposed and
compared: (1) random sampling and (2) taking the best k
components according to a scalar fitness:

fx =
∑
f∈F

wf
f(x)

maxy∈Sf(y)−miny∈Sf(y)
, (10)

where F = {farea, fdelay, ferror} is a set of objective func-
tions, wf is weight of normalized objective function f ∈ F ,
S is a set of all obtained solutions to the binding problem and
f(x) is the value of objective function f for solution x. The
fx value is, therefore, the weighted sum of normalized values
of objective functions for solution x.

The NSGA-II algorithm operates with a randomly initial-
ized population containing 160 individuals. The number of
generations is 5,000 and the probability of mutation is 1%.
This setting was fixed after several initial experiments and
was leading to a good performance and a reasonable execution
time.

E. Results

It is assumed that utilizing all available components pro-
vides the best results. The objective is to find a minimal subset
of components so that our binding algorithm is able to achieve
a sufficient coverage of the solution space. In order to compare
the solution space coverage produced by various subsets of
components, a “density” indicator is proposed (eq. 11):

vf =
1

|S| − 1

∑
x∈S

miny∈S |Fx − Fy|, x 6= y, (11)

where vf is an average distance between a given solution
and its nearest neighbor in the objective function space,
Fx = (farea(x), fdelay(x), ferror(x)) is a vector of objective
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function values for solution x, S is a set of all obtained
solutions to the binding problem and |S| is the number of
solutions in this set. We should note that the |S| is constant
over all of our test cases. Higher values of vf indicate that
solutions are not close to each other and the whole Pareto
front can thus be better covered.

1) Experiments with complete library: Figures 4 and 5
show Pareto-optimal sets obtained using the proposed com-
ponent binding algorithm for the reduce (sum) and DCT-8
flow graphs using the complete component library. In order to
compare results, the error is expressed as the error variance
for both the sampling method (4,096 test vectors generated) as
well as the analytical error model. Note that the output data
range is (0 . . . 255) for Reduction and (−2 . . . 2) for DCT-
8. It can be seen that the analytical error model quite well
matches sampled results for the reduction problem, yet shows
unacceptable error for the DCT-8. One of the reasons of the
model’s insufficiency seems to be a fact that the approximate
multipliers are used as scale operators (a ∗ C, where C is
constant), whereas their error was evaluated in the binary
configuration (a ∗ b). Secondly, the DFG of DCT-8 is much
more complex than that of the reduction.

2) Randomly sub-sampled library: In order to find out what
is the reasonable (minimal) size of the library that we need in
order to achieve similar solution space coverage, we repeated
the evolutionary binding task with library sizes from 10 to
640 components (the ratio of adders to multipliers is 1:1).
The error is calculated using the statistical model interleaved
by simulation.

Results are demonstrated mainly for the DCT-8 benchmark;
the Reduce benchmark shows similar characteristics. Figure 6
gives an example – the resulting coverage obtained from three
test runs of NSGA-II while using three different samples of 10
components from the complete library. It is apparent that the
solution space coverage is rather poor (considering a single
run with a single library).

Figure 7 shows how coverage improves for both benchmarks
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Fig. 6: Random sub-sampling using three different samples of
10 components from the complete library

when the library size is increasing. The gains are the most ap-
parent for small library sizes, where only about 80 component
implementations are needed to obtain almost the same value
of the vf indicator as for hundreds of components. In these
box plots, we used 30 samples per library size (10 different
libraries with 3 evolutionary runs per each).

3) Sub-sampled library: Top k components: If we choose
k-best components using the scalar fitness (see eq. 10 with
w1 = w2 = w3), the resulting coverage is slightly worse.
Figure 8 and 9 show Pareto-optimal solutions obtained using
three smaller library instances and the impact of library size on
the vf indicator. It can be seen that larger component libraries
are needed to reach the same vf values in comparison with
the random sub-sampling.

4) Parameters of approximate solutions: Finally, parame-
ters of various evolved implementations of approximate and
accurate DCT-8 circuits are summarized in Figure 10. The
error is expressed as the mean relative error, which is a
standard measure used in approximate computing.
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Fig. 7: Solution space coverage measured using vf indicator
for different library sizes – Random sub-sampling method
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V. CONCLUSIONS

In this paper, we employed a multi-objective Cartesian
genetic programming to create a comprehensive component
library containing hundreds of Pareto optimal implementations
of approximate 8-bit adders and multipliers. This compo-
nent library was utilized in the binding task of approximate
HLS, where the binding was conducted using the NSGA-II
algorithm. Circuit error was established by means of circuit
simulation (based on randomly generated test vectors) and
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Fig. 9: Solution space coverage measured using vf indicator
for different library sizes – Top k components method
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Fig. 10: Parameters of various evolved implementations of
approximate and accurate DCT-8 circuits.

statistical modeling. Combining the circuit simulation with
statistical modeling is the preferred method as the statistical
error estimation shows some drawbacks for more complex
circuits.

Two approaches were evaluated in order to reduce the size
of the library of approximate components. It turns out under
conditions of our experiments that the random sub-sampling
of the component library allows for better coverage of the
solution space for both benchmarks. The Top k selection seems
to be too biased by the approach we used to scalarize the
objectives.

This initial study left open many issues. Our future work
will be devoted to improving the statistical error estimation
(dealing with error estimation for specific components), eval-
uating more complex benchmark circuits, analyzing the impact
of NSGA-II parameters on the quality of results and proposing
other component library reducing methods based on gained
experience.
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